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Abstract: Overhung rotors are important for use in industrial turbo-machines. The effects of a
lateral force can increase as a result of the rotor weight, misalignment, or the operating speed of
the suspension system for which the rotor is carrying a transmission connection. In this paper,
the reduction of vibration in supported lateral directions by varying control is discussed in a radial
active magnetic bearing system (AMBS). An experimental test was conducted on the orbital response
of an overhung rotor supported by an AMBS, to provide an alternative for improving precision.
To simplify the system design, decoupling was achieved using a PID controller and harmonic
disturbance compensator (HDC), which improved the rotating performance of an overhung active
magnetic bearing (AMB) rotor system, using a frequency response function (FRF) approach and
a description of the overhung rotor during normal operational conditions at unique frequencies.
The experimental results show that the precision rotation, due to harmonic excitation of the shaft
orbit, can be removed in real time using compensation signals using trigonometry. The compensation
criteria for the changed run-up and coast-down consistently helped to maintain the rotational center
in a central position. A reduction of up to 55% in vibration amplitude on average was achieved under
appropriate conditions, and the significance of the overhung rotor symptoms faults were investigated.

Keywords: overhung rotor; lateral rotor vibration; AMBS; decoupling control; HDC; FRF approach

1. Introduction

In many industrial applications, overhung rotors are used in smart machinery, such as
washing machines, helicopter rotors, turbines, generators, centrifuges, pumps, and compressors [1].
Turbomachinery, which is capable of actuating, sensing, and processing information, is widely used.
Improvements in turbomachinery, including reliability, utility, and functionality, to enable features
such as diagnostics, ultimately leads to improved safety and less required maintenance.

Lateral force caused by unbalanced residual mass is a common issue in rotating machinery [2],
but other areas require development, such as misalignment and transmission systems. Unbalance arises
if the axis of the rotor is non-coincident with its principal axis of inertia. Perfect balancing in a
system is costly, and almost impossible if the distribution of unbalance changes during operation.
Thus, residual unbalances always occur. Conventional ball bearings, which can be simplified as stiff
spring damper components, constrain the rotor to whirl around its geometric axis. As opposed to
conventional bearings, active magnetic bearing systems (AMBSs) may use unbalance compensation.
The use of an AMBS as a solution to auto-balance mechanical devices allows the integration of
the control into the smart machine during a manufacturing production process. The theory, design,
and application of AMBSs have been previously detailed [3]. AMBSs possess several advantages
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over mechanical bearings, such as less mechanical wear, low friction, and the absence of pollution by
lubrication used to attain high rotational speeds. However, the costs of purchase are several times
higher compared with conventional bearings, due to their complexity. Electrical and mechanical
engineering and information processing enable the design of AMBSs for a specific application. In larger
machines, protection systems, such as back-up bearings, must be mounted on the machine to prevent
damage in case of electronic failure or bearing overloading. Therefore, most commercialized rotor
systems are equipped with back-up bearings. The stable operation of machines that consist of an AMBS
is achieved through the use of suitable magnetic forces generated by a magnetic bearing actuator.
The open loop of an AMBS is unstable and requires feedback control for levitation. This added control
allows the inertia of the rotor to whirl around its axis, if the space between the stator and rotor in the
AMBS is adequately large.

Several authors have investigated active suppression of unbalance vibration in various active
magnetic bearing (AMB) rotor systems. Most of the control objectives were to eliminate the synchronous
reaction force. The design ideas to compensate for unbalanced forces may be divided into two groups:
the gains can be adapted to the stabilization of the loop, which is infinite or high at operating
speed [4–6], or a compensation signal can be constructed that removes the harmonic function at sensor
measurement [7,8]. As solutions, both structural ideas were fundamentally presented to produce the
same result [4]. The rotor was forced to rotate about the principal axis of inertia by identifying the
unbalance parameters [9]. However, an accurate model of the control system is needed. Tang et al. [10]
used a similar approach with switches to implement the model frequently through the critical speed of
the flywheel. The authors, however, did not consider the power amplifier model, which would reduce
the complete suppression of unbalance vibration effect at high rotational speeds. This decrease is due to
the low-pass characteristic of the power amplifier in the magnetic bearing control system. Changes to
and errors in amplifier parameters would directly affect the accuracy of compensation [11]. In addition,
the low-pass characteristic is difficult to measure or estimate precisely, because it is nonlinear and varies
with time [12,13]. A gain-phase modifier was proposed to achieve adaptive complete suppression of
the unbalance vibration by tuning the gain and phase of the feed-forward part, which are adaptively
unaffected by the low-pass characteristic of the power amplifier [14,15]. According to the experimental
analysis, these algorithms can only be applied after a certain speed. Therefore, detection target faults
should be adapted, and higher harmonics have to be determined when the detection targets themselves
are in fault. An orbital whirling about a geometric axis is overcomplicated.

This article provides compensation designs and experimental tests of an overhung rotor system
for the decoupling control of an orbital whirling about the center of geometry. The assumption for all
actuator and displacement sensors is that they are geometrically perfect when installed in the AMBS.
In using the principal design idea of a notch, feedback is constructed to compensate for an orbital [16].
Thus, the robustness against uncertain variable speed in the dynamics of the overhung rotor is clarified.
In this technique, whirling about the center of mass is more precise, according to whirling the center
of the mass. The unbalanced force depends on the speed of whirling along with a variant speed of
whirling, which has a more obvious influence than the lateral forces at a unique operational speed.
Another characteristic of the design of the PID controller (to create the magnitude of vibration) with a
harmonic disturbance compensator (HDC; the relative timing of the synchronous reaction force to
motivate) is that the AMBS’s actuator and displacement sensor do not have to be concentric circles.
In this situation, which is possible if the assembled machinery is imperfectly balanced, the operational
speed or the nominal geometry have to change the state. The evaluation of the variation in the shape
(pattern), amplitude of the orbital patterns, and an oblique that usually occurs during run-up and
coast-down was found to provide a valuable diagnostic.

The remainder of this paper is structured as follows: Section 2 outlines the modelling of an
overhung AMB rotor system. Section 3 discusses its extension to the decentralized control of HDC
structures and the parameters of the HDC mechanisms. Finally, the experimental setup, orbitals,
and results are documented and discussed in Sections 4 and 5.
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2. Modelling of an Overhung Active Magnetic Bearing Rotor System

The overhung rotor experiment was suspended by a rotor in an AMB rotor system, designed and
constructed as a research platform in the System and Control Engineering (SCE) Laboratory at the
Suranaree University of Technology (SUT; Nakhon Ratchasima, Thailand). The purpose of this test was
to simulate an industrial system and study the control of the rotor’s dynamic instability. Modelling the
proposed overhung AMB rotor system was achieved by deriving the dynamic equation. An AMB
rotor whose rotor and electromagnet are not in direct contact was considered. The control was applied
in a decoupled system in the radial direction of an overhung rotor. Reducing the actively controlled
degrees of freedom (DOF) can lead to miniaturization of the AMBS. Vibration can be suppressed in
such systems by varying control.

An overhung rotor was supported horizontally by the AMBS on one side, while being connected
to a power-driven DC motor with a transmission (flexible coupler) on the other, and the hand being
held by the ball bearing supported by a whirl backup. The rotor responds to the applied imbalance
with a whirling motion. At the center of mass, the rotor is defined as 4-DOF including two translational
motions in the radial and rotational directions about its axis. The overhung rotor is controlled by
four electromagnets, with the AMBS at one end. In addition, the displacements of the rotor from the
equilibrium position are assumed to be very small [17]. The primary structure of a suitable type of
AMBS is shown in Figure 1. The forces are contributed by the attractive electromagnet levitation acting
on the AMB rotor. This model specifies the O-xyz plane fixed in space coordinates. The center of mass
of the rotor corresponds to the origin (O), and the z-axis corresponds to its whirling axis. The linear
displacements of the center of mass of the rotor along the x- and y-axes denote x and y, respectively;
θx and θy are the angular displacements of the whirling axis about the x- and y-axes, respectively; xm,
ym, xb, and yb represent the displacements of the rotor at the magnetic and ball bearing locations; n
defines the direction corresponding to the x- and y-axes; and the electromagnetic force and ball bearing
forces are expressed as fmn and fbn, respectively, which are the locations of action of each force; and fun

is the unbalanced force.
The air gaps at all the four AMBSs are 1 mm. The AMBS’s stator and laminated silicon steel

sheets are mounted at the end of the rotor shaft for the radical support of the AMBS. The radial
thickness of the electrical steel is the same as the width of the pole leg. Steel transformer sheets
(Si-steel, Type-50CS1300) with a thickness of 0.5 mm per sheet and a magnetic flux density of 1.64 Tesla,
which are used as electromagnets, are recommended. The pole polarization sequence is NS–SN–NS–SN
with coils connected, as shown in Figure 2, with two pairs of perpendicular electromagnetic coils
installed on the stators (U-shaped). The attractive electromagnetic forces of all coils produce direct
current responses in the perpendicular direction. In the symmetrical and uncoupled installed AMBS,
all coils had the same turns of pole. Two opposing electromagnets can be operated in 2-DOF for motion
directions in differential driving mode.

In practice, an internal reaction acting on the rotor via forces and moments about the mass center
are replaced by external forces and moments. Following Newton’s second law and the principle of the
rotor dynamic behavior:

m
..
x = fmx + fbx + fux,

Ir
..
θx + ΩIa

.
θy = lb fby − lm fmy − lu fuy,

m
..
y = fmy + fby + fuy − g,

Ir
..
θy −ΩIa

.
θx = lm fmx − lb fbx + lu fux.

(1)

where the rotational speed Ω rotates about the whirling z-axis; m is the rotor mass; Ir and Ia are the
transverse and polar mass moment of the inertia of the rotor, respectively; and lm, lb, and lu represent
distances to the AMBS, ball bearing, and unbalanced force from the center of mass, respectively.
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To maintain the rotor in the center of the AMBS rotor along the x- or y-axis, an electromagnetic
force was applied to the AMB stator of the overhung rotor. Here, i0 denotes the nominal current, and ix
and iy are control currents acting on the x- and y-axes, respectively. Following previous studies [3,11],
the total nonlinear forces along the axis of attractive electromagnetism can be determined as:

fmn = fn+ − fn− = km
( i0+in

n0−nm

)2
− km

( i0−in
n0+nm

)2
= ksnm + kiin,

n ; x or y,
(2)

where km = µ0AN2/2, ki = 4kmi0/n0
2, and ks = 4kmi02/n0

3 define the current, displacement, and stiffness
parameters of the magnets, respectively. We conducted the linearization using a Taylor expansion at
the equilibrium point. The coil acting on the x- and y-axes similarly circulates with nominal current
(i0) via Equation (2). Since the nominal air gaps (n0 = x0 = y0) are equal along the x- and y-axes,
the displacement and current stiffness parameters that are obtained from the x-axis are the same as
those obtained for the y-axis.

The ball bearing forces neglect the effect of rotation. The stiffness and damper parameters of the
ball bearing are expressed as k and c, respectively, so the bearing supports can be expressed as

fbn = −knb − c
.
nb (3)

The dynamic equations are in simplest form when Equation (1) expresses the relationship between
the magnetic and ball bearing locations in terms of displacements. The assumption is rigid or inflexible
for the overhung rotor; the linear and angular displacements from the desired original point are
considered very small. We found that the relationship in the plane between stationary coordinates
(xm, xb, ym, and yb) and geometry coordinates (x, y, θx, and θy) is as shown in Equation (4). Similarly,
an additional transformation from the plane of the sensor coordinates (xms, xbs, yms, and ybs) to the
origin O can be described as

xm = x + lmθy, ym = y− lmθx, xb = x− lbθy, yb = y + lbθx,
xms = x + lmsθy, yms = y− lmsθx, xbs = x− lbsθy, ybs = y + lbθx.

(4)

Substituting Equation (2) through Equation (4) into Equation (1) yields the dynamics of the system
as follows:

..
xms − γ1(

.
ybs −

.
yms) − ks(a1xms + a2xbs) + k(a3xms + a4xbs) + c(a3

.
xms + a4

.
xbs) = b1kiix + d1 fux,

..
xbs + γ2(

.
ybs −

.
yms) − ks(a5xms + a6xbs) + k(a7xms + a8xbs) + c(a7

.
xms + a8

.
xbs) = b2kiix + d2 fux,

..
yms + γ1(

.
xbs −

.
xms) − ks(a1yms + a2ybs) + k(a3yms + a4ybs) + c(a3

.
yms + a4

.
ybs) = b1kiiy + d1 fuy − g,

..
ybs − γ2(

.
xbs −

.
xms) − ks(a5yms + a6ybs) + k(a7yms + a8ybs) + c(a7

.
yms + a8

.
ybs) = b2kiiy + d2 fuy − g,

(5)

where s defines the sensor locations, and

ls = lms + lbs, γ1 = lmsIaΩ
lsIr

, γ2 =
lbsIaΩ

lsIr
, b1 = lmslm

Ir
+ 1

m , b2 = 1
m −

lbslm
Ir

, d1 = lmslu
Ir

+ 1
m , d2 = 1

m −
lbslu

Ir
,

a1 = lms
Ir
(lbslm + l2m) +

1
m (lm + lbs), a2 = − lms

Ir
(l2m − lmslm) + 1

m (lms − lm), a3 = lms
Ir
(l2b − lbslb) + 1

m (lbs − lb),
a4 = − lms

Ir
(lmslb + l2b) +

1
m (lb + lms), a5 = −

lbs
Ir
(lbslm + l2m) +

1
m (lm + lbs), a6 =

lbs
Ir
(l2m − lmslm) + 1

m (lms − lm),
a7 = −

lbs
Ir
(l2b − lbslb) + 1

m (lbs − lb), a8 =
lbs
Ir
(lblms + l2b) +

1
m (lb + lms).

We carefully considered the assumption of this AMB rotor: lsIr is larger than lmsIa and lbsIa.
The two supports in the same direction, creating a gyroscopic effect, and coupling can be ignored.
Simultaneously, |ksa1 + ka3| >> |ksa2 + ka4| and |ca3| >> |ca4| for the magnetic location sensor, and |ksa6 +

ka8| >> |ksa5 + ka7| and |ca8| >> |ca7| for the ball bearing location sensor are satisfied. In the same axis,
the coupling between two supports was completely ignored. Therefore, Equation (5) was simplified by
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reduction with a decentralized force estimator for the disturbance force. Only part of the dynamic
motion correlated with a suspended magnet can be described by

..
xms − ksa1xms = b1kiix + ux,
..
yms − ksa1yms = b1kiiy + uy,

(6)

and
ux = d1 fux − ka3xms − ca3

.
xms,

uy = d1 fuy − ka3yms − ca3
.
yms − g,

fux = mueΩ2 cos(Ωt),
fuy = mueΩ2 sin(Ωt),

(7)

where ux and uy are the summation of the disturbance forces, including bearing forces, force of gravity,
and unbalanced forces for both the x- and y-directions, respectively. The transfer function Gp (s) is the
quotient between the transformed displacement and input current of the decoupling rotor model:

Gp(s) =
b1ki

s2 − a1ks
. (8)

The power amplifier of AMBS can be simplified as an amplifier gain (ga) when connected to a coil:

in = gavn, δ ≈


1
vn

0

,
,
,

vn ≥ 1
0 < vn < 1

vn ≤ 0
(9)

The H-bridge (0–Vs) is the range of the pulse width modulation (PWM) power signal, where Vs is
the supply voltage. The equivalent of the voltage across the H-bridge load is related to the duty-cycle
(δ) of its input control voltage vn. Thus, the control voltage is related to the control signal. Conventional
controls are available for closing the feedback loop by showing that the coil current in is appropriate
for the control law [18]. The negative of pole in an open-loop AMBS is unstable when represented
by a1ks. The most intuitive approach for a conditional control law for an AMB rotor obtained using
Equation (8) is implementing a conventional PID control locally for each axis. A general stabilizing
controller is designed with a proportion, integrator, and derivative gains as follows:

Gc(s) =
vn

en
= gp + gds +

gi

s
, (10)

where gp, gd, and gi are the gains of PID controller.

3. Decentralized Control of a Harmonic Disturbance Compensator

The typical unbalance cases for measuring the signal at the sensor input can be modelled as
an additional harmonic un, as shown in Figure 3. The unknowns are the phase and amplitude
of un. The signal of a reference phase and rotation frequency Ω are assumed to be available.
Normally, rotation speed Ω is constant or varies slowly. This motion is completely dependent on un,
which is an unknown unbalance described by Equation (7). The techniques for unbalance compensation
related to the generalized feedback of the notch may narrow the stability margin of the closed-loop
system. The negative phase of the notch was used to describe the characteristics of the transfer function
that lead to instability below the natural frequency of a rigid mode. Especially for large scales and
low speeds, the rotor may experience significant vibrations, caused by an unbalance. Herzog et al.
designed a controller to ensure closed-loop stability using the insertion of a notch filter structure.
Unlike the conventional structure of the generalized notch filter, we modified the phase-shift angle to
substitute the transformation. The stable closed loop of an AMBS can be preserved only by adapting
the improvement phase. The internal feedback structure of the HDC’s component notch is replaced by
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H(s) with a phase shift ηn, as shown in Figure 3. Let nms and cn denote the feedback components of
input and output fault signals, respectively. The feedback components of dynamic can be described as

cn =
[

sin(Ωt + ηn) cos(Ωt + ηn)
]∫ [

nms sin(Ωt)
nms cos(Ωt)

]
dt. (11)
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The assumptions
.

Ω = 0 and
.
ηn = 0 differentiate Equation (11) with respect to time yields:

..
cn = −Ω2cn −Ω sin(ηn)nms + cos(ηn)

.
nms. (12)

The dynamic equation of the frequency response of H(s) is easy to verify. The Laplace transform
is derived as

H(s) =
cn

nms
=
ε(cos ηn −Ω sin ηn)

s2 + Ω2 , (13)

where ε is the compensator gain of the HDC. Therefore, the advantages of the notch filter structures
with a phase shift can be exploited by the compensator. The design parameters are reduced, so this
technique is easier and convenient. The compensator is mainly affected by ε in the conversion of
rotational speed. The phase compensation at the same speed of Ω can be obtained by selecting proper
values determined independently of ε and ηn. Figure 3 depicts an unbalance vibration compensation
with a PID controller. The transfer function from nms to en is estimated by evaluating Equation (13) at
the frequency of Ω, as follows:

D(s) =
en

nms
= (1 + H(s))−1 =

s2 + Ω2

s2 + ε cos ηn · s + (Ω2
−Ωε sin ηn)

(14)

D(s) will disappear if s = j Ω. The synchronous controlled current is removed by a signal when
the speed is the equivalent of rotational frequency (Ω). The phase of D(s) can be changed by adjusting
ηn, which confirms its notch feedback characteristics. Each direction, without the gyroscopic effect and
the coupling between the two-radius AMBS in the same axis, can be separated in two DOF in the x-
and y-axes (radial direction). In the n-direction, to simplify the representation, the closed-loop stability
with a PID controller was clarified. The other properties behave similarly. The transfer function from
un to en is rearranged as.

en

un
=

gn(s2 + Ω2)S(s)

(s2 + Ω2) + ε(cos ηn · s−Ω sin ηn)S(s)
. (15)
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Let
S(s) =

1
1 + gsngaGc(s)Gp(s)

, (16)

where gsn is a displacement sensor gain. Then, the closed-loop stability is determined by roots.

(s2 + Ω2) + ε(cos ηn · s−Ω sin ηn)S(s) = 0. (17)

If ε = 0, then s = jΩ. The differentiable function of s(ε) at ε = 0 can be expanded with a root locus.
For the linearization, starting at jΩ for ε = 0, the function of root locus yields

∂s(ε)
∂ε

= −
1
2
( jΩ cos ηn −Ω sin ηn)S( jΩ). (18)

If the derivatives in Equation (18) are based on the continuity function s(ε), the stability of the
closed loop in the narrow-band case is ε << Ω, and the locations of all poles appear in the left-hand
plane (LHP). This enables the use of the continuity in the implicit poles of a closed-loop system as a
function of ε. Therefore, all poles of the previous loop S(s) are located in the LHP, and a small ε exists,
so that the root beginning from these poles remains in the LHP. The poles in the critical part of the root
occur due to the characteristic equation of D(s). The stability condition in decoupling control for HDC
may then be expressed as

∂s(ε)
∂ε

= −
1
2
( jΩ cos ηn −Ω sin ηn)S( jΩ) (19)

4. Experiment and Results

The proposed control method was applied in experimental tests on an overhung AMB rotor to
test effectiveness, as shown in Figure 4. The system consisted of a horizontal rotor, a magnetic bearing,
a ball bearing, and a DC motor. The rotor at the ball bearing end was assembled using a flexible
coupling to reduce radial forces and torques if the motor and the rotor were not perfectly aligned.
The backup ball bearing was placed in the middle point of the rotor between the AMBS and rear ball
bearing, which were integrated at the radical support AMBS casings to guard against damage to the
AMBS when the rotor drops. We used a thin shaft and one or more heavy AMB rotors to ensure that
the eigenfrequencies or natural frequencies of the system were low. This not only reduces the costs of
the components, but improves safety. By selecting this setup, two resonance regions of the system of
rotor lie in the operating range.
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Figure 4. Experimental overhung rotor of the AMB rotor system.

The rotating speed in the experiment ran the rotor at 6000 rpm (100 Hz) and 3 hp. For the AMBS
actuator, the main parameters and their values are shown in Table 1. As a digital control system to act as
a digital signal processor (DSP), we used a DSP board (Maneesoon Group Company Limited, Bangkok,
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Thailand). Information for control algorithms were coded in MATLAB, and Simulink software packages
and were then codified and uploaded to the DSP board. The sampling frequency was 2 kHz. At the
sample time of each channel, four successive 12-bit A/D conversions of each signal were recorded,
using four PWM ports and one encoder port. Computer interface circuits were used for command
and data communication between the signal and the development module. The corresponding rotor
motion was measured via analog inductive sensors to measure the gap (SIEA-M8B-PU-S). The input
range of each channel was from 0 to +5 V. H-bridge amplifiers were installed for each coil, and the
amplifier featured a 1 kHz switching frequency. The maximum continuous current was rated at 40 A
(Vs = 24 VDC). The characteristics of the linearization zone for the relationship between the air gap
and the obtainable control current of an AMBS on the x- and y-axes are shown in Figure 5.

Table 1. Parameters of AMBSs, descriptions, and values.

Description Parameter Value (Unit)

Air gaps x0 = y0 1 (mm)
Pole face area A 4.025 × 10−6 (m2)

Winding number per coil N 60 (rev)
Bias current i0 2 (A)

Range of current to control in 0–10 (A)
Magnetic permeability µ0 4π × 10−7 (Vs/Am)

Amplifier gain ga 48.3 (A/V)
Displacement sensor gain gns 1.18 I, 1.32 II (V/mm)

Current stiffness ki 26.09 (N/A)
Displacement stiffness kn 198.24 (N/mm)

I x-axis, II y-axis.
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4.1. Frequency Boundary Detection with Impact Testing

A fundamental measurement of frequency response function (FRF) information was separated
from the inherent dynamic properties of the structure. Experimental tests were also conducted from a
set of FRF measurements, including frequency, damping, and mode shape. During impact testing,
a spectrum analysis is the most popular technique, as it is a convenient, fast, and inexpensive method
used to find the modes of structure. The test instrument for performing the operation was a load cell
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attached to the head of an impact hammer to measure the input force. An accelerometer was used to
measure the magnitude and direction of the response at a fixed point, and a two-channel, fast Fourier
transform (FFT) analyzer was used to calculate the FRFs.

The result for the x-axis in the identification process with the FRF is shown in Figure 6. We observed
clear and separate resonance peaks. In this operation, one three-axial acceleration sensor was placed on
the rotor (N7), and an equipment impulse hammer moved through the points (roving hammer
technique). This technique is used to determine the impact on the rotor at 13 different axial
locations (N1 through N13). The vibration indicator, vibration analyzer, and modal analysis software
(the DEWESoftTM FRF module) were used to perform the modal test [19]. The sampling rate was
20 kHz. The signal was adjusted to 8192 lines in the FRF setup. The frequency resolution Df was
0.61 Hz. The whole FFT window calculation time was 1.63 s. The modal parameters were extracted,
and the corresponding natural frequencies are listed in Table 2. Similarly, the FRF of the y-axis matched
the frequencies of the x-axis unless the amplitudes were different.
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Table 2. Experimental frequencies of the frequency response function (FRF) testing.

FRF Indicator (Hz)
Damping (Hz) Critical Damping (%)

Horizontal Vertical Horizontal Vertical

23.5 0.756 9.537 3.210 2.300
43.6 0.445 n/a 1.030 n/a
50.3 0.777 1.490 1.590 3.090
69.0 0.845 0.988 1.230 1.430

4.2. Performance Comparison

We conducted a comparative study of the displacement of convergence rates to examine the
performance of the PID, both with and without an HDC controller. The parameters of the PID controller
require adjustment for the entire operating speed range, due to the measured displacement signals
being impure with other parts (e.g., low-frequency oscillations, disturbances, noises, etc.). However,
the different speeds of the AMB rotor depends on the stability of the closed-loop system. Therefore,
the closed-loop system may meet the specifications for tracking. Automatic systems modeling using
the Simulink software package in MATLAB was applied to define the parameters of the PID controller,
using the optimization toolbox. Phase-shift ηn was used to choose an appropriate value to satisfy the
stability criteria in Equation (19).

We selected optimized values of ηn = 0 and ε = 500, and a rotor speed lower than 65 Hz under
maximum speed, to relate to the peak of FRF in Figure 6. In the response optimization, the maximum
overshoots the step response by 5%. Rise time and settling time are less than 0.5 and 1 s, respectively.
The controller parameters were optimized to be gp = 0.01, gd = 0.0001, and gi = 0.5. The two sensors were
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defined to measure displacement on the x- and y-axes. The rotor’s orbital path was stabilized at the
origin point, and was controlled by sustained air to whirl from the PID controller. The representation
of rotor vibrations was predominated by rotational speed. The rotational speed of the rotor affected
the amplitude. The operations of rotational accuracy depend on the whirling over a range of rotational
speeds. The vibrations are created by the unbalanced rotor. The stabilization in the orbital origin can be
monitored by the rotor with PID and HDC. The plot contains 10,000 successive samples (in the period
at a steady state of 5 s). The improvement in rotation at a constant speed is clear. In the orbit plot, 95%
of the operation occurred within the inside of a circular space with a diameter 20 µm, and centered on
the orbital origin, as shown in Figure 7.
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Figures 8 and 9 compare the transients of the convergence of displacement amplitudes with the
measured values. The values were are extracted from the signals of both axes while the whirling
rotor was operating at 35 Hz. The non-convergent time for the PID controller compared with the
results provided a convergence time of the PID with the HDC of about eight seconds. This result again
demonstrates the superiority of the PID with HDC in terms of convergence rates.
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A significant reduction in the vibration amplitude of the shaft was observed, which was compared
with the vibration amplitude of both the PID with and without HDC on a magnified scale that was
suitable for each rotating speed. The results obtained for the orbit are shown in Figures 10–13 for
rotating speeds of 23.5, 43.6, 50.3, and 60 Hz, respectively; each was rotated at a constant subcritical
speed of 69 Hz. In these cases, the shaft rotating speed was controlled by a variable frequency drive,
and the shaft was subjected to unbalanced excitation. Note that the position of the inductive sensors
for non-contact measurements at the AMB rotor and nearby three-axial acceleration sensor points
are labeled End-Mag (�) and Mid-Dum (♠), respectively. The Mid-Bear (�) and End-Bear (�) labels
represent the position of the three-axial acceleration sensors that were used for contact measurement in
the middle and end of the shafts, respectively.
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Figure 13. Comparison of the orbits measured at a rotating speed of 60 Hz, with PID with HDC (a) and
without HDC (b) for each of the sensing points.

The active system is more effective at all rotating speeds (excitation frequencies). In Table 3,
the average values of the shaft’s lateral (vertical and horizontal displacements) vibration shows
a reduction of about 42–55%. However, as frequency increases, control efficiency decreases,
reaching vibration amplitude reductions of about 80% at the AMB rotor point. By observing the orbits
of the uncontrolled and controlled shafts, the pure circle of the efficiency of the controller adapts to the
frequency increases.

Table 3. Percentage of vibration reductions.

Frequency (Hz) End-Mag (�) Mid-Dum (♠) Mid-Bear (�) End-Bear (�) Average

23.5 65.4 28.6 62.5 67.2 55.9
43.6 80.9 36.4 32.6 33.3 45.8
50.3 81.7 33.3 27.9 28.2 42.8
60.0 83.2 37.5 60.2 6.6 46.9

4.3. Diagnostic of Orbit Shape and Fatigue-Bearing Life Analysis

In practice, the response of the AMBS is affected by an unbalance or a misalignment; the physical
source of these effects may be modelled as a rotor bend and rotor asymmetry [20]. The unbalance
vibrations occur at the machine’s rotational frequency, but sometimes higher-harmonic rotational
speeds are disturbed due to excitation. Machine vibrations caused by an unbalance [21,22] can almost
be detected by observing an amplitude and phase shaft displacement, as the machine’s rotation whirls
through its critical speeds.

The amplitude peaks at the critical speeds and phase changes every 23.5 Hz, passing through
about 50.3 Hz at the critical points, which are depicted in the FRF plot in Figure 6. The orbital shaft
whirls in an orbit shape or trajectory (unless shaft support impedance exists at the AMB rotor position,
in which case, it is circular), and the direction of the ellipse changes when passing through the
critical speeds, as shown in Figures 10–13. A side load can be generated at a bearing location as a
major indicator of the acting forces. Improper machine assembly can cause a misalignment problem,
which affects the supplementary loads on the bearing. The machine’s critical speed tends to peak
near the vibration problems, unbalance, misalignment, etc. These may either remain unchanged and
constant, or increase. In many instances, problems are immediately found when the machine begins
to whirl. Then magnitudes increase and disappear equally quickly with an operating speed range.
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Intermediate vibration problems of the shaft’s amplitude are resolved when the applied magnetic force
controls the AMB rotor, so if the orbital rotations were originally circular, the rotations may become
elliptical. Because prevention of these issues in the direction opposite the load is easier, the rotor
is more inflexible in this direction. Undesirable cases of the orbital rotation transform into banana
shapes. (Figure 10, 23.5 Hz, Mid-Bear and End-Bear points) or figure-eight-shaped (Figure 12, 50.3 Hz,
End-Bear point). The analysis results show that the loads on the rolling element of the bearing fluctuate
significantly under unbalances or the misalignment of different parts of the machine. An increased
load from an unbalance results in an inversely exponential reduction in life. Long-standing vibration
results in damage and increased breakdown of machines. Affecting their accuracy or performance,
these vibrations can also be transmitted to adjacent machinery and machinery subcomponents.

The life of a bearing is closely related to its loads, which are affected by the unbalances and
misalignment of its rotating components. The basic life rating of a bearing, according to the international
organization for standardization (ISO), is a life expectancy of 90% of the population, where a load life
is predicted as 1,000,000 revolutions. It is preferable to calculate life expectancy in operating hours at a
constant speed. The basic life equation follows the standard [23]. Typically, life expectancy ranges from
months to years at continuous 365-day/24-hour usage. If the load on the bearings is not known, a load
ratio of 1:1 is used, for which the life is rated at about 8770 h. If a load ratio is increased to 1:2, the load
is increased by 100%. Then, the calculation of life expectancy decreases for ball bearings by 87.7%.

The tuning and improvements of an overhung machine were achieved using the fault identification
procedure with this controller. The PID controller with HDC was controlled by the shaft orbit of the
rotating machine vibrations in the range of 20 to 60 Hz; the controller design approach for overhung
rotors with an AMBS provides a comprehensive high-speed rotor dynamic system. Control of the
radical axis is achieved by providing stability and harmonic disturbance rejection, so even high-speed
operation can be achieved by the whirling speed and harmonic forcing function, as well as with the
feedback from the rotor and sensor locations. The effects of unbalanced compensation for an AMBS
with an overhung rotor system, based on the lifespan of the bearings through orbit shape, were studied.
The results in Table 3 show that if an increased load considers the average values of vibrations between
42% and 55%, the life of the bearings increases by about 65% to 73%.

5. Conclusions

In this study, we applied decoupling to simplify the vertical and horizontal axes of a control loop,
in order to reduce the vibration amplitude of the shaft using the electromagnetic force of an AMBS.
A PID controller with HDC for an AMB rotor system can maintain the rotational center to approach
the center line of an overhung rotor. The analytical and experimental test results demonstrate the
effectiveness of the overhung rotor control, and the shaft orbit shape analysis explains the vibration
reduction of the overhung rotor in a range of 20 to 60 Hz. Additionally, the test results of the FRF
analysis provide the peak frequencies of the predominant magnitude, and we conducted a comparative
study between a PID controller with HDC and a conventional PID controller for an AMB-rotor system
in terms of shaft orbits, transient responses, and steady-state responses. Abnormalities cause changes
to the shaft orbit shape, and the direction of the vibrations precede significant symptoms of faults in an
overhung rotor. The main cause of damage is fatigue from substantial vibrations, but the efficiency of
the suspension system can be increased using a PID controller and an HDC with AMBS support.
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