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Abstract: An efficient position based visual sevroing control approach for Autonomous Underwater
Vehicles (AUVs) by employing Non-linear Model Predictive Control (N-MPC) is designed and
presented in this work. In the proposed scheme, a mechanism is incorporated within the vision-based
controller that determines when the Visual Tracking Algorithm (VTA) should be activated and new
control inputs should be calculated. More specifically, the control loop does not close periodically,
i.e., between two consecutive activations (triggering instants), the control inputs calculated by the
N-MPC at the previous triggering time instant are applied to the underwater robot in an open-loop
mode. This results in a significantly smaller number of requested measurements from the vision
tracking algorithm, as well as less frequent computations of the non-linear predictive control law.
This results in a reduction in processing time as well as energy consumption and, therefore, increases
the accuracy and autonomy of the Autonomous Underwater Vehicle. The latter is of paramount
importance for persistent underwater inspection tasks. Moreover, the Field of View constraints (FoV),
control input saturation, the kinematic limitations due to the underactuated degree of freedom in
sway direction, and the effect of the model uncertainties as well as external disturbances have been
considered during the control design. In addition, the stability and convergence of the closed-loop
system has been guaranteed analytically. Finally, the efficiency and performance of the proposed
vision-based control framework is demonstrated through a comparative real-time experimental study
while using a small underwater vehicle.

Keywords: autonomous underwater vehicle; marine robotics; visual servoing; self triggered control

1. Introduction

Vision-based control has been extensively investigated in recent decades for the operation of
autonomous underwater vehicles [1,2]. Complex underwater missions, such as surveillance of
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underwater oil/gas pipelines [3–5], inspection of underwater communication cables [6,7], and search
for hazardous materials (e.g., naval mines) [8–10], require detailed and continuous visual feedback,
which can be obtained from either monocular or stereo vision systems.

In general, the visual servoing can be categorized in (i) Position-Based Visual Servoing (PBVS),
where the visual features extracted along with the help of the visual tracking algorithm are used
for the estimation of the three-dimensional (3D) relative position between the camera and visual
target; (ii) Image-Based Visual Servoing (IBVS), where the error function is defined directly on the
position of the image features in the image plane between the current and desired images [11];
and, (iii) 2-1/2 Visual Servoing, where the error function is partially formulated in both the Cartesian
and the image plane. More information regarding the standard visual servoing techniques can
be found in the literature [12–14]. Regarding visual servo control in underwater robotics, some
previous work for the pipe inspection task (for example, oil platforms) were realized in [15,16]. In [17],
visual servoing using the Laser Vision System (LVS) combined with an on-line identification mechanism
has been investigated and verified experimentally. In [18,19], stereo vision frameworks have been
investigated for underwater operation. The docking of underwater robots employing visual feedback
has been addressed in [20,21]. Some applications of visual servoing for station keeping of autonomous
underwater vehicles are given in [22–24].

The control of an underwater vehicle is generally a highly non-linear problem [25,26].
Conventional control strategies, such as input-output decoupling and local linearization [27,28],
Output feedback linearization [29–31], and combined frameworks involving Lyapunov theory and
backstepping have been investigated in the past for the design of motion controllers for autonomous
underwater vehicles. However, most of the aforementioned control strategies yield low closed-loop
performance and often demand very precise dynamic parameters, which, in most cases, is quite
difficult to obtain [32,33]. Moreover, the effect of ocean currents is either assumed to be known or
an exponential observer is adopted for its estimation, thus increasing the design complexity [34].
In addition, by employing all of the aforementioned control strategies, it is not always straightforward
to incorporate operational limitations (i.e., visual and/or kinematic constraints) into the vehicle’s
closed-loop system [35]. In this spirit, the efficient controlling of underwater robotic vehicles continues
to pose significant challenges for control designers in view of the numerous limitations and constraints
that arise from the nature of the underwater environment [36]. In particular, AUVs are characterized
by constrained high-dimensional non-linear dynamics, especially in the case of underactuated
systems [37], which induce significant complexity regarding model uncertainty as well as various
operational constraints, such as sensing capabilities and visibility constraints [38,39]. In this context,
Non-linear Model Predictive Control (N-MPC) [40], is a proper control approach that is to be used
in complex underwater visual servoing missions due to its efficient ability to handle input and
state constraints. In a vision based MPC setup, the filed of view limitations could be integrated as
state constraints [41]. In this spirit, vision based MPC controller have been employed in medical
application [42], as well as for navigation of autonomous aerial vehicles [43] and mobile robots [44].
Furthermore, a vision based terrain mapping-model predictive control approach for autonomous
landing of an UAV in unknown terrain is given in [45]. In [46], a vision based approach for path
following of an omni-directional mobile robot using MPC is presented.

In a typical vision-based control setup, at every sampling time, the visual feedback that is
extracted from the image is used for the generation of a proper error [47]. This requires the selection
and extraction of appropriate image features and matching them with the corresponding features in
the desired image [48]. This process is usually referred in the literature as Visual Tracking [49,50].
Accuracy and robustness are the main concerns of a Visual Tracking Algorithm (VTA) [51].
However, it is known that the accurate and robust VTA in real-time robotic applications is a very
heavy process that demands high computational cost [52]. The latter will result in large energy
consumption and might cause delays in the closed-loop system. The aforementioned issues become
more apparent in the case of small autonomous robotic vehicles (e.g., UAVs, AUVs), where they are
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usually equipped with a weak computing unit and, in most cases, suffer from limited energy resources
and their recharging procedure is difficult and time and cost consuming [53]. On the other hand,
in a N-MPC setup, a constrained Optimal Control Problem (OCP) must be solved at each sampling
time. The latter is usually considered to be a very computationally demanding task. In addition,
these systems are usually equipped with weak computing units that need to solve the VTA and the
OCP of the NMPC at each time instant. This usually results in the reduction of the system accuracy,
as bigger sampling times are required. Here, the problem is to design an automatic framework that
relaxes the rate of control input calculations and visual tracking activation while maintaining the
efficiency of the system. In other words, an automatic visual servoing framework that determines when
the system requires tracking the visual data and calculating new control inputs while maintaining
system performance at the desired level. This encourages the design of a self-triggered visual servoing
strategy that is addressed in this work.

1.1. The Self-Triggered Control Framework

Nowadays, periodic control is the standard control framework that is used in most applications.
Quite recently, though, a novel formulation of control schemes in a self-triggered manner is becoming
popular. The key idea behind the self-triggered control is that the execution of the control task is
not made ad-hoc at every sampling time, but, instead, it uses system feedback in order to sample
as infrequently as possible while guaranteeing to preserve the stability of the system, see Figure 1.
Consequently, this results in an aperiodic sampling system, while also preserving the system
performance and stability. In particular, the self-triggered strategy leads to reducing the number
of sampling data from the system, a feature that is important and desirable in a various number of
applications with operational limitations in sensing, energy, and communication.

Figure 1. The classic periodic time-triggered framework is depicted in the top block diagram.
The bottom diagram represents the self-triggered control.

The self-triggered control framework along with a closely related framework, named
event-triggered control, comprise the recently introduced event-based control framework.
Both approaches, self and event-based control, are comprised, inter alia, by a feedback control
framework that calculates the control input and a triggering mechanism that decides when the
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new control update should occur. However, these frameworks are different; the event-triggered
control is more reactive with respect to the self-triggered control, as control inputs in this strategy are
calculated when the robot state deviates more than a certain threshold from a desired value, while
the self-triggered framework can be considered to be proactive, as it computes the next control input
ahead of time. Notice, that, in the event-triggered framework, a constant measurement of the system
state is required in order to determine the time of control update. However, self-triggered strategy
only requires the latest measurement of the system’s state for determining the next triggering time
instant [54]. More preliminary information regarding the event-triggering control techniques can be
found in [55–57] and the papers quoted therein.

1.2. Contributions

In this paper (A preliminary version of this work, in the absence of a detailed analysis of
the methodology, including detailed stability and convergence analysis, detailed controller design,
detailed description of real time implementation and experimental results has been reported in to
the IEEE European Control Conference [54] as well as in to the IEEE International Conference on
Robotics and Automation [58].), by employing N-MPC, a Self-triggered Position Based Visual Servoing
control strategy is designed for the motion control of autonomous underwater vehicles. The purpose
of this control framework is to guide and stabilize the underwater robot towards a visual target while
assuring that the target will not leave the camera’s field of view (Figure 2).

Figure 2. Navigation and stabilization in front of a visual target while maintaining the visual target
within the camera’s Field of View (FoV), c©2014 IEEE [58].

The 3D position of the vehicle with respect to the target is estimated while employing computer
vision algorithms and it is described in more detail in Section 4. The choice of PBVS instead of IBVS or
2-1/2 visual servoing is mainly motivated by the inherited advantage of PBVS to control the onboard
camera and, as a result, the vehicle itself directly in the 3D space. This makes the design of the
N-MPC framework more easy and efficient. The fact that PBVS cannot guarantee the preservation
of the visual target inside the image frame is handled by defining of the field of view limitations
in the N-MPC structure. The main contribution of this work relies on the design of a vision-based
control strategy that automatically determines when the controller and the vision algorithm should
be activated while maintaining the closed-loop performance and stability of the system. This leads
to reduced tracking of the vision algorithm, CPU effort, and energy consumption, which are of
paramount importance in the case of autonomous underwater vehicles in persistent inspection tasks
that demand higher system autonomy. Experimental results on event-based formulations are scarce in
the literature [59–66]. In this work, the efficiency and performance of the proposed control framework is
verified through a comparative real-time experimental study using a small underactuated underwater
robot in a small water tank. To the best of our knowledge, this work presents the first experimental
validation of an event-based visual servoing control framework for underwater robotic vehicles.
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In addition, the experimental results are quite satisfactory, as the vehicle reaches and stabilizes at the
desired position relative to the visual target, while the number of activation of the visual algorithm is
significantly decreased as compared to the conventional case employing classical N-MPC.

The remainder of the paper is organized, as follows: Section 2 presents the problem statement of
this paper where the system and operation limitations are formulated in detail. In Section 3, the robust
stability analysis for the proposed vision-based self-triggered N-MPC framework is accommodated.
Section 4 demonstrates the performance of the proposed motion control framework through a set of
experimental results. Finally, Section 5 concludes the paper.

2. Problem Formulation

In this section, initially, the mathematical modeling of the under-actuated underwater vehicle
and its constraints are formulated. Subsequently, taking into account the external disturbances and
uncertainties of the model, a perturbed version of the system is defined. Finally, the proposed motion
control scheme is designed.

2.1. Mathematical Modeling

An autonomous underwater vehicle can be defined as a 6 Degree Of Freedom (DOF) free body
with position and Euler angle vector x = [χ y z φ θ ψ]>. Moreover, v = [u υ w p q r]> is the vector of
vehicle body velocities, where its components, according to SNAME [67], are surge, sway, heave, roll,
pitch, and yaw, respectively (Figure 3). In addition, τ = [X Y Z K M N]> is the vector of forces and
moments acting on the vehicle center of mass. In this spirit, the dynamics of an underwater robotic
vehicle are given in as [68]:

Mv̇ + C(v)v + D(v)v + g(x) = τ

ẋ = J(x)v
(1)

where: M = MRB+MA is the inertia matrix for rigid body and added mass, respectively,
C(v) = CRB(v) + CA(v) is the Coriolis and centripetal matrix for rigid body and added mass
respectively, D(v) = Dquad(v) + Dlin(v) is the quadratic and linear drag matrix, respectively, g(x) is
the hydrostatic restoring force vector, τ, is the thruster input vector and J(x) is the well-known Jacobian
matrix [68]. The underwater robot considered in this paper is a 3 DOF VideoRay Pro ROV (Remotely
Operated underwater Vehicle) that is equipped with three thrusters, which enable it effective in surge,
heave, and yaw motion (Figure 3). This means that the considered underwater robot is under-actuated
along its sway axis. Here, due to the robot design, we simply neglect the angles φ, θ and angular
velocities p and q. In addition, because of the robot symmetry regarding x-z and y-z planes we can
safely assume that motions in heave, roll, and pitch are decoupled [68]. Furthermore, the coupling
effects are safely can be considered to be negligible since the robot is operating at relatively low speeds.
Finally, based on the aforementioned considerations, in this work we consider the kinematic model of
the robot, which can be given, as follows [69]:

xk+1 = f (xk, Vk) + g(xk, vk)⇒
χk+1
yk+1
zk+1
ψk+1

 =


χk
yk
zk
ψk

+


cos ψk 0 0
sin ψk 0 0

0 1 0
0 0 1


uk

wk
rk

 dt +


− sin ψk
cos ψk

0
0

 vkdt, (2)

where xk = [χk, yk, zk, ψk]
> is the state vector at the time-step k, including the position and orientation

of the robot relative to the target frame G. Moreover, the vector of control input is Vk = [uk, wk, rk]
>

and dt denotes the sampling period. In addition, following theresults given in [70] and, by employing
Input-to-State Stability (ISS), it can be shown that, by applying any bounded control input [uk, rk] to
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the considered nonholonomic robotic system, the velocity about the sway direction vk can be seen
as a bounded disturbance with upper bound ||vk|| ≤ v̄ that vanishes at the point x = 0. Therefore,
the aforementioned point is an equilibrium of the kinematic system of Equation (2). Note, in this
work, we denote the upper bound for each variable by the notation ( ·̄ ). Therefore, based on the
aforementioned discussion, we consider the system:

xk+1 = f (xk, Vk)⇒
χk+1
yk+1
zk+1
ψk+1

 =


χk
yk
zk
ψk

+


cos ψk 0 0
sin ψk 0 0

0 1 0
0 0 1


uk

wk
rk

 dt (3)

as the nominal kinematic system of the underwater robotic vehicle. It is worth mentioning that the
function g(xk, vk) ∈ Γ ⊂ R4 is considered as a bounded inner disturbance of the system that vanishes
at the origin and Γ is a compact set, such that:

||g(xk, vk)|| ≤ γ̄ with γ̄ , v̄dt (4)

Figure 3. System coordination. The under-actuated, as well as the actuated, degrees of freedom are
indicated with red and green color, respectively, c©2014 IEEE [58].

The underwater robot that is considered in this work moves under the influence of an irrotational
current, which behaves as an external disturbance to the system. The current has components with
respect to the χ, y and z axes, denoted by δχ, δy and δz, respectively. Moreover, we denote by δc

the slowly-varying velocity of the current that is bounded by ||δck || ≤ δ̄c and it has direction β in
χ− y plane and α with respect to the z axis of the global frame, see Figure 4. In particular, we define
δk = [δ(χ/k), δ(y/k), δ(z/k), 0]> ∈ ∆ ⊂ R4, with ∆ being a compact set, where:

δ(χ/k) , δck cos βk sin αkdt

δ(y/k) , δck sin βk sin αkdt

δ(z/k) , δck cos αkdt (5)

It is straightforward to show that ||δk|| ≤ δ̄, with δ̄ = δ̄c dt. When considering the aforementioned
external disturbances, the perturbed model of the underwater robotic system can be given, as follows:

xk+1 = f (xk, Vk) + ωk (6)

with ωk = g(xk, vk) + δk ∈ Ω ⊂ R4 as the result of adding the inner and external disturbances of the
system. Ω is a compact set, such that Ω = ∆⊕ Γ, where “⊕” denotes the Minkowski addition of sets
∆ and Γ. It is worth mentioning that the Minkowski addition set C of two sets A, B ⊂ Rn is given as
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C = A⊕ B = {a + b|a ∈ A, b ∈ B}. In this respect, since the sets ∆ and Γ are compact, we can conclude
that Ω is also a bounded compact set, which is: ||ωk|| ≤ ω̄ with ω̄ , δ̄ + γ̄.

The underwater robot is equipped by a pinhole camera with limited angles of view a and b for
χ− y and χ− z plane, respectively. In this respect, the state vector of the system x with respect to the
visual target is estimated by employing a proper vision algorithm, see Figure 4.

Figure 4. Visibility constraints formulation Equations (8b)–(8e) and modeling of the external
disturbance Equation (5), c©2014 IEEE [58].

The requirements for the vision system, namely the visibility constraints, are imposed in order to
ensure that the target will remains always within the image-plane during the control operation.
That is: [−yT , yT ] ⊆ [ fχy/1, fχy/2] and [−zT , zT ] ⊆ [ fχz/1, fχz/2], where 2yT and 2zT denote the
width and height of the visual target. In this context, the [ fχy/1, fχy/2] and [ fχz/1, fχz/2] indicate
the camera’s field-of-view on χ− y and χ− z plane, respectively (Figure 4). Moreover, we consider
a maximum distance Rmax, where the visual target is visible and recognizable for the vision system.
The aforementioned requirements are captured by the state constraint set X of the system, given by:

xk ∈ X ⊂ R4, (7)

which is formed by:

− y + χ tan(ψ− a
2
)− yT ≥ 0 (8a)

y− χ tan(ψ +
a
2
)− yT ≥ 0 (8b)

− z− χ tan(
b
2
)− zT ≥ 0 (8c)

z− χ tan(
b
2
)− zT ≥ 0 (8d)

R2
max − χ2 − y2 ≥ 0 (8e)

In addition, the control constraint set Vset of the system is formulated, as follows:

Vk , [uk, wk, rk] ∈ Vset ⊆ R3 (9)

It is worth mentioning that the control input constraints are of the form |u| ≤ ū , |w| ≤ w̄ and
|r| ≤ r̄. Thus, we obtain ‖Vk‖ ≤ V̄ with V̄ = (ū2 + w̄2 + r̄2)

1
2 and V̄, ū, w̄, r̄ ∈ R≥0. Therefore, it can be

easily shown that system Equation (3) is Lipschitz continuous:
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Lemma 1. The nominal model Equation (3), subject to constraints Equations (8b)–(8e) and (9), is locally
Lipschitz in x for all x ∈ X, with a Lipschitz constant L f , (max{8, 8(ūdt)2}+ 1)

1
2 .

See Appendix A.1 for the proof.

2.2. Control Design and Objective

The objective here is to guide the perturbed system Equation (6) to a desired compact set that
includes the desired state xd , [χd, yd, zd, ψd]

> ∈ X, while respecting the state and control constraints
described in Equations (8b)–(8e) and (9), respectively. We employ a predictive controller in order to
achieve the aforementioned objective. More specifically, the N-MPC consists in solving an Optimal
Control Problem (OCP) at time instant k, with respect to a control sequence Vf (k) , [V(k|k), V(k +
1|k), . . . , V(k + N− 1|k)], for a prediction horizon N. The OCP of the N-MPC is formulated, as follows:

min
Vf (k)

JN(xk, Vf (k)) = (10a)

min
Vf (k)

N−1

∑
j=0

F(x̂(k + j|k), V(k + j|k)) + E(x̂(k + N|k))

subject to:

x̂(k + j|k) ∈ Xj, ∀j = 1, . . . , N − 1, (10b)

V(k + j|k) ∈ Vset, ∀j = 0, . . . , N − 1, (10c)

x̂(k + N|k) ∈ E f (10d)

where F, E, and E f are the running, terminal cost, and terminal set, respectively. The solution of
the aforementioned OCP Equations (10a)–(10d) at time instant k is an optimal control sequence,
being indicated as V∗f (·). It should be pointed out that the specifics for the design parameters,
such as the running and terminal costs, as well as the state sets, will be provided in more detail
in the sequel. In this context, we denote the predicted state of the nominal system Equation (3) at
sampling time k + j by x̂(k + j|k), where j ∈ Z≥0. The state prediction is based on the measurement
of the real system at sampling time k, denoted by xk, while applying a sequence of control inputs
[V(k|k), V(k + 1|k), . . . , V(k + j− 1|k)]. Thus:

x̂(k + j|k) = f (x̂(k + j− 1|k), V(k + j− 1|k))

Therefore, we have that x̂(k|k) = xk. It is worth mentioning that the OCP is formulated and
solved for the nominal system and for a specific time horizon. That makes it impossible to address
the disturbances beforehand. However, we distinguish the nominal system, denoted as x̂(·), with the
actual one denoted as x(·). Therefore, we can obtain the following preliminary result:

Lemma 2. The difference between the actual state xk+j at the time-step k + j and the predicted state x̂(k + j|k)
at the same time-step, under the same control sequence, is upper bounded by:

||xk+j − x̂(k + j|k)|| ≤
j−1

∑
i=0

(L f )
iw̄ (11)

See Appendix A.2 for the proof.

More specifically, Lemma 2, gives the difference between the real state of the system Equation (6)
with the predicted state of the nominal system Equation (3). In order to address this, we employ
constraint tightening technique and use a restricted constraint set Xj ⊆ X in Equation (10b) instead of
the state constraint set X (More details regarding the constraint tightening technique can be found in
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the literature [71,72]). By employing the aforementioned constraint tightening technique, we guarantee
that the evolution of the perturbed system Equation (6), when the control sequence developed in
Equations (10a)–(10d) is applied to it, will necessarily satisfy the state constraint set X. In particular,
we denote the restricted constraint set as Xj = X ∼ Bj, where Bj = {x ∈ R4 : ||x|| ≤ ∑

j−1
i=0(L f )

iw̄}.
The set operator “∼” denotes the Pontryagin difference A, B ⊂ Rn that is defined as the set C = A ∼
B = {ζ ∈ Rn : ζ + ξ ∈ A, ∀ξ ∈ B}.

Moreover, we define the running and terminal cost functions F(·), E(·), both of quadratic
form, i.e., F(x̂, V) = x̂>Qx̂ + V>RV and E(x̂) = x̂>Px̂, respectively, with P, Q and R are positive
definite matrices. In particular, we define Q = diag{q1, q2, q3, q4}, R = diag{r1, r2, r3}, and
P = diag{p1, p2, p3, p4}. For the running cost function F, we have F(0, 0) = 0, and we can also
obtain the following:

Lemma 3. Regarding the cost function F(x, V) we have:

F(x, V) ≥ min(q1, q2, q3, q4, r1, r2, r3)||x||2 (12)

See Appendix A.3 for the proof.

As we have already mentioned, the state and input constraint sets are bounded; therefore, we have:

Lemma 4. The cost function F(x, V) is Lipschitz continuous in X×Vset, with a Lipschitz constant:

LF = 2(R2
max + z2

max + (
π

2
)2)

1
2 σmax(Q) (13)

where σmax(Q) denotes the largest singular value of the matrix Q. Moreover, zmax = Rmax tan( b
2 )− zT is the

maximum feasible value along the z axis.
See Appendix A.4 for the proof.

Before proceeding with the analysis, we employ some standard stability conditions that are used
in N-MPC frameworks:

Assumption 1. For the nominal system Equation (3), there is an admissible positively invariant set E ⊂ X,
such that the terminal region E f ⊂ E , where E = {x ∈ X : ||x|| ≤ ε0} and ε0 being a positive parameter.

Assumption 2. We assume that in the terminal set E f , there exists a local stabilizing controller
Vk = h(xk) ∈ Vset for all x ∈ E , and that E satisfies E( f (xk, h(xk))) − E(xk) + F(xk, h(xk)) ≤ 0 for all
x ∈ E .

Assumption 3. The terminal cost function E is Lipschitz in E , with Lipschitz constant LE = 2ε0σmax(P) for
all x ∈ E .

Assumption 4. Inside the set E we have E(x) = xT Px ≤ αε, where αε = max{p1, p2, p3, p4}ε2
0 > 0.

Assuming that E = {x ∈ X(N−1) : h(x) ∈ Vset} and taking a positive parameter αε f , such that αε f ∈ (0, αε),
we assume that the terminal set designed as E f = {x ∈ R4 : E(x) ≤ αε f } is such that ∀x ∈ E ,
f (x, h(x)) ∈ E f .

2.3. Problem Statement

At time step k, the solution of the N-MPC Equations (10a)–(10d) provides an control sequence,
denoted as V∗f (·), which equals to V∗f (k) , [V∗(k|k), . . . , V∗(k + N − 1|k)]. In a conventional N-MPC
framework, only the first control vector, i.e., V∗(k|k), is applied to the robotic system and the remaining
parts of the optimal control sequence V∗f (k) is discarded. At the next sampling time k + 1, again,
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a new state measurement is obtained from the vision algorithm and a new OCP based on this new
state measurement is calculated. This is iteratively repeated until the robot has reached to the desired
position. However, the proposed self-triggered strategy in this work suggests that a portion of the
computed control sequence V∗f (k) might be applied to the underwater robot and not only the first
vector. Let us suppose ki to be a triggering instant. In the proposed self-triggered control strategy,
the control input that is applied to the robotic system is of the form:

[V∗(ki|ki), V∗(ki + 1|ki), . . . V∗(ki + di|ki)] (14)

for all di ∈ [0, ki+1 − ki] ∈ Z>0, where ki+1 is the next triggering instant. Between two consecutive
triggering instants, i.e., [ki, ki+1), the control inputs calculated by the N-MPC at the previous triggering
time instant are applied to the underwater robot in an open-loop mode i.e., the vision algorithm is
not activated and no image processing is performed. Obviously, the smallest and largest possible
time intervals are 1 (i.e., ki+1 = ki + 1) and N − 1, respectively. The self-triggered framework that
is proposed in this work will provide sufficient conditions for the activation of the vision algorithm
and triggering the computation of the N-MPC. Currently, we are ready to state the problem treated in
this paper:

Problem 1. Consider the system Equation (6) that is subject to the constraints Equations (7) and (9). The control
goal is (i) to design a robust position based visual servoing control framework provided by Equations (10a)–(10d),
such that the system Equation (6) converges to the desired terminal set and (ii) to construct a mechanism that
determines when the control updates, state measurement and next VTA should occur.

3. Stability Analysis of Self-Triggering NMPC Framework

The stability analysis for the system Equations (6)–(14) is addressed in this section. It is already
shown in the literature that the closed-loop system in the case of classic N-MPC is Input-to-State Stable
(ISS) with respect to the disturbances [71] (More details on the notion of ISS in the discrete-time case
can be found in [73].). In the subsequent analysis, we are going to use the ISS notion in order to derive
the self-triggering mechanism.

The traditional approach in establishing stability in predictive control consists of two parts, named
feasibility and convergence analysis. The aim in the first is to prove that the initial feasibility implies
feasibility afterwards and, based on this, in the second part, it is then shown that the system state
converges to a bounded set around the desired state.

3.1. Feasibility Analysis

We begin by treating the feasibility property. Before proceeding with the analysis, we provide a
necessary definition:

Definition 1. XMPC = {x0 ∈ Rn|∃ a control sequence Vf ∈ Vset, x̂ f (j) ∈ Xj ∀j ∈ {1, . . . , N} and
x̂(N) ∈ E f }.

In other words, XMPC, a set that contain all of the state vectors for which a feasible control
sequence exists satisfying the constraints of the optimal control problem. Assume, now, that, at ki , k,
an event is triggered, thus an OCP is solved and a new control sequence V∗f (k) , [V∗(k|k), . . . , V∗(k +
N − 1|k)] is provided. Now, consider control inputs at time instants k + m with m = 1, . . . , N − 1,
which are based on the solution at sampling time k, V∗f (k). These can be defined, as follows:

Ṽ(k + j|k + m) =

{
V∗(k + j|k) for j = m, . . . , N − 1

h(x̂(k + j|k + m)) for j = N, . . . , N + m− 1

}
(15)
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Let N − 1 control sequences Ṽm
f (k) be comprised by the control inputs of Equation (15), i.e.,

Ṽ1
f (k) = [V∗(k + 1|k), V∗(k + 2|k), . . . , h(x̂(k + N|k + 1))]

Ṽ2
f (k) = [V∗(k + 2|k), . . . , h(x̂(k + N|k + 2)), h(x̂(k + N + 1|k + 2))]

...

ṼN−1
f (k) = [V∗(k + N − 1|k)), . . . , h(x̂(k + 2N − 2|k + N − 1))]

Notice that the time-steps k + m are the discrete-time instants after the time-step of the triggering
instant ki, i.e., [k, k + 1, k + 2, . . . , k + N − 1] ≡ [ki, ki + 1, ki + 2, . . . , ki + N − 1]. With the help of
Assumption 2 and by taking the feasibility of the initial control sequence at sampling time k into
account, it follows that, for m = 1, . . . N − 1, we have Ṽ(k + j|k + m) ∈ Vset. We can prove finally that
x̂(k + N + 1|k + m) ∈ E f for all m = 1, . . . , N − 1:

Proof. From Lemma 2, we can derive that:

||x̂(k + N|k + 1)− x̂(k + N|k)|| ≤ LN−1
f w̄

||x̂(k + N|k + 2)− x̂(k + N|k)|| ≤ LN−2
f ((1 + L f )w̄)

...

||x̂(k + N|k + m)− x̂(k + N|k)|| ≤ L(N−m)
f

m−1

∑
i=0

(L f )
iw̄

by employing the Lipschitz property of E(·), we have:

E(x̂(k + N|k + m))− E(x̂(k + N|k))
≤ LE||x̂(k + N|k + m)− x̂(k + N|k)||

≤ LEL(N−m)
f ·

m−1

∑
i=0

(L f )
iw̄

Having in mind that x̂(k + N|k) ∈ E f and by employing Assumption 4, we obtain the following:

E(x̂(k + N|k + m) ≤ αε f + LEG(m)w̄

with G(m) , L(N−m)
f ·∑m−1

i=0 (L f )
i. It should hold that E(x̂(k + N|k + m)) ≤ αε, i.e., x̂(k + N|k + m) ∈

E , thus:

αε f + LEG(m)w̄ ≤ αε ⇒

w̄ ≤
(αε − αε f )

LEL(N−m)
f ·∑m−1

i=0 (L f )i
(16)

Now, applying a local control law, we get x̂(k + N + 1|k + m) ∈ E f for all m = 1, . . . , N − 1.
From these results, it can be concluded that XMPC is a robust positive invariant set if the uncertainties
are bounded by Equation (16) for all m = 1, . . . , N − 1. Notice that Equation (16) should still hold
for m = 1 for the problem to be meaningful, in the sense that it should be feasible at least in the
time-triggered case.
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3.2. Convergence Analysis

Herein, we show that the state of the actual system convergences to a desired terminal set.
In order to prove this, we show that a proper value function is decreasing. First, we define the
optimal cost at the time-step k as J∗N(k) = JN(xk, V∗f (k)), which is evaluated under the optimal control
sequence. In the same spirit, the optimal cost at a time-step k + m with m ∈ [1, N − 1] is denoted as
J∗N(k+m) = J∗(xk+m, V∗f (k+m)). Now, we denote by J̃N(k+m) the “feasible” cost, which is evaluated
from the control sequence Ṽm

f (k), which is J̃N(k + m) = J̃N(xk+m, Ṽm
f (k)). In the following, we will

employ this “feasible” cost in order to obtain the difference J∗N(k + m) − J∗N(k). More specifically,
the difference between the optimal cost at time k and the feasible sequence at time-step k + j by
employing Equation (15) is:

∆Jm = J̃N(k + m)− J∗N(k) ≤(
LE(L f )

(N−m) + LF

N−(m+1)

∑
i=0

(L f )
i

)
w̄−

m−1

∑
i=0

min(q1, q2, q3, q4, r1, r2, r3)||x̂(k + i|k)|| (17)

See Appendix B for the proof. From the optimality of the solution, we have:

J∗N(k + m)− J∗N(k) ≤ J̃N(k + m)− J∗N(k) (18)

This result along with the triggering condition that is going to be derived in the next subsection
will enable us to provide conclusions for the stability and convergence of the closed-loop system.

3.3. The Self-Triggered Mechanism

This section presents the self-triggering framework that is proposed in this work. Let us consider
that, at time-step ki, an event is triggered. We assume that the next triggering time ki+1 is unknown
and should be found. More specifically, triggering time ki+1 , ki + di should be such that the
closed-loop maintains its predefined desired properties. Therefore, a value function J∗N(·) is required
to be decreasing. In particular, given Equations (17) and (18), for a triggering instant ki and a number
of time-step di after ki, with di = 1, 2, . . . , N − 1 it can be obtained the following:

J∗N(ki+1)− J∗N(ki) ≤
(

LE(L f )
(N−di) + LF

N−(di+1)

∑
i=0

(L f )
i

)
w̄− LQ(di) (19)

where:

LQ(di) =
di−1

∑
i=0

min(q1, q2, q3, q4, r1, r2, r3)||x̂(k + i|k)||

The time instant ki+1 should be such that:

(
LE(L f )

(N−di) + LF

i=N−(di+1)

∑
i=0

(L f )
i

)
w̄ ≤ σLQ(di), (20)

where 0 < σ < 1. Substituting Equation (20) to (19), we obtain

J∗N(ki+1)− J∗N(ki) ≤ (σ− 1)LQ(di) (21)

This suggests that, by considering 0 < σ < 1, decreasing of the value function is guaranteed.
In particular, in view of Equation (21), we can conclude that the value function J∗N(·) has been proven
to be decreasing at the triggering instants. Next, we study the convergence of the state of the system
under the proposed self-triggered framework:
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Convergence of System under the Proposed Self-Triggered Framework

We have proven in Equation (20) that the value function J∗N(·) is always decreasing with
respect to the previous triggering instant. In other words, the value function cannot be guaranteed
to be monotonically decreasing at every time-step, as the standard Lyapunov theory dictates.
Thus, additional arguments will be provided in order to prove convergence of the state of the
closed-loop system to a bounded set. In particular, the following steps are going to be followed:
first, we are going to provide the steps to derive a suitable Lyapunov-function candidate and, secondly,
we are going to show that this Lyapunov function is an ISS-Lyapunov function and, according to
standard definitions, if a system admits an ISS-Lyapunov function, then the system is ISS with respect
to the external disturbances, [73]. Thus, finding a suitable ISS-Lyapunov function immediately implies
that our system is ISS with respect to disturbances and, thus, the states of the closed-loop system are
converging to a bounded set.

Proposition 1. Our proposed Lyapunov function candidate is the following:

W(k) ,

{
J∗N(k)for di = 1

∑di−1
j=1 {J∗N(k + j) · (di − j)}+ di J∗N(k) for di > 1

(22)

Now, if di = 1 at every time instant then our system boils down to the classic time-triggered MPC,
where, in [71], it has been shown that the closed-loop system is ISS with respect to the disturbances.
However, we are going to show that Equation (22) is also an ISS-Lyapunov function for di ≥ 1. This is
going to be shown for d1 = 2 and then Equation (22) is derived by induction.

Proof. Now, assume that di = 2. From Equation (19), it follows that:

J∗N(k + 1)− J∗N(k) ≤
(

LE(L f )
(N−1) + LF

N−2

∑
i=0

(L f )
i

)
w̄− LQ(1),

as well as:

J∗N(k + 2)− J∗N(k) ≤
(

LE(L f )
(N−2) + LF

N−3

∑
i=0

(L f )
i

)
w̄− LQ(2)

adding the last two inequalities, yields:

J∗N(k + 2) + J∗N(k + 1) ≤ 2J∗N(k)− (LQ(1) + LQ(2)) +

(
LE(L f )

(N−2) + LF

N−3

∑
i=0

(L f )
i

)
(1 + L f )w̄ (23)

adding and subtracting the terms ∑di−1
j=1 J∗N(k + j)(di − j) in Equation (23), we can obtain:

J∗N(k + 2) + 2J∗N(k + 1) ≤

J∗N(k + 1) + 2J∗N(k) +

(
LE(L f )

(N−2) + LF

N−3

∑
i=0

(L f )
i

)
(1 + L f )w̄− (LQ(1) + LQ(2)) (24)

Considering as a Lyapunov function:

W(k) = J∗N(k + 1) + 2J∗N(k)
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Equation (24) is re-written as:

W(k + 1)−W(k) ≤ +

(
LE(L f )

(N−2) + LF

N−3

∑
i=0

(L f )
i

)
(1 + L f )w̄− (LQ(1) + LQ(2)) (25)

It is now evident that, by induction, we can reach to Equation (22) for an arbitrary di, following
the same procedure. Moreover, from Equation (25), it is obvious that W(k), as defined in Equation (22),
is an ISS-Lyapunov function, thus the proposed framework is ISS stable with respect to the external
disturbances and the proof is completed.

Thus, having the aforementioned analysis in mind, the next tracking of the vision system as well
as updating the control law should be occur when Equation (20) is violated. This means that, at the
triggering time instance, the condition Equation (20) must be checked for each consecutive time-step,
i.e., for di = 1, 2, . . . . Thus, we check which time step does not meet this condition and set it to the
next triggering instant ki+1. Based on the above discussion, it can be understood that, in the proposed
self-activated framework, the time step ki+1 is found beforehand at time ki. Moreover, it is worth
mentioning that the term LQ(di) only includes predictions of the nominal system that can be easily
computed by forward integration of Equation (3) for time-steps di ∈ [1, N − 1]. Now, based on the
aforementioned stability results, we state the theorem for the proposed vision-based self-triggered
framework:

Theorem 1. Consider the system of autonomous underwater vehicle described by Equation (6), which is subject
to state and input constraints given in Equations (7) and (9) under the N-MPC framework and assume that the
Assumptions 1–4 hold. The vision tracking and control update times that are provided by Equation (20) and the
N-MPC framework given in Equations (10a)–(10d), which is applied to the autonomous underwater vehicle in
an open-loop fashion during the inter-sampling periods, drive the closed-loop system into the terminal set E f
that includes the desired pose configuration with respect to the visual target.

The pseudo-code description of the proposed real-time self-triggering position that is based visual
servoing is given in Algorithm 1:

Algorithm 1 Real-time algorithm of the proposed self Triggered PBVS-NMPC framework:

1: Triggering time: . At triggering time ki

2: x(ki)← VTA . Trigger the VTA, get s(ki)

3: V∗f (ki)← OCP(x(ki)) . Run OCP of (10a)–(10d)

4: ki+1 = ki + di ←Solve Equation (20) for di . The next triggering time

5: for i = 1→ di do

6: Apply the control inputs V∗(ki + i|ki) to the underwater robot.

7: goto Triggering time.

At time ki, we assume that the Vision Tracking Algorithm (VTA) is triggered, the optimal control
problem of the N-MPC Equations (10a)–(10d) is run and a control sequence for the time interval
[ki, ki + N − 1] is provided. The solution of Equation (20) provides the next triggering time ki+1, as it
is already stated. During the time interval i ∈ [ki, ki+1), the control inputs V∗(ki + i|ki) are applied
to the underwater robot in an open-loop fashion. Next, at ki+1 the vision system is tracked and the
OCP of the N-MPC Equations (10a)–(10d) is solved again while employing the new state measurement
x(ki+1) as the initial values in Equations (10a)–(10d). The controller follows this procedure until the
robot converges and stabilizes towards the visual target.
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4. Experiments

In this section, the efficacy of the proposed position based self triggered framework demonstrated
through a real time comparative experimental study. A real-time stabilization scenario was considered
by employing a small and under-actuated underwater vehicle.

4.1. System Components

The small underwater robot used in following experiments is a 3-DOF (VideoRay PRO, VideoRay
LLC, Figure 3), which is equipped with 3 thrusters, and a USB camera. The image dimensions are
640x480 pixels. A visual target is located on an aluminum surface plane that is fixed inside the tank.
The system software is conducted in the Robotics Operating System (ROS, http://www.ros.org),
and the code is written in C++ and Python.

The state vector of the underwater robot regarding the visual target is estimated in real time
while using the ROS package ar_pose (http://www.ros.org/wiki/ar_pose), which is an Augmented
Reality Marker Pose Estimation algorithm that is based on the ARToolkit software library (http://www.
hitl.washington.edu/artoolkit/). The target detection and robot localization in initial and desired
pose configuration are shown in Figure 5. The constrained N-MPC that was used in this real-time
experiment was designed using the NLopt Optimization library [74].

Figure 5. Experimental setup. The underwater robot at the initial and desired configuration with
respect to a visual marker. Vehicle’s view at initial and the desired position, respectively, c©2014
IEEE [58].

4.2. Experimental Results

The goal in the following comparative experimental studies is the stabilization of the underwater
robot at the desired configuration towards the visual target. Two experiments were held for comparison.
More specifically, in the first experiment, we employed a classic N-MPC (i.e., time activation at each
sampling time), while, in the second experiment, the self-triggered framework proposed in this work
was used. The initial as well as desired position of the underwater vehicle relative to the target frame is
[χin, yin, zin, ψin] = [−1.2, 0.45, 0.1,−0.401] and xd = [χd, yd, zd, ψd]

> = [−0.6, 0.0, 0.0, 0.0], respectively.
In the initial pose, the target appears in the right side of the camera view because of the negative yaw
angles of the vehicle with respect to the target frame (See Figure 5). Note that this is a difficult initial
pose and, if one does not take the visual constraints into account, the experiment will fail.

The sampling time and prediction horizon were selected as to be dt = 0.15 sec and N = 6,
respectively. It is worth mentioning that the sampling time is selected based on the response frequency
of the closed-loop system, while the prediction horizon is selected based on the computational
capabilities of the onboard unit to solve the optimization problem. The more capable the computational
unit is, the larger the prediction horizon can be considered. The maximum allowable velocities for

http://www.ros.org
http://www.ros.org/wiki/ar_pose
http://www.hitl.washington.edu/artoolkit/
http://www.hitl.washington.edu/artoolkit/
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the considered underwater robot in surge, heave, and yaw direction were selected as ū = 0.2 m/s,
w̄ = 0.3 m/s and r̄ = 0.3 rad/s, respectively. It is worth mentioning that the considered allowable
velocities might be required for the needs of several common underwater tasks (e.g., seabed inspection,
mosaicking), where the vehicle is required to move with relatively low speeds with a predefined upper
bound. The design matrices Q, R, and P are defined as Q = diag(0.5, 4.5, 4.5, 0.1), R = diag(0.17, 0.1, 1),
and P = diag(1, 1, 1, 1), respectively. The maximum permissible distance on the referred water tank is
Rmax = 1.5 m. The results of the experiment are presented in Figures 6–10.

In Figure 6, the evolution of the robot coordinates in x, y, and ψ for both experiments are depicted.
When comparing two experiments, it is obvious that the underwater robot in both experiments has
reached and stabilized in the desired position towards the visual target and the operational limitations
(F.O.V and control saturation) remained satisfied. It can also be seen that the system performances
in the case of proposed self triggering framework are better (or at least the same) as compared to the
classical approach.
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Figure 6. The evaluation of the underwater robot coordinates regarding the visual target. (Left)
Proposed self-Triggered N-MPC. (Right) Classic N-MPC, c©2014 IEEE [58].

Figure 7. Camera view during the experiment. From initial view (top and left) to the final view (bottom
and right). The target remains within the field of view of the camera.
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Figure 8. Image coordinates of the visual target center during the experiment.

Figure 9. The triggering instants in Self triggered NMPC, c©2014 IEEE [58].

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

Control inputs − Self Triggered NMPC

Time

u

0 10 20 30 40
0

0.1

0.2

0.3

0.4

Time

w

0 10 20 30

−0.1

0

0.1

0.2

0.3

Time

r 

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

Control Inputs Time Triggered MPC

Time

u

0 10 20 30 40

0.1

0.2

Time

w

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

Time

r

Figure 10. Control inputs. (Left) Proposed self-Triggered N-MPC. (Right) Classic N-MPC, c©2014
IEEE [58].
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In Figures 7 and 8, the camera view and the coordinates of the visual target center during the
experiments are presented, respectively. It is obvious that the target remains inside of the F.O.V of
the camera. Figure 9 presents the triggering evaluation in the case of the proposed self triggered
framework. For the value 1 in vertical axis, the vision algorithm has been activated, thus the image
has been processed, the state vector has been estimated, N-MPC has been evaluated, and control
inputs are calculated. For value 0, the rest of the last computed control inputs implemented on the
underwater robot in an open-loop fashion, and, therefore, no optimization and no image processing is
running. Moreover, in the case of classic N-MPC, vision tracking and N-MMPC are running always
at all sampling times, as has been already stated. It is worth mentioning that by employing the
proposed self triggered condition, the triggering of the vision tracking algorithm and the N-MPC
have been reduced by 50% (124 triggering instead of 253) regarding the classic N-MPC framework.
When comparing the triggering instants of Figure 9 to the image target center coordinate in Figure 8,
one might notice that when the target is going to leave the image plane (at the region of six and 14–17 s
of the experiment), the triggering instants are more frequent. This fact appears at region of the 40
and the 80–110 sampling times, respectively, in the Figure 9. When comparing triggering instants
of Figure 9 to the state evolution of the system Figure 6, one might notice that when the robot is
getting near to the desired position the triggering instants are more frequent. This is because, close to
the desired position, the system becomes more demanding due to the visibility limitations as the
target becomes larger in the camera view and because external disturbances move the robot from the
desired position.

The computational time in the case when a new state information from vision system and a new
control sequence are calculated (triggering instant) is approximately 0.1 s, while, in the case of the
open loop control (employing the proposed self triggered framework), it is being reduced to 0.0002 s.
This is because, in the case of self-triggering framework, neither the vision tracking algorithm nor
the optimization process is executed between two triggering instants. Finally, Figure 10 presents the
control inputs during the experiments. It is easy to see that the control constraints remained satisfied
during the experiment.

4.3. Video

This work is accompanied by a video presenting the experimental procedure of Section 4: https:
//youtu.be/mdRM2ThaOQM.

5. Conclusions

In this paper, a self-triggered position-based visual servoing control framework for autonomous
underwater vehicles was presented. The main idea of this work is to activate the vision tracking
algorithm and the optimization of the N-MPC in an aperiodic way, which is only when required and
not in each sampling time. By employing the proposed vision-based self-triggered control strategy, both
the control inputs and the next activation time are evaluated to avoid continuous measurements from
the vision system. During the inter-sampling instants, the control inputs that are calculated by N-MPC
are applied to the underwater robot in an open-loop mode and, therefore, no optimization and no image
processing is running between two triggering instants. This results in a reduction in processing time as
well as energy consumption and, therefore, increases the accuracy and autonomy of the Autonomous
Underwater Vehicle. The latter is of paramount importance for persistent underwater inspection tasks.
Rigorous robustness analysis, along with sufficient conditions for triggering, is provided in this work.
The effectiveness of the proposed vision-based self-triggered control framework is verified through a
comparative experimental study using an underwater robot. In these experiments, by employing the
proposed self triggered control strategy, we achieved a significant 50% reduction in the activation of the
vision tracking algorithm and the OCP as compared to the classic N-MPC framework. Future research
efforts will be devoted towards extending the proposed methodology for multiple Autonomous

https://youtu.be/mdRM2ThaOQM
https://youtu.be/mdRM2ThaOQM
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Underwater Vehicles, including not only static, but also moving target as well as conducting complex
real-time experiments employing a team of cooperative AUVs.
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Appendix A.

Appendix A.1. The Proof of Lemma 1:

The Euclidean norm is used for the sake of simplicity. We get:

|| f (x1, V)− f (x2, V)||2 =

||


χ1 + cos ψ1udt− χ2 − cos ψ2udt
y1 + sin ψ1udt− y2 − sin ψ2udt

z1 − z2

ψ1 − ψ2

 ||2 =

|χ1 − χ2 + udt(cos ψ1 − cos ψ2)|2 + |z1 − z2|2+
|ψ1 − ψ2|2 + |y1 − y2 + udt(sin ψ1 − sin ψ2)|2

From the mean value theorem, we can obtain:

|| cos ψ1 − cos ψ2|| = || sin ψ∗(ψ1 − ψ2)|| ≤ ||ψ1 − ψ2||

where ψ∗ ∈ (ψ1, ψ2). This yields the following:

|χ1 − χ2 + udt(cos ψ1 − cos ψ2)|2

≤ [2 max{|χ1 − χ2|, udt| cos ψ1 − cos ψ2|}]2

≤ 4 max{(χ1 − χ2)
2, (udt)2(ψ1 − ψ2)

2}
≤ max{4, 4(udt)2}max{(χ1 − χ2)

2, (ψ1 − ψ2)
2}

≤ max{4, 4(ūdt)2}[(χ1 − χ2)
2 + (ψ1 − ψ2)

2]

Applying similar derivations to the other elements, it can be concluded that for all x1, x2 ∈ X it
can be obtained:

|| f (x1, V)− f (x2, V)||2 ≤
max{4, 4(ūdt)2}[(χ1 − χ2)

2 + (ψ1 − ψ2)
2] + (z1 − z2)

2+

max{4, 4(ūdt)2}[(y1 − y2)
2 + (ψ1 − ψ2)

2] + (ψ1 − ψ2)
2 =

max{4, 4(ūdt)2}[(χ1 − χ2)
2 + (y1 − y2)

2 + 2(ψ1 − ψ2)
2]

+ (z1 − z2)
2 + (ψ1 − ψ2)

2

≤ (max{8, 8(ūdt)2}+ 1)
[
(χ1 − χ2)

2 + (y1 − y2)
2

+ (ψ1 − ψ2)
2 + (z1 − z2)

2
]

≤ (max{8, 8(ūdt)2}+ 1)||x1 − x2||2
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thus the Lipschitz constant is L f , (max{8, 8(ūdt)2}+ 1)1/2, with 0 < L f < ∞ and that concludes
the proof.

Appendix A.2. The Proof of Lemma 2:

Using Lemma 1 and the triangle inequality we get:

||xk+1 − x̂(k + 1|k)|| =
|| f (xk, Vk) + wk − f (x̂(k|k), Vk)|| = ||wk|| ≤ w̄

||xk+2 − x̂(k + 2|k)|| =
|| f (xk+1, Vk+1) + wk+1 − f (x̂(k + 1|k), Vk+1)||
≤ || f (xk+1, Vk+1)− f (x̂(k + 1|k), Vk+1)||+ ||wk+1||
≤ L f ||xk+1 − x̂(k + 1|k)||+ ||wk+1|| ≤ (1 + L f )w̄

...

||xk+j − x̂(k + j|k)|| ≤
j−1

∑
i=0

(L f )
iw̄

Appendix A.3. The Proof of Lemma 3:

F(x, V) = x>diag(q1, q2, q3)x + V>diag(r1, r2)V =

[x, V]>diag(q1, q2, q3, r1, r2)[x, V] ≥
min(q1, q2, q3, r1, r2)||[x, V]||2 ≥ min(q1, q2, q3, r1, r2)||x||2

Appendix A.4. The Proof of Lemma 4:

||F(x1, V)− F(x2, V)|| = ||x>1 Qx1 − x>2 Qx2|| = ||x>1 Qx1

− x>1 Qx2 + x>1 Qx2 − x>2 Qx2|| = ||x>1 Q(x1 − x2)+

+ (x>1 − x>2 )Qx2|| = ||x>1 Q(x1 − x2) + x>2 Q(x1 − x2)|| =
||(x>1 + x>2 )Q(x1 − x2)|| ≤ (||x1||+ ||x2||)σmax(Q)||x1 − x2||

Notice that ∀x ∈ X we have:||x|| = (|χ|2 + |y|2 + |z|2 + |ψ|2) 1
2 ≤ (R2

max + z2
max + (π

2 )
2)

1
2 , which

concludes the proof. Notice that the maximum value zmax along the z-axis is calculated by substituting
the maximum feasible distance Rmax into the visibility constraints of Equation (8c).
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Appendix B. Lyapunov Function

∆Jm = J̃N(k + m)− J∗N(k) =
N−1

∑
i=0

F(x̃(k + i + m|k + m), Ṽ(k + i + m|k + m))

−
N−1

∑
i=0

F(x̂(k + i|k), V∗(k + i|k))

+ E(x̃(k + N + m|k + m))− E(x̂(k + N|k))

=
N−(m+1)

∑
i=0

{
F(x̃(k + i + m|k + m), Ṽ(k + i + m|k + m))

− F(x̂(k + i + m|k), V∗(k + i + m|k))
}

−
m−1

∑
i=0

F(x̂(k + i|k), V∗(k + i|k))

+
m

∑
i=1

F(x̃(k + N − 1 + i|k + m), h(x̃(k + N − 1 + i|k + m)))

+ E(x̃(k + N + m|k + m))− E(x̂(k + N|k))

with x̃(k + i|k + m) denoting the “feasible” state of the system which accounts for the predicted state at
time-step k + i, based on the measurement of the real state at time-step k + m, when the feasible control
sequence from Equation (15) is used. Also from Lemma 2 and with the help of Lemma 4, it yields:

N−(m+1)

∑
i=0

{
F(x̃(k + i + m|k + m), Ṽ(k + i + m|k + m))−

− F(x̂(k + i + m|k), V∗(k + i + m|k))
}

≤ LF

N−(m+1)

∑
i=0

(L f )
iw̄

Using ∑m−1
i=0

{
E(x̃(k + N + i|k + m))− E(x̃(k + N + i|k + m))

}
which adds up to zero, while

taking into account Assumption 2, it can be obtained:

F(x̃(k + N − 1 + m|k + m), h(x̃(k + N − 1 + m|k + m)))+

E(x̃(k + N + m|k + m))− E(x̃(k + N − 1 + m|k + m)) ≤ 0

Moreover:

E(x̃(k + N|k + m))− E(x̂(k + N|k)) ≤ LE(L f )
(N−m)w̄

Also, using Lemma (3) we get:

m−1

∑
i=0

F(x̂(k + i|k), V∗(k + i|k)) ≥≥
m−1

∑
i=0

min(q1, q2, q3, q4, r1, r2, r3)||x̂(k + i|k)||
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Substituting all these inequalities to the difference ∆Jm, yields:

∆Jm = J̃N(k + m)− J∗N(k) ≤

≤
(

LE(L f )
(N−m) + LF

N−(m+1)

∑
i=0

(L f )
i

)
w̄−

m−1

∑
i=0

min(q1, q2, q3, q4, r1, r2, r3)||x̂(k + i|k)||
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