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Abstract: The fault tolerant control (FTC) technique is widely used in many industries to provide
tolerance to systems so that they can operate when a system fault occurs. This paper presents a
technique for FTC based on the observer signal application, which is used for a high-speed auto
core adhesion mounting machine. The utilization of the observer signal information of the linear
encoder fault is employed to adjust the gain parameters to achieve the appropriate gain value while
maintaining the required performance of the system. The dynamic modeling of the servo motor
system design utilizing a pole placement technique was designed to support the proposed method.
A scaling gain fault step size adjustment from —1% to 1% with increments of 0.2% is used to simulate
the fault conditions of the linear encoder. The statistical mean value of the observer error signal
is used to train the artificial neural network (ANN) model. The results showed that the control
system design successfully tracked the dynamic response. Furthermore, the ANN model, with more
than 98% confidence, was satisfactory in classifying the linear encoder fault condition. The gain
compensation was successful in reducing position error by more than 95% compared with the system
without compensated gain.

Keywords: servo system design; fault tolerant control; artificial neural network; fault detection and
isolation; observer design

1. Introduction

A hard disk drive (HDD) is a storage data device using a magnetic recording head assembled
into a head gimbal assembly (HGA) which writes and reads data to/from the disk. The HGA shown
in Figure 1 consists of two major components, which are the suspension and slider. The auto core
adhesion mounting machine (ACAM) shown in Figure 2 is used for adhesive dispensing and slider
attachment onto the suspension, requiring the positioning of the adhesive and slider attachment at
the sub-micron level. The machine uses a feed drive actuator to move the worktable, as shown in
Figure 3, moving the suspension to the desired position for dispensing and attachment. The linear
bearing is used to support the worktable in the feed drive actuator and the linear encoder is used
for position checking and feedback to the motor controller. The machine operates continuously for
24 h and meets the high-speed and high-reliability requirements. A degeneration or fault of the linear
encoder causes reduces the performance to control the worktable position and results in unplanned
downtime. The mispositioning of the reference holes for adhesive dispensing and slider attachment,
as shown in Figure 4, results in an incorrect position for dispensing the adhesive on the suspension,
as shown in Figure 5. Thus, a preliminary fault of the linear encoder must be detected before the
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machine generates a defect, and the fault tolerant control of the linear encoder is necessary to ensure
that the machine runs with the desired performance.
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Figure 2. Auto core adhesion mounting machine.
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Figure 3. The worktable with suspension clamping
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Figure 4. Reference hole positions: (a) fault condition, (b) nominal position, (c) marginal position.
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Figure 5. Adhesive dispensing in the wrong position.

The approaches to the design of the controller for the actuator, fault detection, and fault tolerant
control were reviewed as follows. Saengsri Sri compared the use of a PI-servo with Okata’s method.
The experiment evaluated the durability of external noise [1]. The researcher developed the controller
for a state-level observer with the pole placement method for an electromagnetic wave with the
servo system [2]. Xie D. proposed a control system with fuzzy logic to control the feed drives in
a CNC machine [3]. The performance of the friction model was improved by the PID and status
feedback control and extended to the XY feed drives [4]. Besides this, bearing faults were considered an
important component. The classification of ANN using vibration signals from Hilbert footprints was
used for analysis; therefore, the results show that the proposed method achieves 87.3-100% accuracy [5].
Furthermore, bearing error detection using a deep artificial neural network was proposed by Zhao D.
A method of automatic recognition in time-domain images, which achieved 98.3% accuracy, was
proposed in [6]. On the other hand, Chenxi studied the diagnosis of rolling bearing faults by providing
a deep neural network for classification. The four properties that are applied to the vibration signal are
important information both in time and frequency domains [7]. The fault detection and diagnostics
of the linear bearing by an artificial neural network (ANN) was proposed. The accuracy reached
more than 93% using the data set of the motor current, FFT, and crest factor. In [8], a method was
developed for the FTC to compensate for both malfunctions of the actuator and the sensor. Actuator
faults including a loss of system performance interfered with this. In minor control laws, the existence
of compilers on controllers may only compensate for constant errors [9]. The article presented a
functional error control system (AFTCS) for fuel cells/hybrid power transmission systems for batteries
used in city buses. AFTCS consists of systems for detecting and diagnosing faults and controllers;
it could be configured again as an algorithm for detecting and isolating three important defects that
had been presented. Real-time adjustable controllers were utilized to maximize the efficiency of the
pre-fault system. The experimental results achieved the proposed system performance [10]. The fault
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detection of a linear bearing by ANN based on observer information was also proposed. The dynamic
model was obtained by the pole placement technique. An experiment to simulate the detection of
linear bearing conditions was conducted. The result showed that the ANN model reached 99.7%
accuracy [11]. The article introduced the PSO algorithm to tune the CNC servo system. The PSO
algorithm was used to obtain the optimal controller parameters. The simulation and experiment
of two-step servo tuning showed the effectiveness of this approach [12]. Indoor air quality (IAQ)
monitoring by ANN pattern recognition was proposed. The nine sensors collected air quality data and
transmitted these to the base station through a wireless system. The ANN pattern recognition was
used to classify air quality. The results showed that the proposed system was capable of measuring
and successfully classifying the IAQ in various environments [13]. An artificial neural network (ANN)
was built to generate a user-friendly mathematical expression to examine the relationship between the
NPV of PVs and specific factors of interest and to investigate the potential of utilizing photovoltaics for
electricity generation under the meteorological and working conditions of Landskrona. The result
showed that the neural network was able to efficiently utilize model PV systems with a coefficient of
determination close to that provided in [14]. The prevention of failures is vital in complex rotating
machines in industrial operations. The methodology applied to the two-stage artificial neural network
(ANN) classification approach could pave the way for the automatic classification of rotating machine
faults, allowing us to accurately detect and classify rotor-related anomalies to achieve truly robust
maintenance decision-making systems. The results at both stages of the algorithm showed promising
potential for enhancements during the condition monitoring of critical machines, as presented in [15].
The detection and classification of wood based on the artificial neural network (ANN) algorithm used
backpropagation and the conjugate gradient method in the training process. The ANN was able to
improve the accuracy of the process by up to 96.42% with an optimal 0.2 learning rate, 200 hidden
layers, and 100 epochs for the detection of types and for identification classification in [16]. A large
off-shore wind turbine represents a promising source of emission-free electricity; this paper applies
fault detection and diagnosis (FDD) and an active fault tolerant control system (AFTCS) to improve
the regulation of the generator speed. The fuzzy gain schedule (FGS) technique is used to improve the
PI controller. The active fault tolerance capabilities received the information from the FDD system
based on the signal correction technique. The simulation result showed the effectiveness of the
proposed method for both the fault-free and faulty conditions [17]. The ANN model fitting with the
Levenberg-Marquardt (LM) algorithm was used to predict the three outputs of the MEMS Cantilever
by the five input parameters that were obtained from MEMS simulation software. The ANN model
fitting result showed a perfect fit of the data between the input and output, and the R square value
being close to 1 indicated a reasonably good fit [18]. An observer-based gain scheduling controller for
the flight of an unmanned helicopter was designed by linear quadratic integral controllers for two
linear operating points. Then, observer-based gain scheduling was utilized to blend the individual
controllers. The result showed satisfactory performance [19]. A state derivative feedback robust gain
scheduling method was proposed for the stabilization of an LTI system. The D-stability methodology
was used to improve the performance of the transitory response. The result showed that the method
could successfully increase or decrease controller gain [20].

This article presents the design and development of a fault tolerant control system for a linear
encoder based on the observer signal information used for a high-speed ACAM machine. The PI servo
system was designed and developed based on the pole placement technique with a state observer.
The observer error from the observer signal is used for sensor fault classification by ANN. The result of
the classification of the observer error signal applied feedback to adjust the mechanism of the controller
by selecting the appropriate gain value to compensate and sustain the system under the desired
conditions. The experiment was conducted in two phases: the first phase was to validate and compare
the performance of fault detection and diagnostics using ANN between pattern recognition and the
model fitting method, and the second experiment was performed to validate the gain compensation.
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Finally, we compared the performance of continuous gain scheduling and discrete gain scheduling
with the system without gain compensation.

The objective of this research is to develop a gain scheduling application to compensate the gain
value, adding tolerance to the system and allowing it to run with the desired performance when a
sensor fault is detected. We use the proposed technique to prevent a position error of the suspension in
the worktable of the ACAM machine. The remainder of this article is structured as follows: Section 2
outlines the dynamics modeling of the feed drive with a DC servomotor and the architecture of the
fault tolerant control. Section 3 discusses the experimental setup. The results and conclusions are
discussed in Sections 4 and 5.

2. Materials and Methods

2.1. Dynamics Modelling of Feed Drive with DC Servomotor

The mock-up of the ACAM machine was designed and developed for the proposed experiment;
the system included an x and y-axis driven by the servo motor and coupled with the lead screw.
The work table was mounted on top of the four linear bearings. The linear encoder was used to check
and feedback the position of the motor to the controller. A redundant rotary encoder was installed
on the other side of the lead screw to double-check the position of the clamping unit, as shown in
Figure 6a [11]. This work aimed to increase the system precision of the x-axis. The modeling of the
single-axis is presented in Figure 6b [12]. The system’s equations assume that the lead screw is a rigid
body and were analyzed for both electrical and mechanical integrity according to Equations (1)—(5).

in(t) = Llavﬂ(t) - Iz—:iu(t) - IZ—:Gm(t) 1)
O (t) = —%ema) + %’ua) @)
C Ks RK,
x(t) = —Mttxt(t) - Mxt(t) + O (t) )

Lead screw

" Linear guide

Linear encoder

? I,‘Rotaryencoder
(a) (b)

Figure 6. (a) Mockup unit of linear stage and motor; (b) physical modelling of the linear stage
servo motor.
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According to Equations (1)—(3), the state-space model and the state vector x(f) =

[ia(t) Om(t) Om(t) x(t) xi(t) ]T are arranged in matrix form, as shown in Equations (4)—(5).

iy o0 -2 00 iy i
2| Om o 0 1 0 0 O 0
2| O | = oo 0 0 | 0w |+ 0 | @)
Xt o 0o o0 o0 1 Xt 0
RK, Ky C,
Xt 0 M; 0 M ——tt Xt 0
. T
yt)=[0 0 0 1 0][i Om Om xt xt | (5)
R, K,
B0 -2 0 0 L
0 0 1 0 0 0
A= £ 0o -3 0o o0 |B=|o0|C=[0001 0]
0o 0 o0 0 1 0
RK K C
o & o % -# 0

In this research, the system identification method takes advantage of the estimation of the system
parameters of the feed-driven system, which is considered experimental data. The results are described
in Table 1.

Table 1. Parameters of the feed-driven system model, as well as their descriptions and values.

Description Parameter Value Unit
Moment of inertia Jm 10.27 kg-mz
Armature resistance R, 1165.2 @)
Torque coefficient K; 7.3892 x 10° N-m/A
Viscous friction coefficient B 6.474 N-m-s/rad
Back electromotive force coefficient Ky 0.0294 V-s/rad
Total of worktable mass M; 7 kg
Coefficient of the damping of the lead screw Ct 10566 N-s/m
Coefficient stiffness of the lead screw K 5.18 x 10° N/m
Coefficient of motor rotation converts to lead screw R 0.7958 -

2.2. Fault Tolerant Control by the Artificial Neural Network (ANN) based on the PI Servo System and Observer

The fault tolerant control presented in Figure 7 is combined with three portions of the system:
the controller loop, fault detection and diagnostic scheme, and gain compensation module. The observer
is used to estimate the state variable for use in feedback to the control loop instead of for measurement
by the sensor. The observer error is used to enable feedback to the fault detection and diagnostic
module for classification by ANN and to select the appropriate estimate gain (Ky) to compensate back
to the controller to make the system run under the desired conditions. The design and development of
the PI servo system [11] in this article are shown in Figure 7. To track and determine the transience
of the response signal and support the fault tolerant control architecture, the stability criteria must
be analyzed early in the process. Thus, the pole placement technique was used to assign the state
feedback gain (K) and PI servo controller gain (K;). The design structure requires state variable feedback
using the gain K. In practice, the measurement of all state variables is difficult, and values are not
discernible from each other. The observer design approach was used to estimate state variables under
the measured output signals and measured inputs.
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Figure 7. Fault tolerant control architecture.

When using control design methods, the first step must be to check the controllability and the
observability [21] of the system. For the system to be completely controllable, the matrix shown below
was utilized:

P.=[B AB A’B ... A"!B]

9.4823x10% —4.5907x10° 2.2149x10° -1.068x10'2 515.5849 x 1012

0 0 28473%x 103 -13.825x10°  6.670 x 10°
= 0 28.473x10° -13.825x10° 6.6704x10° —3.2183 x 1012

0 0 0 0 582.089 x 10°

0 0 0 582.089 x 10°  —3.498 x 101°

This shows the determinant of the matrix; i.e., that the system is controllable. The observability
can be examined from the matrix Py, given by:

C
CA
P, =
CA.n—l
0 0 0 1 0
0 0 0 0 1
= 0 20.443 x 10° 0 —25.558 x 10  —5.524 x 103
0 —112.930 x10°  20.443 x 10° 141.189 x 10° 4.957 x 10°

61.387 x 106 101.348 x 1012 —112.958 x 10° —126.708 x 1012 113.802 x 10°

It was found that the determinant of the matrix was Py # 0, which is equal to the order of the
system. This confirms the observability of the system. The next step to finding the state of feedback
gain was to determine the location of the closed-loop pole in order to select the position of the poles
with direct consistency with the eigenvalues of the system, controlling the property of the response of
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the system. Ackermann’s formula is a supplementary method written in Equations (6)—(8). From the
Cayley—Hamilton theorem and the characteristics equation, we obtain the following:

A) = B(apK + a1 KA + KA?) + AB(a1K + KA) + A2BK
$(A) = B(

K + a1 KA + KA2 ©)
= [BIABIA’B]|  a;K+KA
K
K=[0 0 --- 0 1][BIAB|---A"™1B] '6(A) @)
where the desired characteristic polynomial of the closed-loop pole can be given by
S" 4" b ansTE 4L +a,_15+ay=0 (8)

The design of the clamping unit position control provides an overdamped response. Since the
augmented matrices had a form of 5 x 5, we placed the closed-loop poles at —2 and —4 and add the
fourth pole, which has five times the value of the prominent pole in the system, which is —10. All status
vectors are estimated using observers. From the system design, as shown as Figure 6, the state space
can be defined by [21]:

x = Ax+ Bu 9)

y=Cx (10)

The equation of the observer is roughly the same as that of the system, except for the addition
of a term which includes the estimation error to compensate for inaccuracies in metrics A and B.Th.
The estimation error or observer error is the difference between the measured output and the estimated
output. Thus, we define the mathematical model of the observer to be:

£ = A% + Bu + L1Cly — C®] + L,C[y — C%] (11)

whereL; =L, =L
£ = A% + Bu + 2LC[y — C#] (12)
% = A% + Bu + 2LC[x — %] (13)

where £ is the estimated state, L; and L, are the observer gain for the linear encoder and rotary encoder,
respectively, and C# is the estimated output. Consider the system by subtracting Equation (9) and
Equation (13); thus, the error equation is presented as Equation (14):

x—%=Ax—-A%-2LC[x — %]

e =Ax— A% - 2LC[x - %]

where

Thus:
e=[A-2LCle (14)

Equation (14) demonstrates the dynamic behavior of the error between the observer and plant.
The eigenvalue of a matrix [A — 2LC] defined for the matrices of observer gain showed that the observer
pole is 10 times faster than the closed-loop pole.



Machines 2020, 8, 22 9 of 21

2.3. Data Manipulation

Data manipulation is used to process the raw data from the observer error signal, and then to
extract the mean value by the feature extraction process; these experiments were investigated for
11 linear fault conditions, referring to the experiment setup flow. The mean value of each observer
error signal is given as the input for ANN, both in terms of pattern recognition and model fitting [14].
The input data were divided into training (70%), validation (15%), and testing (15%), respectively,
as shown in Figure 8.

(a)Training process | No

data | Training
Raw data from Feat | Neural
eature e
the observer » extraction -» — » Network
Algorithm
? . data | Validation
e

(b)Testing process I

Testing - - Fault
classification

Figure 8. The procedure flow of the classification model.

Number of
Feature

2.4. Artificial Neural Network (ANN)

The artificial neural network (ANN) is a common machine-learning tool which is widely used
in data analysis. This work used two types of ANN: model fitting and pattern recognition. Both
methods use a set up of three layers—the input layer, hidden layer and output layer—as shown in
Figure 9a,b. The input layer contains the observer error signal with 11 conditions; for each condition,
50 data sets are collected, making the total of data sets for input equal to 550. The data are divided
into 75% for training and 15% for validation and testing, respectively. The hidden layer was set up
with 50 layers to minimize the training time. The last layer is the output layer, which consists of
11 target outputs. Both ANN analysis techniques were processed by the MATLAB application. In this
work, the ANN pattern recognition, as shown in Figure 9a, utilized a scaled conjugated gradient
(trainscg in MATLAB®) for the learning algorithm, as this learning algorithm requires less memory.
The ANN model fitting is shown in Figure 9b and used the Levenberg-Marquardt algorithm (trainlm
in MATLAB®). This algorithm requires more memory compared to a scaled conjugated gradient
but less time. The ANN pattern recognition classifies the sensor fault and integrates it with the
gain compensation by discrete gain scheduling, while the model fitting estimates the gain value for
compensation by continuous gain scheduling.

Neural Network Neural Network

Hidden Qutput

@) (b)

Figure 9. (a) Pattern recognition neural network training; (b) model fitting neural network training.
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2.4.1. ANN Pattern Recognition

ANN pattern recognition is the process of classifying data into a group format according to the
characteristics of those data. To illustrate the differences between groups of data, we classify data
groups by using statistical tools to aid in feature extraction and use training data to train the system
to determine which data belong to the same data group. There are several models for classifying
data, such as decision tree, mathematical formulae, classification (If-Then) rules or artificial neural
network pattern recognition. The raw data are utilized to train the model, and the remaining data are
used to validate and test the model, as shown in Figure 10. The classification model is a supervised
model, which requires a target or variable to measure the prediction of the model. The model learns
by the target of the classification; therefore, the classification model can measure the accuracy of the
prediction (accuracy) by using the confusion matrix, as shown in Figure 11.

Raw data

Y

Feature
extraction

Training
data set

Validation

Data set

y
Classification Test data
model set

Figure 10. Artificial neural network (ANN) pattern recognition flow.

Predict class

——

Positive Negative
- Sensitivity
Positive True Positive(TF) Falf;'N:]gIa E:TZ[SN} TP
TP (TP+EN)
Actual class
- Specify
Negative Fa].;f P::Il"]l;‘;:o(fp) True Positive(TN) TP
P [TP+FF)
Precision Negative Predictive Accuracy
TP TP TP+TN
(TP+FP) (TN+FN) (TP+IN+FP+FN)

Figure 11. Confusion matrix.

The confusion matrix [22] is used to describe the accuracy of the model classification; the rows
correspond to the predicted class (output class), and the columns correspond to the true class
(target class). The diagonal cells demonstrate that the observations are correctly classified. The accuracy
was calculated using Equation (15):

TP+ TN
TP+ TN +FP+FN

Accuracy = (15)
where TP shows that the observation is positive and predicted to be positive; TN shows that the
observation is negative and predicted to be negative; FP shows that the observation is negative but
predicted as positive; and FN shows that the observation is positive but predicted as negative [23].
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2.4.2. ANN Model Fitting

Model fitting is the analysis of the relationships between the dependent (target) and independent
variable (predictor) depicted by Figure 12 by using the best fit straight line. It is presented by
Equation (16):

y=a+bx+e (16)

where b is the slope of the line and e is an error term. This equation is used to predict the value of
the target variable by using the predictor variable. The regression R squares measure the correlation
between outputs and targets. An R square value close to 1 shows a good relationship.

Linear regression

B v=a+bite

L,
P
=9
(=29
oo
=
=

14

Figure 12. Linear regression.

The process of the model fitting is shown in Figure 13; for feeding the set of data for training and
then selecting the learning algorithm, this study selected the regression algorithm. The system used
Equation (16) to fit the model.

Training
zet
¥
Learning » Regression
Algorithm " Br
¥
X » equation » Y

Figure 13. Process flow of model fitting.
2.5. Gain Scheduling

The gain-scheduling control method is the design of the controller and is achieved by examining
the operating conditions of the process and then determining the appropriate gain setting and adjusting
the controller parameters to maintain the system operation with the desired conditions, as shown in
Figure 14. The control system is adjusted using forwarding compensation. The traditional concept
of gain-scheduling is the application of flight control systems by measuring the Mach number and
the dynamic pressure by sensors, which are used as scheduling variables. With timing variables,
the controller parameters are calculated according to the number of operating conditions using the
appropriate design method. System stability and performance are generally evaluated by simulation.
The drawback of scheduling is that it is an open-loop compensation; there is no feedback to compensate
for incorrect scheduling, and the design may take a long time. The advantage of scheduling in advance
is that controller parameters can change quickly in response to process changes.
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Controller
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schedule
Operating
Condition
Command signal Control
E— signal Output
F Controller Process o,

Figure 14. Gain scheduling controller design.

This work is designed with two types of gain compensation: discrete gain scheduling and
continuous gain scheduling.

2.5.1. Discrete Gain Scheduling

The design of this discrete schedule is done using an experiment to collect the data of the observer
error range. By varying the gain error by scaling the gain (Kj) to the system from —1.0% to 1.0 % with
0.2% increments and creating the matrix as shown in the table, the gain compensator (Ky) is also created,
as shown in Table 2, to compensate for the gain error.

Table 2. Gain scheduling table.

Observer Error Range (mm.) : :
Gain Error (Kf) 8 Gain ComPensatlon
Min Max (Kf Estimate)
-1.00% —-0.0437 —0.0381 0.990
—-0.80% —0.0358 —-0.0232 0.992
—0.80% —0.0358 —-0.0232 0.992
—0.60% -0.0171 -0.0128 0.994
—0.40% —0.006 —-0.002 0.996
-0.20% 0.0047 0.0098 0.998
0.00% 0.0167 0.0205 1.000
0.20% 0.0276 0.032 1.002
0.40% 0.0396 0.0438 1.004
0.60% 0.051 0.0556 1.006
0.80% 0.0599 0.0656 1.008
1.00% 0.0733 0.0779 1.010

2.5.2. Continuous Gain Scheduling

Continuous gain scheduling uses the information from the ANN model fitting to estimate the
gain (Kf) based on the linear Equation (16) to compensate for the appropriate gain value to the system.

3. Experimental Setup

The experiment setup used linear state actuators of the ACAM machine, as shown in Figure 15,
which was designed and fabricated as a simulation module to demonstrate and simulate control
systems with a fault tolerant control scheme. The main components included a THK lead screw with a
5-mm pitch diameter, which was driven by a 200 watt Mitsubishi DC servo motor with a 2500 PPR
incremental encoder and a 24-volt power supply. The operating speed of the motor was from 1200 to
1600 RPM for system identification. The Renishaw linear encoder model RGH22Z30D00 was used
for feedback on the position of the worktable. An Omron E6B2-CWZ1X rotary encoder was used
to double-check the position of the clamping unit. The motor driver amplifier received the control
signal from the control unit and then fed this to the controller of the DC servomotor. The RAPCON
platform controller interface was implemented together with the MATLAB/Simulink package to design
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the proposed method and use it for data collection. This work used dual encoders to evaluate the
observer’s estimation of error results.

Figure 15. XY stage actuator.

The experiment was conducted as shown in Figure 16, with four stages: the first stage was to set
up the work table and perform the simulation by scaling the gain by —1% to 1% with an increase of 0.2%
for each condition, with the total fault condition equal to 10 and 1 representing the healthy condition.
In the second stage, 50 data sets per condition were collected; the data were pre-processed and fed into
the ANN process in stage three for modeling and the validation of the model. The final stage was the
evaluation of the performance of the fault tolerant control of both gain compensation methods.

Set up worktable position at
50 mm.

)

Healthy sensor
Sensor fault gain +0.2%
Sensor fault gain +0 4%
Sensor fault gain +0.6%
Sensor fault gain +0.8%
Sensor fault gain +1.0%

I
I

¥

Data collected 50 samples for each condifion.

}

Data preprocessing and feature extraction.

! !

Training ANN Training ANN
fitting model pattern recognition
h J L4
Validation ANN Validation ANN
fitting model pattern recognition
¥ L3
Continuous gain Discrete gain
scheduling scheduling
compensate compensate
I !
Summary

Figure 16. Process flow of the experiments.
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4. Results and Discussion

4.1. Response Tracking and Observer Performance

The PI servo system with state estimation was used to design the controller, the observer was
validated by response tracking, as shown in Figure 17, and the estimated accuracy of the output was
compared to the actual output. The control position of the work table was tested for the input design
at 8 mm. The pitch distance refers to the actual sequence of the ACAM machine. It was found that the
method aiming to control the position could track the reference inputs, which could be compensated
and could minimize errors for the desired step response. Then, the work table was set up for the
experiment by moving it 50 mm, as shown in Figure 18.

100 T T T T T T T

— Actual position
90 — — —Ref. 7

80

70

&0

50

Position {mm)

40

30

20

10

D 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Time (s)

Figure 17. Tracking response of the feed-driven system.

Figure 18. Worktable direction and position movement.

4.2. Data Collection and Preprocessing

The observer error signal information from the observer was collected by considering the transient
response, as shown in Figure 19. Fifty data sets were collected for the 11 sensor fault conditions,
making a total of 550 data sets. The mean value of the observer error was processed and fed-in to the
ANN process.
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Figure 19. The observer error response.

4.3. Fault Detection and Diagnostic Experiment Result

4.3.1. Fault Detection by ANN Pattern Recognition

Fault detection was performed by the ANN pattern recognition process by dividing the observer
error signal data into 70% (384 samples) for the training model, and 15% (83 samples) for validation
and testing, respectively. The results were represented by the confusion matrix shown in Figure 20.
All four confusion matrixes showed an overall accuracy equal to 100%. The results showed that the
row confusion matrix was equal to 100% for all classes, and the column corresponds to the true class
(target class), also showing 100% for all conditions. The result of the pattern recognition classification
showed its effectiveness in classifying a linear sensor fault for all conditions.
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Figure 20. Neural network confusion matrix.

4.3.2. Fault Detection by ANN Model Fitting

The ANN model fitting displays the outputs concerning the targets for training, validation,
and test sets. The R-square value was 0.9999 for all training, validation, testing and all sets, as shown
in Figure 21, which depicts a reasonably good relationship between the output and target sets.
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Figure 21. Neural network regression and function fitting of the ANN model.

In summary, the experimental results of the ANN for both pattern recognition and model fitting
approaches are shown in Table 3. The accuracy of pattern recognition was 100%, and the R square
value revealed a satisfying value of 99.99% for model fitting. The result shows that the ANN technique
is effective in classifying the sensor fault condition. The classification result can be utilized as an input
to improve the compensation process for the next experiment.

Table 3. Summary of fault detection and diagnostic by ANN.

ANN Method Accuracy/R-Squared
Pattern recognition 100%
Model fitting 99.99%

4.4. Gain Compensation Experiment Result

The gain compensator is used to compensate for the appropriate gain value after detecting
and classifying the sensor fault conditions by ANN from the previous experiment. The controller
ensures that the system continues operation with satisfactory performance. The experiment used two
groups: continuous gain scheduling and discrete gain scheduling. To validate the performance of gain
compensation, the scaling gain errors were set up as follows: a healthy condition and 10 sensor fault
conditions, followed by 0%, —0.2%, —0.3%, —0.5%, —0.6%, —0.9%,0.2%, 0.3%, 0.5%, 0.6%, and 0.9%.
The results are described below.

4.4.1. Result for Gain Compensation by Discrete Gain Scheduling

The result compares the setting position (50 mm) with the actual position between the systems
with and without gain compensation. The gain estimation (Kj) from Table 2 is used for compensation
after detection and diagnostics by the ANN pattern recognition. The result compares the three groups
of data shown in Figure 22: the blue line is the setting position with 50 mm, the orange line is the
response of the work table position for each sensor fault condition, and the grey line is the response
after compensation by discrete gain scheduling. Table 4 is the summary result shows that the average
of the position error was reduced from 0.214 mm to 0.031 mm. The result of the gain compensation



Machines 2020, 8, 22 17 of 21

by discrete gain scheduling was to reduce the position error by 86% compared to the system without
gain compensation.
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Figure 22. Gain compensation by discrete gain scheduling.
Table 4. Gain compensation result for discrete gain scheduling.
Position (mm) . . Position (mm) Position Error (mm)
in Fault (K . Gain Estimate .
Gain Fault (Kf) w1th0ut. (KP with ' without with
Compensation Compensation  Compensation ~Compensation

1.000 50.000 1.000 49.999 0.000 0.001
0.998 50.093 0.998 49.992 0.093 0.008
0.997 50.142 0.996 49.944 0.142 0.056
0.996 50.198 0.996 50.002 0.198 0.002
0.995 50.248 0.994 49.953 0.248 0.047
0.991 50.434 0.992 50.044 0.434 0.044
1.002 49.941 1.002 50.004 0.059 0.004
1.003 49.847 1.002 49.952 0.153 0.048
1.005 49.743 1.004 49.940 0.257 0.060
1.006 49.694 1.006 49.990 0.306 0.010
1.009 49.537 1.008 49.935 0.463 0.065

4.4.2. Result for Gain Compensation by Continuous Gain Scheduling

The continuous gain compensator uses the linear regression Equation (17) to predict the gain
value to compensate for the work table position and to sustain the system. Figure 23 compares the
work table position of all three groups: the blue line is the setting position with a response of 50 mm,
and the other two lines show the response of the work table without gain compensation and with
gain compensation as orange and grey lines, respectively. The summary of the gain compensation
result was shown in Table 5. The average position error of the worktable of the system without gain
compensation was 0.228 mm, while the average position error of the system with gain compensation
was shown to be 0.017 mm. The result was that the system with gain compensation was shown to be
effective, reducing the position error by 93%.

Output ~= 1xTarget + 0.00028 (17)
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Figure 23. Gain compensation by continuous gain scheduling.

Table 5. Gain compensation result for continuous gain scheduling.

Position (mm) . . Position (mm) Position Error (mm)
. . Gain Estimate .
Gain Fault (Kf) without (KP with without with
Compensation Compensation  Compensation ~Compensation
1.000 50.000 1.000 50.000 0.000 0.000
0.998 50.104 0.998 49.996 0.104 0.004
0.997 50.151 0.997 49.976 0.151 0.024
0.996 50.257 0.994 49.982 0.257 0.018
0.995 50.298 0.994 49.979 0.298 0.021
0.991 50.450 0.991 50.001 0.450 0.001
1.002 49.854 1.001 49.986 0.146 0.014
1.003 49.867 1.002 49.981 0.133 0.019
1.005 49.765 1.004 49.976 0.235 0.024
1.006 49.706 1.005 49.970 0.294 0.030
1.009 49.567 1.008 49.969 0.433 0.031

The summary shown in Figure 24 and Table 6 shows that both gain compensation methods
successfully reduced the position error by 86% and 93% for discrete and continuous gain
scheduling, respectively.
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0.228

0.200

0.150

0.100
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[ ] |

WO compensate Discrete gain scheduling Continuous gain scheduling

0.000

Figure 24. Comparison of systems with and without gain compensation.
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Table 6. Summary of the gain compensation by varying the linear gain.

Condition Position Error (mm) % Position Error Reduction
Without compensate 0.228 -
Discrete gain scheduling 0.031 86%
Continuous gain scheduling 0.017 93%

5. Conclusions

This work presented the fault tolerant control of a high-speed auto core adhesion mounting
machine based on the PI servo design of the observer. The approach combined fault detection and
diagnostics by ANN with the design of a modern control system and a gain compensation technique.
The experiment included three investigations: the first was tracking the performance of the PI servo
controller with state variable estimation; the second was the creation of a fault detection and diagnostic
model, simulated with 11 fault conditions of the linear encoder, and the state variable with observer
error was extracted to the mean statistical features for the training data set; and the final step was gain
compensation by continuous and discrete compensation methods. The following conclusions can be
drawn from our work:

e  The tracking response of the controller by the PI servo system with state estimation based on an
observer was found to provide effective enhancement in position control and was able to track
reference inputs, which compensated and significantly reduced errors, leading to the desired
step response.

e  For the fault detection and diagnostics of linear encoder faults by the ANN pattern recognition and
model fitting, by using the observer error signal from the observer, the approaches successfully
classified the sensor fault condition with an accuracy of 100% for the pattern recognition method
and an R-square of 99.99% for the model fitting technique.

e Both gain compensation techniques—continuous gain scheduling and discrete gain
scheduling—were shown to successfully compensate the gain value to maintain the position
error of the worktable, moving it back to the desired position, as shown as Table 6. With discrete
gain scheduling, position error was reduced from 0.228 mm to 0.031 mm (86% reduction), while
the continuous gain scheduling reduced the error from 0.228 mm to 0.017 mm (93% reduction)
compared with the system without gain compensation.

e  Fault tolerant control based on PI servo design with an observer by using the ANN and gain
compensation technique exceeded the process requirements in controlling the position of the
worktable, maintaining the suspension reference hole position within the FOV for slider attachment
and the adhesive dispensing process.
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