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Abstract: This article considers the oscillation of a solid body on kinematic foundations, the main
elements of which are rolling bearers bounded by high-order surfaces of rotation at horizontal
displacement of the foundation. Equations of motion of the vibro-protected body have been obtained.
It is ascertained that the obtained equations of motion are highly nonlinear differential equations.
Stationary and transitional modes of the oscillatory process of the system have been investigated. It is
determined that several stationary regimes of the oscillatory process exist. Equations of motion have
been investigated also by quantitative methods. In this paper the cumulative curves in the phase plane
are plotted, a qualitative analysis for singular points and a study of them for stability are performed.
In the Hayashi plane a cumulative curve of a body protected against vibration forms a closed path
which does not tend to the stability of a singular point. This means that the vibration amplitude of a
body protected against vibration does not remain constant in a steady state, but changes periodically.

Keywords: vibroprotection; seismic; rolling bearer; vibration; non-linear vibrations; cumulative
curves; singular point

1. Introduction

The issue of vibration protection for devices and equipment is one of the main directions of
development of the theory for vibrations of mechanical systems.

The theory of nonlinear vibration isolation has witnessed significant developments because of
pressing demands for the protection of structural installations, nuclear reactors, mechanical components,
and sensitive instruments from earthquake ground motion, shocks, and impact loads. In views of these
demands, engineers and physicists have developed different types of nonlinear vibration isolators.
This article [1] presents a comprehensive assessment of the recent developments of nonlinear isolators
in the absence of active control means. It does not deal with other means of linear or nonlinear vibration
absorbers. The article is closed by conclusions, which highlight resolved and unresolved problems and
recommendations for future research directions.

A new, passive, vibro-protective device of the rolling-pendulum tuned mass damper type is
presented [2] that, relying on a proper three-dimensional guiding surface, can simultaneously control the
response of the supporting structure in two mutually orthogonal horizontal directions. Unlike existing
examples of ball vibration absorbers, mounted on spherical recesses and effective for axial-symmetrical
structures, the new device is bidirectional tunable, by virtue of the optimum shape of the rolling cavity,
to both fundamental structural modes, even when the corresponding natural frequencies are different,
in such a case recurring to an innovative non-axial-symmetrical rolling guide.
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A new optimization method for a tuned mass damper (TMD) system is proposed in the paper [3],
based on the artificial fish swarm algorithm (AFSA), and the primary structural damping is taken into
consideration. The optimization goal is to minimize the maximum dynamic amplification factor of the
primary structure under external harmonic excitations.

The paper [4] deals with the performance analysis of a vibration-isolation system for Michelangelo
Buonarroti’s famous Ronadanini Pietà statue based on the monitoring and analysis of vibration signals.
A tuned mass-damper-inerter is introduced in order to increase the effectiveness of the isolator in
horizontal direction. Specifically, a multi-degree-of-freedom (MDOF) model for the system, including
non-linear terms, is proposed.

Creating vibration protection devices, using rolling bearings, is currently widespread in transport
techniques to prevent transported oversize cargoes from longitudinal accelerations, for the seismic
protection of structures and in other areas of modern technology. However, further progress in
improving vibro-protective rolling bearings necessitates dynamic properties research and finding more
advanced design solutions on the basis of this research. Most modern vibro-supporting devices use
movable supports, bounded by spherical surfaces.

Articles [5,6] are focused on the technical issues, as well as on issues of improving the engineering
calculation for kinematic foundations designed by this author.

Work by Y.D. Cherepinskiy [7] considers the motion of structures on the kinematic piers of a
particular design, proposed by the author. It investigates a motion, originating on a plane without
rolling friction, which has a significant impact on the character of the system motion.

The passive neutralization oscillations systems for high-rise construction are under consideration [8].
Their advantages and disadvantages have been revealed. A roller oscillation neutralization system for
high-rise constructions subject to seismic affecting is offered. The principle of its work is described and
its advantages are estimated. A mathematical movement model for carrying and carried bodies is made.
Low-frequency oscillation vibration protection systems under the influence of external harmonious
impact are considered. Optimum adjustment parameters for a roller damper in the structure of the
compensation system are defined.

The nonlinear normal vibration modes of a mechanical system having the pendulum vibration
absorber are considered [9]. The coupled and localized vibration modes are selected. In the last case the
main vibration energy is concentrated in the pendulum, so this vibration mode is the most appropriate
for the vibration absorption. The modes stability is investigated.

The work [10] researches low-frequency vibrations of vibro-protective system of solid bodies
formed by a roller damper and a moving load-carrying body under the action of external harmonic
excitations. The dynamic equations of combined motion of the working body of the damper over
the hinged roller without sliding and the load-carrying body are deduced and numerically analyzed.
A new procedure for evaluation of the optimal parameters of adjustment of roller dampers in nonlinear
systems is proposed.

Longitudinal vibrations are investigated for the four-mass vibration-resistant system of the
following solid bodies: long cargo, turnstile with roller shock absorbers, and the coupling of two flat
cars after their collision with a braked hammer car [11]. The level of dynamic loads applied to the
elements of the vibration-resistant system is numerically analyzed.

Low-frequency vibrations of a vibro-protection “roller damper-movable bearing body” system of
rigid bodies under the action of an external harmonic excitation are considered. The working surface
of the damper working body is formed by a brachistochrone. The dynamic equations of common
no-slip motion of the damper working body on a hinged roller and of the bearing body are formulated.
The roller damper tuning parameters are determined [12].

In all these studies, to get the final results we considered a vibration device, the bearing elements
of which are bounded by spherical surfaces. A common disadvantage of all these devices is the lack
of reliability at a high level of seismic disturbance. Practically, such systems behave linearly with



Machines 2019, 7, 58 3 of 21

respect to disturbance and, to suppress the vibrations of the protected bodies, such systems of seismic
protection are complemented by special devices of dry friction with the specified backlash.

This work [13] studies the features of vibration motion of an orthogonal mechanism with
disturbances, such as restricted power in the presence of a fixed load on the horizontal link. Dynamic
and mathematical models were prepared, and the operating conditions’ fields of existence for the
vibration mechanism in terms of driving power were defined.

In the work [14] the mathematical expressions for the rolling resistance arising from rolling of a
bearing, bounded by high order rotational surfaces are obtained.

The work [15] contains a systematic depiction of non-linear systems analysis methods, described
by differential equations of second-rate. This work also contains topological and graphical methods,
applicable for the calculation of autonomic and, especially, non-autonomic systems.

In the book [16] the theory of non-linear vibrations is expounded, the topic of great interest at
present because of its many applications to important fields in physics and engineering.

This paper [17] presents the results of modeling of vibrations of a rigid rotor caused by the
degradation of hydrodynamic bearings. The model is composed by applying equations of nonlinear
hydrodynamic forces and the measured parameters of a real rotary machine.

The work contains geometrical non-linear analysis derived according to the Hamilton principle.
In the work [18] a systematic method is developed for the dynamic analysis of structures with

sliding isolation, which is a highly non-linear dynamic problem. According to the proposed method,
a unified motion equation can be adapted for both stick and slip modes of the system. Unlike the
traditional methods by which the integration interval has to be chopped into infinitesimal pieces during
the transition of sliding and non-sliding modes, the integration interval remains constant throughout
the whole process of the dynamic analysis by the proposed method so that the accuracy and efficiency
in the analysis of the non-linear system can be enhanced to a large extent.

The effects of neglecting small harmonic terms in the estimation of the dynamic stability of the
steady state solution determined in the frequency domain are considered in the paper [19]. For that
purpose, a simple single-degree-of-freedom piecewise linear system excited by a harmonic excitation
is analyzed. In the time domain, steady state solutions are obtained by using the method of piecing the
exact solutions (MPES) and in the frequency domain, by the incremental harmonic balance method
(IHBM). The stability of the solutions obtained in the frequency domain by IHBM is determined by
using the Floquet-Liapounov theorem and by digital simulation of the corresponding disturbed motion.

The aim of the present work is to study the dynamics of vibro-protection systems, the main
elements of which are rolling bearings, bounded by surfaces of rotation of high order (in the absence of
rolling friction).

2. Statement of the Problem

Under the influence of longstanding loads, surfaces of a rolling bearing and bases change their
curvature. There are two cases: under the effect of longstanding loads, the curvature radius of the
rolling supports surface and bases changes by a finite amount and forms a finite area of support.
From an analytical point of view, the dynamic properties of these supports are close to the dynamic
properties of the rolling support with bounded surfaces of a high-order.

Let us consider the principle of work of the kinematic foundation of moving supporting elements,
which is the rolling bearing with bounded surfaces of rotation of a high (n, m) order (Figure 1).
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Figure 1. Scheme of rolling bearers with bearing.

Figure 1 demonstrates the rolling bearing (the object I) with bounded (top and bottom) surfaces of
rotation, expressed by formulas:

ỹ1 = ã1x̃n
1 , ỹ2 = ã2x̃m

2 (1)

having a common axis of symmetry; but objects 2 and 3 are a stationary base (foundation) and the
inner coat of a vibro-protected body. The specifics of such support is that the radius of curvature in the
vicinity of the central support points tends to infinity and decreases with increasing distance from the
axis of symmetry, i.e., there is straightening of the bearing surfaces in the vicinity of the central point.
When considering n to infinity (n→∞ ), the rolling bearing I shall take a cylindrical shape.

In the systems, the restoring force arises because of the increase of potential energy when picking
up the support’s centre of gravity or supports and protected body. Contact with the rolling bearing
surfaces of the vibro-insulated body and the foundation will be assumed as planes.

We assume that the foundation of the considered body has a small plane length, allowing us not
to take into account the asynchrony of transmission of external influence from the various points of the
foundation and vibro-insulated body. Equation (1) refers to the coordinate system associated with the
rolling bearings (see Figure 2). The curvature radius of the vertices of these surfaces at n, m > 2 tends
to infinity, i.e., there is straightening of the bearing surfaces. Let us denote the horizontal offset of the
bases as x̃0(t). As x̃(t) we denote a displacement of the upper body, supporting on the rolling bearing.
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Figure 2. Scheme of coordinates of rolling bearing surfaces of high order.

In Figure 2 the rolling bearing is shown in the position when the base and body are offset relative
to each other by (x̃− x̃0).
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We define the dependence between the horizontal relative displacement of the foundation of
a resilient construction on rolling bearers and their vertical shift. Let us introduce a new notation
(Figure 2):

θ =
x̃− x̃0

H
where H and θ are the height and angle of the rotational displacement, respectively.

On the other hand

θ =
dỹ1

dx̃1
=

dỹ2

dx̃2
, θ = nã1x̃n−1

1 = mã2x̃m−1
2 (2)

Through Equation (2), we express x̃1, ỹ1 and x̃2, ỹ2 via θ as

x̃1 =
θ

1
n−1

(nã1)
1

n−1

, ỹ1 =
ã1

(nã1)
1

n−1

θ
n

n−1 , x̃2 =
θ

1
m−1

(mã2)
1

m−1

, ỹ2 =
ã2

(mã2)
1

m−1

θ
m

m−1 (3)

Vertical displacement of the foundation is written as:

ỹ = H cosθ = H + O1E + O2F, ỹ = −2H sin2 θ
2
= H + O1E + O2F (4)

where
O1E = x̃1 sinθ− ỹ1 cosθ, O2F = x̃2 sinθ− ỹ2 cosθ

Transforming the function y to the range of Taylor and taking into account the first order of
smallness of the angle θ, for relation Equation (4) we get the expression:

ỹ = −H
θ2

2
+ x̃1θ− ỹ1 + x̃2θ− ỹ2 (5)

Substituting expression Equations (3)–(5), we get

ỹ = −H
θ2

2
+

(n− 1)̃a1

(nã1)
n

n−1
θ

n
n−1 +

(m− 1)̃a2

(mã1)
m

m−1
θ

m
m−1 (6)

Taking into account the expression Equation (2), we rewrite the expression Equation (6) in the form

ỹ = −
1

2H
(x̃− x̃0)

2 +
(n− 1)̃a1

(Hnã1)
n

n−1
(x̃− x̃0)

n
n−1 +

(m− 1)̃a2

(Hmã1)
m

m−1
(x̃− x̃0)

m
m−1 (7)

Term Equation (7) defines the dependence between the horizontal relative movements of the
bodies’ bases on the rolling bearings with straightened surfaces and their vertical displacements. In the
case, when n = m, term Equation (7) takes the form

ỹ = −
1

2H
(x̃− x̃0)

2 +
(n− 1)

(Hn)
n

n−1

 1
n−1
√

ã1

+
1

n−1
√

ã2

(x̃− x̃0)
n

n−1 (8)

3. The Equation of Motion of the Vibro-Protected Bodies on the Rolling Bearings with
Straightened Surfaces

To derive the differential equations of motion of a body, we use the equations of Ferrers, considering
the Equation (8) as a holonomic link, superimposed on the vertical movement of the body. Kinetic and
potential energy of the vibro-protected bodies are expressed as

T = M

.
x̃

2
+

.
ỹ

2

2
, U = Mgỹ (9)
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where g− free-fall acceleration. The equation of motion of the body on the rolling bearings, in case of
small oscillations, have the form:

..
x̃ +

g
H

 1

(Hã1n)
1

n−1 (x̃− x̃0)
n−2
n−1

+
1

(Hã2m)
1

m−1 (x̃− x̃0)
m−2
m−1

− 1

(x̃− x̃0) = 0 (10)

So, movement of the protected body (even in a case of small oscillations) is to be described by a
nonlinear equation. Let us consider the case, when n = m, then Equation (10) will have the form

..
x̃ +ω2

0

 Ñn

n−1
√
(x̃− x̃0)

n−2
− 1

(x̃− x̃0) = 0 (11)

where

Ñn =
1

n−1√nH

 1
n−1
√

ã1

+
1

n−1
√

ã2

, ω2
0 =

g
H

(12)

At n→∞, the Equation (11) becomes nonlinear equation of the form

..
x(t) −ω2

0x(t) + 2ω2
0signx(t) = −

..
x0(t), (13)

describing oscillations of a body on the supports, having a rectangular shape.
The nonlinear Equation (6) describes the motion of the vibro-protected bodies on the rolling

bearings, bounded by a parabola of higher order.
Let us introduce a new notation:

x =
x̃
H

, x0 =
x̃0

H
, t = ω0τ (14)

The Equation (11) can be reduced to an equation in dimensionless form

..
x + Φ(x− x0) − x = −x0(t) (15)

where
Φ(x− x0) = Nn(x− x0)

1
n−1 (16)

Ñn =
1

n−1√nH

[
1

n−1√a1
+

1
n−1√a2

]
, a1 = ã1Hn−1, a2 = ã2Hn−1 (17)

4. The Study of Free Oscillations of a Body on the Rolling Bearings with Straightened Surfaces

At x0 = 0 the Equations (6) and (9) take the form

..
x + Φ(x) − x = 0 (18)

As per the method of restructuring [4], we represent the solution and the nonlinear term of
Equation (10) as a truncated trigonometric series

x =
ν∑

k=1

A2k−1 sin(2k− 1)ψ, Φ(x) =
ν∑

k=1

b2k−1 sin(2k− 1)ψ (19)

where ψ = ω(A1)t..
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By choosing the required number of collocation points in interval 0 ≤ ψ ≤ 2π, we obtain the
system of algebraic equations

α11b11 + α13b13 + . . .+ α1(2ν−1)b1(2ν−1) = Φ
(
ν∑

k=1
A2k−1α1(2k−1)

)
= Φ1(A1, A3, . . . , A2ν−1)

α21b21 + α23b23 + . . .+ α2(2ν−1)b2(2ν−1) = Φ
(
ν∑

k=1
A2k−1α2(2k−1)

)
= Φ2(A1, A3, . . . , A2ν−1)

αν1bν1 + αν3bν3 + . . .+ αν(2ν−1)bν(2ν−1) = Φ
(
ν∑

k=1
A2k−1αν(2k−1)

)
= Φν(A1, A3, . . . , A2ν−1)

(20)

where
αi(2k−1) = sin(2k− 1)ψi, i = 1, 2, . . . ν; k = 1, 2, . . . ν,

ψi is the argument term at the collocation point i. Determinator of system Equation (20) is not
equal to zero for arbitrarily chosen collocation points inside the period.

Permitting this system Equation (20) in relation to coefficients b2k−1, we obtain

b2k−1 =
ν∑

i=1

α
(−1)
i(2k−1)

Φi(A1, A3, . . . , A2ν−1) (21)

Now by substituting expression Equation (19) in Equation (18) and equating the coefficients at the
similar harmonics sin(2k− 1)ψ, we obtain ν equations

− (2k− 1)2ω2A2k−1 + b2k−1(A1, A3, . . . , A2ν−1) = 0, k = 1, 2, . . . , ν (22)

Regard these equations as

ω2 =
b1(A1, A3, . . . , A2ν−1)

A1
, A2k−1 =

bk(A1, A3, . . . , A2ν−1)

(2k− 1)2ω2
, (k = 2, 3, . . . , ν). (23)

Thus, the first equation expresses a value of the frequency point of self-oscillations of the non-linear
system through amplitudes of harmonic solution. The following equation determines amplitudes of
higher harmonics.

Now the Equation (23) is suitable for implementation of the iterative method. Solutions, received
by the iteration method, in many cases come together, since expressions for amplitudes 2k − 1 for
harmonics A2k−1 are inversely proportional to the multiplier (2k− 1)2ω2.

The method of iteration is convenient to use by specifying value

A1 , 0; A3 = A5 = . . . = A2ν−1 = 0,

The first Equation (23) takes the form of amplitude-frequency characteristics, and the remaining
equations allow the definition of the form of self-oscillations of the system, presented by unabridged
trigonometric range.

Assigning ψ value to π
6 , π4 , π2 and being limited to the terms k = 1, 2, 3 in (21), we obtain the

system as

b1 = Nn
3

( 1
2 A1 + A3 +

1
2 A5

) 1
n−1 +

√
3
( √

3
2 A1 −

√
3

2 A5

) 1
n−1

+ (A1 −A3 + A5)
1

n−1

,
b3 = Nn

3

[
2
(

1
2 A1 + A3 +

1
2 A5

) 1
n−1
− (A1 −A3 + A5)

1
n−1

]
,

b5 = Nn
3

( 1
2 A1 + A3 +

1
2 A5

) 1
n−1
−
√

3
( √

3
2 A1 −

√
3

2 A5

) 1
n−1

+ (A1 −A3 + A5)
1

n−1

.
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For the first approximation, let us assume that A1 , 0, A3 = 0, A5 = 0, we obtain

b1 = NnK1A
1

n−1
1 ,b3 = NnK3A

1
n−1
1 ,b5 = NnK5A

1
n−1
1 , a = 1, (24)

where

K1 = 1
3

 1

2
1

n−1
+
√

3
( √

3
2

) 1
n−1

+ 1

K3 = 1
3

[
2

n−2
n−1 − 1

]
,K5 = 1

3

 1

2
1

n−1
−
√

3
( √

3
2

) 1
n−1

+ 1


ϕ = ω(A1) · (t + t0).

Substituting Equation (24) in expression Equation (23) we define that

ω(1) =

√√
NnK1

A
n−2
n−1
1

− 1, A3 =
NnK1

9
(
ω(1)

)2
+ 1

A
1

n−1
1 , A5 =

NnK5

25
(
ω(1)

)2
+ 1

A
1

n−1
1 , (25)

The amount in Formula (19) is chosen by the odd harmonics for reasons of the symmetry of
the oscillating system. When holding in the sum Equation (19) the even terms (in the process of
constructing a solution), the coefficients of these terms become zero.

To determine the second approximation we believe that A1 , 0, A3 , 0, A5 = 0.
Solving the equations of motion Equation (18) in the second approximation has the form:

x = A1 sinω(2)t + A(2)
3 sin 3ω(2)t + A(2)

2 sin 5ω(2)t,

where

ω(2) =

√√ NnK1

A1

n−2
n−1
− 1

− Ω̃n, A(2)
3 =

NnK̃3A
1

n−1
1

9(ω(2))
2
+1

, A(2)
5 =

NnK̃5A
1

n−1
1

25(ω(2))
2
+1

,

Ω̃n =
NnA

1
n−1
1

3


(

1

2
1

n−1
+ 1

)
−

(
1
2 + NnK3A1

−
n−2
n−1

9(ω(1))
2
+1

) 1
n−1

−

(
1− NnK3A−

n−2
n−1

9(ω(1))
2
+1

) 1
n−1

,
K̃5 = 1

3


(

1
2 + NnK3A1

−
n−2
n−1

9(ω(1))
2
+1

) 1
n−1

−
√

3
( √

3
2

) 1
n−1

+

(
1− NnK3A1

−
n−2
n−1

9(ω(1))
2
+1

) 1
n−1

,
K̃3 = 1

3

2
 1

2 + NnK3A1
−

n−2
n−1

9(ω(1))
2
+1


1

n−1

−

(
1− NnK3A1

−
n−2
n−1

9(ω(1))
2
+1

) 1
n−1

,

(26)

As an example, we consider the oscillations of a vibro-protected body on the rolling bearings,
the supporting surfaces of which are bounded by the parabolas of the fourth and sixth degree, with the
following parameter values,

n = 4; ã1 = 6, 25 · 10−8 sm−3; ã2 = 15 · 10−8 sm−3; n = 6; ã1 = 1, 56 · 10−12 sm−5; ã2 = 6, 6 · 10−12 sm−5;
H = 3m; ω2

0 = 3, 26s−2; g = 9, 8m/s2.

Dependence of the system frequency on the amplitude built by the trigonometric collocation
method is shown in Figure 3. The dotted line, carried out in the graph, is built on the basis of the second
approximation Equation (26). The solid line is the curve of the first approximation Equation (25).

The proximity of the curves gives an idea of the rate of convergence of the iterative processes.
Considering the natural vibration frequencies to infinity, at the amplitude A1 → 0 for nonlinear systems,
there is a «clash». Thus, for vibro-protection systems, a bearing element of which is a high-order
parabola, the «clash» phenomenon is typical for small oscillations.

The oscillation frequency of the system slowly decreases with increasing amplitude. A parabola
of the second order (for small oscillations) is independent of the amplitude (Figure 3).
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Figure 4 shows the graphs of the solutions, obtained by analytical methods (line 1) and by
quantitative integration by using the Runge-Kutta scheme (line 2).
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A comparison of lines 1 and 2 shows very good exactness of the analytical calculation.

5. Forced Oscillations of a Vibro-Protected Body, Caused by a Movable Base

Let us study the vibrations of a body at harmonic horizontal displacement of the lower base

x0(t) = Q sin pt, (27)

where Q and p-dimensionless amplitude and frequency of disturbance s.
Write the solution and the nonlinear term of Equation (15) in the form

x =
v∑

k=1

A2k−1 sin(2k− 1)pt,Φ(x− x0) =
ν∑

k=1

b2k−1 sin(2k− 1)pt. (28)

Substituting Equation (28) to the equation of motion Equation (15) and limited by k = 1, 2, 3,
we obtain a system of equations

−

(
p2 + 1

)
A1 + b1 (A1, A3, A5) = −Q,−

(
9p2 + 1

)
A3 + b3(A1,A3,A5) = 0,

−(25p2 + 1)A5 + b5(A1, A3A5) = 0.
(29)
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To apply the method of iteration, we present this system of equations in the form

A1 =
Q

p2 + 1
+

b1(A1, A3, A5)

p2 + 1
, A3 =

b3(A1, A3, A5)

9p2 + 1
, A5 =

b5(A1, A3, A5)

25p2 + 1
. (30)

The coefficients of the trigonometric series Equation (28) b2k−1 are determined by the method
of collocation. Identifying expressions Equations (16) and (28), as well as considering the relation
Equations (28) and (27), we get the equation in the form

ν∑
k=1

b2k−1 sin(2k− 1)ϕ = Nn(
ν∑

k=1

A2k−1 sin(2k− 1)ϕ−Q sinϕ)

1
n−1

, (31)

where ϕ = pt.
Giving to ϕ values π/6, π/3, π/2, we get a system of equations relatively b1, b2, b3 :

b1 − b3 + b5 = Nn[(A1 −Q) −A3 + A5]
1

n−1 ,
√

3
2 b1 −

√
3

2 b5 = Nn

[ √
3

2 (A1 −Q) −
√

3
2 A5

] 1
n−1

,

1
2 b1 + b3 +

1
2 b5 = Nn

[
1
2 (A1 −Q) + A3 +

1
2 A5

] 1
n−1 ,

(32)

from which we can find

b1 = Nn
3

 1
√

3

(
1
2 (A1 −Q) + A3 +

1
2 A5

) 1
n−1 +

( √
3

2 (A1 −Q) −
√

3
2 A5

) 1
n−1

+

+ 1
√

3
((A1 −Q) −A3 + A5)

1
n−1

]
,

b3 = Nn
3

[
2
(

1
2 (A1 −Q) + A3 +

1
2 A5

) 1
n−1
− ((A1 −Q) −A3 + A5)

1
n−1

]
,

b5 = Nn
3

( 1
2 (A1 −Q) + A3 +

1
2 A5

) 1
n−1
−
√

3
( √

3
2 (A1 −Q) −

√
3

2 A5

) 1
n−1

+

+((A1 −Q) −A3 + A5)
1

n−1

]
.

(33)

Assuming in Equation (33) that A1 , 0,A3 = A5 = 0, we obtain the values of the coefficients in the
first approximation

b1 = NnK1(A1 −Q)
1

n−1 ,b3 = NnK3(A1 −Q)
1

n−1 ,b5 = NnK5(A1 −Q)
1

n−1 , (34)

Taking into account Equation (34), we rewrite the relation Equation (30) in the form

A(1)
1 = 1

p2+1

Q + NnK1

(
A(1)

1 −Q
) 1

n−1
,A(1)

3 = NnK3
9p2+1

(
A(1)

1 −Q
) 1

n−1
,A(1)

5 = NnK5
25p2+1

(
A(1)

1 −Q
) 1

n−1
(35)

Substituting Equation (35) in (28), we get the solution of Equation (15)

x = C1 sin pt +
NnK3

9p2 + 1
(A1 −Q)

1
n−1 sin 3pt +

NnK5

25p2 + 1
(A1 −Q)

1
n−1 sin 5pt. (36)

6. Results and Analysis

As an example for the parameters, given in Section 4. we have built a graph, determining the
dependence of the system amplitude on the frequency of disturbances corresponding to first, third,
and fifth harmonics at Q = 3× 10−3 value of kinematic disturbances amplitude (See Figures 5 and 6).
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In Figure 5, line 1 corresponds to the resonance line, line 2 to the structural. In Figure 7 the
resonance lines are shown corresponding to various means n.
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Thus, the analysis of Figure 5 allows us to draw the following conclusions:
I. Vibratory bearings on rolling nodes, bounded by surfaces of rotation of a high order, can be

attributed to nonlinear systems with soft characteristics.
II. The amplitude of the forced oscillations (up to the area of the resonant frequency) maintains a

constant value, and in the resonant state, amplitude decreases to zero.
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III. The calculation shows that the amplitudes of the harmonics of a higher order are smaller,
as compared with the amplitudes of the fundamental harmonics (Figure 6). This demonstrates the
closeness of the oscillatory process to the harmonic.

Inertia force, acting on the vibro-protected objects, is weakly dependent on the amplitude of
disturbance (Figure 8). When changing the amplitude of the kinematic disturbance eight times
(6–9 points), the inertia force increases in the range of 30% of the initial value.

Machines 2019, 7, x FOR PEER REVIEW 13 of 22 

 

Figure 7. Graph of amplitude-frequency features of the main harmonic for various means of n . 

 

Figure 8. Graph of dependence of amplitude of vibro-protected body on amplitude of kinematic 
disturbance for various means of n . 

 
Figure 9. Trajectory of vibro-protected body on phase plain. 

 
Figure 10. Allocation of spectral density of periodic oscillations of vibro-protected body. 

7. Stability of Periodic Solutions 

Assuming that in the case of harmonic oscillations, a component of the fundamental frequency, 
having the period 2 pπ , dominates over the higher harmonics. The periodic solution and first 
derivative of Equation (15) can be approximately represented as follows: 

x asin pt bcos pt, x apcos pt bpsin pt= + = − , (37)

Figure 8. Graph of dependence of amplitude of vibro-protected body on amplitude of kinematic
disturbance for various means of n.

For comparison we indicate that for the spherical bearings, inertia force acting on the vibro-
protected body grows proportional to the amplitude of the kinematic disturbance, typical for all the
linear systems. This property of the rolling bearings, bounded by the surfaces of the high order, makes
them promising for creating vibration protective structures under strong kinematic disturbance.

In Figures 9 and 10, two-dimensional projections of a phase-portrait and dispensation of spectral
concentration (Fourier-spectrum) of periodic oscillations of the vibro-protected bodies on the rolling
bearings with straightened surfaces at p = 5.65 value of kinematic disturbance frequency are shown.

It is of interest to note that the range of many-fold harmonics to kinematic disturbance frequency
appears in the spectrum of responses of vibro-protected systems.

Machines 2019, 7, x FOR PEER REVIEW 13 of 22 

 

Figure 7. Graph of amplitude-frequency features of the main harmonic for various means of n . 

 

Figure 8. Graph of dependence of amplitude of vibro-protected body on amplitude of kinematic 
disturbance for various means of n . 

 
Figure 9. Trajectory of vibro-protected body on phase plain. 

 
Figure 10. Allocation of spectral density of periodic oscillations of vibro-protected body. 

7. Stability of Periodic Solutions 

Assuming that in the case of harmonic oscillations, a component of the fundamental frequency, 
having the period 2 pπ , dominates over the higher harmonics. The periodic solution and first 
derivative of Equation (15) can be approximately represented as follows: 

x asin pt bcos pt, x apcos pt bpsin pt= + = − , (37)

Figure 9. Trajectory of vibro-protected body on phase plain.



Machines 2019, 7, 58 13 of 21

Machines 2019, 7, x FOR PEER REVIEW 13 of 22 

 

Figure 7. Graph of amplitude-frequency features of the main harmonic for various means of n . 

 

Figure 8. Graph of dependence of amplitude of vibro-protected body on amplitude of kinematic 
disturbance for various means of n . 

 
Figure 9. Trajectory of vibro-protected body on phase plain. 

 
Figure 10. Allocation of spectral density of periodic oscillations of vibro-protected body. 

7. Stability of Periodic Solutions 

Assuming that in the case of harmonic oscillations, a component of the fundamental frequency, 
having the period 2 pπ , dominates over the higher harmonics. The periodic solution and first 
derivative of Equation (15) can be approximately represented as follows: 

x asin pt bcos pt, x apcos pt bpsin pt= + = − , (37)

Figure 10. Allocation of spectral density of periodic oscillations of vibro-protected body.

7. Stability of Periodic Solutions

Assuming that in the case of harmonic oscillations, a component of the fundamental frequency,
having the period 2π/p, dominates over the higher harmonics. The periodic solution and first
derivative of Equation (15) can be approximately represented as follows:

x = a sin pt + b cos pt,
.
x = ap cos pt− bp sin pt, (37)

Let us suppose that the amplitudes a and b are functions of time and slowly vary depending on t.
For the nonlinear term of Equation (15), Fourier series expansion looks as:

Φ(x− x0) = NnC
1

n−1 sin
1

n−1 (pt + γ) =
∞∑

k=1

B2k−1 sin(2k− 1)pt + D2k−1 cos(2k− 1)pt (38)

where

C =

√
(a−Q)2 + b2, tgγ =

b
a−Q

, B2k−1 = NnK2k−1
(a−Q)[

(a−Q)2 + b2
] n−2

2(n−1)

,

D2k−1 = NnK2k−1
b[

(a−Q)2 + b2
] n−2

2(n−1)

, K2k−1 =
√

L2
2k−1 + M2

2k−1, (39)

L2k−1 =
1
π

2π∫
0

sin
1

n−1ψ sin(2k− 1)ψdψ, M2k−1 =
1
π

2π∫
0

sin
1

n−1ψ cos(2k− 1)ψdψ, ψ = pt + γ.

Substituting Equations (37) and (38) in (15) and equating to zero the individual coefficients of the
terms, containing sin pt and cos pt, we have

da
dt

=
1
p


(
p2 + 1

)
−NnK1

1[
(a−Q)2 + b2

] n−2
2(n−1)

b = X(a, b),

db
dt

= −
1
p


(p2 + 1

)
−NnK1

1[
(a−Q)2 + b2

] n−2
2(n−1)

(a−Q) + p2Q

 = Y(a, b). (40)
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Let us consider the steady state, when amplitudes a(t) and b(t) in (37) are constant, i.e.,

da
dt

= X(a, b) = 0,
db
dt

= Y(a, b) = 0. (41)

In light of these conditions, from Equations (40) we can obtain that the set amplitude a0 = A, b0 = 0
of the periodic solution x(t) is determined by the formula

A =
1

p2 + 1

[
NnK1(A−Q)

1
n−1 + Q

]
. (42)

Let us derive the conditions for the stability of periodic solutions. We will consider small deviations
ξ and η from the amplitudes a0 and b0, and will find out when these deviations (with increasing time)
are close to zero.

From Equation (40) we get

dξ
dt

= α1ξ+ α2η,
dη
dt

= β1ξ+ β2η, (43)

where
α1 =

(n−2)
(n−1)

1
p

W0
C2

0
(a0 −Q)b0,α2 = 1

p

{(
p2 + 1

)
−W0 +

(n−2)
(n−1)

W0
C2

0
b2

0

}
,

β1 = 1
p

{
−

(
p2 + 1

)
+ W0 −

(
n−2
n−1

)W0
C2

0
(a0 −Q)2

}
,β2 = − 1

p

{(
n−2
n−1

)W0
C2

0
(a0 −Q)b0

}
,

(44)

where
W0 =

NnK1

C
n−2
n−1
0

,C0 = A−Q.

The characteristic equation of the system has the form:

λ2
− (α1 + β2)λ+ α1β2 − α2β1 = 0.a (45)

The stability condition is given by the Routh-Hurwitz criteria, i.e.,

α1 + β2 = 0, (α1 = 0, β2 = 0).α1β2 − α2β1 > 0

to [(
p2 + 1

)
−W0

][(
p2 + 1

)
−

W0

n− 1

]
> 0. (46)

The singular point, i.e., steady system state, is a center.
The boundary of unstable periodic solutions of Equation (40) is determined by the curves.

p2 = W0 − 1, p2 =
W0

n− 1
− 1, (47)

and stability areas are determined by the following inequalities [15,16]

p2
− (W0 − 1) > 0,p2

−

( W0

n− 1
− 1

)
> 0,p2

− (W0 − 1) < 0,p2
−

( W0

n− 1
− 1

)
< 0. (48)

In Figure 11 resonant curves are drawn by Equation (42). There are two branches in these graphs
with respective positive and negative means of amplitude A. In Figure 11 borders of stability, built by
Formula (47) are shown by lines 3; 4 and 5; 6 (lines 3; 4 for positive, lines 5; 6 for negative amplitude).
From the physical perspective, positiveness of amplitude signifies phase coincidence, but negativeness
of amplitudes signifies opposite-phase. Tangent lines to resonant lines are parallel to axes 7.



Machines 2019, 7, 58 15 of 21

Machines 2019, 7, x FOR PEER REVIEW 15 of 22 

 

2
1

1
0

0

n
n

nN KW ,
C

−
−

= 0C A Q= − . 

The characteristic equation of the system has the form: 

( )2
1 2 1 2 2 1 0.λ α β λ α β α β− + + − = a (45)

The stability condition is given by the Routh-Hurwitz criteria, i.e., 

( )1 2 1 20 0 0, , .α β α β+ = = = 1 2 2 1 0α β α β− >  

to 

( ) ( )2 2 0
01 1 0

1
W

p W p .
n

  + − + − >   − 
 (46)

The singular point, i.e., steady system state, is a center. 
The boundary of unstable periodic solutions of Equation (40) is determined by the curves. 

2
0 1p W= − , 2 0 1

1
W

p
n

= −
− ,

 (47)

and stability areas are determined by the following inequalities [15,16] 

( )2
0 1 0,p W− − > 2 0 1 0

1
W

p ,
n

 − − > − 
( )2

0 1 0p W ,− − < 2 0 1 0
1

W
p .

n
 − − < − 

 (48)

In Figure 11 resonant curves are drawn by Equation (42). There are two branches in these 
graphs with respective positive and negative means of amplitude A. In Figure 11 borders of stability, 
built by Formula (47) are shown by lines 3; 4 and 5; 6 (lines 3; 4 for positive, lines 5; 6 for negative 
amplitude). From the physical perspective, positiveness of amplitude signifies phase coincidence, 
but negativeness of amplitudes signifies opposite-phase. Tangent lines to resonant lines are parallel 
to axes 7. 

Point H divides the upper part of the graph into stable HD and instable parts EH. The lower 
part of the graph is stable. Calculations were made in the following values of parameters: 

8 3 8 3
1 24 6 25 10 15 10 3n ; a , sm ; a sm ;H m;− − − −= = ⋅ = ⋅ =   

 
Figure 11. Graph of amplitude-frequency characteristics and of lines of borders of stability field. 

8. Numerical Studies 

The idea of seismic isolation of buildings in case of earthquakes with the help of rolling 
element linear guides is one of the simplest and most efficient ideas in the history of 
earthquake-proof construction [20]. 

Figure 11. Graph of amplitude-frequency characteristics and of lines of borders of stability field.

Point H divides the upper part of the graph into stable HD and instable parts EH. The lower part
of the graph is stable. Calculations were made in the following values of parameters:

n = 4; ã1 = 6, 25 · 10−8sm−3; ã2 = 15 · 10−8sm−3; H = 3m;

8. Numerical Studies

The idea of seismic isolation of buildings in case of earthquakes with the help of rolling element
linear guides is one of the simplest and most efficient ideas in the history of earthquake-proof
construction [20].

The operation principle of earthquake protection devices based on rolling element linear guides is
that it provides for the mobility of the building footing, which decreases the inertial force acting on it.

The seismic impacts that occur during an earthquake are classified as random actions,
although in simplified calculation models that are used in practice, they are usually treated as
determinate. The magnitude and nature of seismic impacts cannot be accurately predicted in
advance. The instrumental records that characterize the change patterns of seismic impacts, which
are characteristic of individual earthquakes, over time, never repeat one another even if they occur in
the same place. Therefore, we can only discuss their similarity and, therefore, their classification in
general terms.

The work [21] contain earthquake scales with their basic characteristics are listed in Table 1.

Table 1. Main characteristics of an earthquake.

Intensity
(Points)

Maximum Displacement
Intervals, sm

Maximum Speed
Intervals, sm

~
n

Maximum
Acceleration Intervals, sm

~
n

2

6 0.15–0.3 3–6 30–60
7 0.31–0.6 6.1–12 61–120
8 0.61–0.12 12.1–24 121–240
9 0.121–0.24 24.1–48 241–480

At a seismic level no more than 6 points, no special protection measures against earthquakes
are taken. The work [21] shows that for short-period seismic disturbances (T ≤ 0.6c), maximum
acceleration values occur in ground motion with frequencies p = 15 1

c ÷ 20 1
c , and for long-wave

disturbances-with basic frequencies p = 6 1
c ÷ 10 1

c . The original accelerograms provided in the paper
show that the maximum values of seismic accelerations, short-period and long-period, are related to
the frequencies p = 10 1

c and 20 1
c . Each given implementation of the ground motion process during

the earthquake can be expanded into a Fourier series, taking the duration of the earthquake as the
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period. If we assume that the structure responds to one of the harmonic curves in this expansion that
has a frequency closest to the natural frequency of the structure, then, neglecting short-term transient
processes at the beginning and the end of the earthquake, we can treat the process of the structure
motion as stationary for a limited time. When seismic waves pass, both horizontal and vertical motions
of the structure footing will take place. The vertical component of the acceleration usually has a
somewhat smaller amplitude than the horizontal component (some 30–50%). In calculations of seismic
effects, the displacement of the footing can be taken as the sum of sinusoids. To simplify the calculation,
it is usually assumed that the horizontal displacement of the base is determined by the following
relationship x0 = Q sin pt.

The equations of motion of a vibration-protected body on rolling element linear guides limited
by surfaces of high-order rotation Equation (11) are solved numerically using Mathcad-15 software
package by the Runge-Kutta method with variable step under zero initial conditions. For the numerical
analysis, six rolling element linear guide models have been selected and divided into three groups.
Table 2 shows the parameters of the selected rolling element linear guide models. The coefficients of
the rolling element linear guide surface are calculated using the formula y = axn = 1

2Rn−1 xn, where
R is the radius of the surface of the second order (n = 2). ã1 and ã2 are the coefficients of the lower
and upper surfaces of the rolling element linear guide, respectively, H—Height, n—The order of the
rolling element linear guide surface. The parameter Ñn is calculated using the Formula (12). In the
first option, different surface coefficients ã1 and ã2 of the rolling element linear guide were selected
with constant n and H. In the second option, different heights H of the rolling element linear guide
were selected with constant, ã1 ã2, and n. In the first option, different orders of surfaces n of the rolling
element linear guide were selected with constant ã1, ã2, and H.

Table 2. Parameters of rolling element linear guides.

Option
Number of Rolling

Element Linear
Guide Model

R1 sm R2 sm ã1 sm−(n−1) ã2 sm−(n−1) n H
sm Ñn sm

n−2
n−1

Option 1
1 200 150 6.25× 10−8 1.481× 10−7 4 300 41.497
2 200 100 6.25× 10−8 5× 10−7 4 300 35.569
3 150 50 1.481× 10−7 4× 10−6 4 300 23.713

Option 2
1 200 150 6.25× 10−8 1.481× 10−7 4 300 41.497
2 200 150 6.25× 10−8 1.481× 10−7 4 200 47.502
3 200 150 6.25× 10−8 1.481× 10−7 4 100 59.849

Option 3
1 200 150 6.25× 10−8 1.481× 10−7 4 300 41.497
2 200 150 6.25× 10−8 1.481× 10−7 6 300 89.788
3 200 150 3.91× 10−17 1.481× 10−7 8 300 127.112

To demonstrate the effectiveness of vibration isolation properties of the bearings confined by
surfaces of rotation of higher order is test table, which shows the dependence of maximum acceleration
vibroseismic body on rolling support on the intensity of the earthquake at various values of coefficients
of surface bearings. According to the test table, selecting the parameters of the bearings can achieve a
reduction of the acceleration vibroseismic body on rolling support.

Figure 12 shows the displacement, speed, and acceleration graphs of the vibration-protected body
on rolling element linear guides in forced oscillation mode. In this case, the parameters of the rolling
element linear guide surface in the simulation are chosen for the first model from the first option.
The frequency and amplitude of the disturbance are p = 17.4 1

c , Q = 0.9 cm.
The main characteristics of the motion of a vibration-protected body on rolling element linear guides

are as follows: maximum displacements xmax, maximum speed
.
xmax, and maximum accelerations

..
xmax.

Figure 13 shows the dependences of xmax,
.
xmax on the disturbance frequency for the first model of the

rolling element linear guide option. The disturbance amplitude is Q = 0.9 cm. The analysis of Figure 13
makes it possible to make the following conclusion: vibration mounts on rolling bearing units limited
by rotation surfaces of high-order can be regarded as non-linear systems with soft characteristics.
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The maximum displacements and speeds of a vibration-protected body on rolling element linear guides
have two resonant frequencies. The maximum displacement values increase slowly up to the section
of resonant frequencies and decrease to zero in the resonant state.Machines 2019, 7, x FOR PEER REVIEW 18 of 22 

 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Dependence graph of: (a) displacement, (b) speed, and (c) acceleration of the 
vibration-protected body on rolling element linear guides on time. 

The main characteristics of the motion of a vibration-protected body on rolling element linear 
guides are as follows: maximum displacements maxx , maximum speed maxx , and maximum 

accelerations maxx . Figure 13 shows the dependences of maxx , maxx  on the disturbance frequency 
for the first model of the rolling element linear guide option. The disturbance amplitude is 

0.9Q cm= . The analysis of Figure 13 makes it possible to make the following conclusion: vibration 
mounts on rolling bearing units limited by rotation surfaces of high-order can be regarded as 
non-linear systems with soft characteristics. The maximum displacements and speeds of a 
vibration-protected body on rolling element linear guides have two resonant frequencies. The 
maximum displacement values increase slowly up to the section of resonant frequencies and 
decrease to zero in the resonant state. 

 
(a) 

 
(b) 

Figure 13. Dependence graph of maximum value of displacement (a) and speed (b) of the 
vibration-protected body on the rolling element linear guides on the frequency of the kinematic 
disturbance. 

Figure 12. Dependence graph of: (a) displacement, (b) speed, and (c) acceleration of the vibration-
protected body on rolling element linear guides on time.

Machines 2019, 7, x FOR PEER REVIEW 18 of 22 

 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Dependence graph of: (a) displacement, (b) speed, and (c) acceleration of the 
vibration-protected body on rolling element linear guides on time. 

The main characteristics of the motion of a vibration-protected body on rolling element linear 
guides are as follows: maximum displacements maxx , maximum speed maxx , and maximum 

accelerations maxx . Figure 13 shows the dependences of maxx , maxx  on the disturbance frequency 
for the first model of the rolling element linear guide option. The disturbance amplitude is 

0.9Q cm= . The analysis of Figure 13 makes it possible to make the following conclusion: vibration 
mounts on rolling bearing units limited by rotation surfaces of high-order can be regarded as 
non-linear systems with soft characteristics. The maximum displacements and speeds of a 
vibration-protected body on rolling element linear guides have two resonant frequencies. The 
maximum displacement values increase slowly up to the section of resonant frequencies and 
decrease to zero in the resonant state. 

 
(a) 

 
(b) 

Figure 13. Dependence graph of maximum value of displacement (a) and speed (b) of the 
vibration-protected body on the rolling element linear guides on the frequency of the kinematic 
disturbance. 

Figure 13. Dependence graph of maximum value of displacement (a) and speed (b) of the vibration-
protected body on the rolling element linear guides on the frequency of the kinematic disturbance.

The calculation of the dynamic impacts on structures is of great importance in the design of
structures. It allows determining the true load-bearing capacity of the structure more correctly.
Assuming a vertical static load per rack at 104kg, calculations of the reaction forces are carried out.

Figure 14 shows the dependence of the maximum reaction force of a vibration-protected body on
rolling element linear guides on the disturbance amplitude for the first rolling element linear guide
model: curve-1 has been constructed using the numerical method, and curve-2-using the analytical
method. Similar curves are shown in Figure 13, which gives an idea of how close the results of
analytical and numerical calculations are. The frequency of the kinematic disturbances is p = 17 1

c .



Machines 2019, 7, 58 18 of 21

Machines 2019, 7, x FOR PEER REVIEW 19 of 22 

 

The calculation of the dynamic impacts on structures is of great importance in the design of 
structures. It allows determining the true load-bearing capacity of the structure more correctly. 
Assuming a vertical static load per rack at 410 kg , calculations of the reaction forces are carried out. 

Figure 14 shows the dependence of the maximum reaction force of a vibration-protected body 
on rolling element linear guides on the disturbance amplitude for the first rolling element linear 
guide model: curve-1 has been constructed using the numerical method, and curve-2-using the 
analytical method. Similar curves are shown in Figure 13, which gives an idea of how close the 
results of analytical and numerical calculations are. The frequency of the kinematic disturbances is 

117p
c

= . 

 
Figure 14. Dependence graph of maximum reaction force of the vibration-protected body on rolling 
element linear guides on the amplitude of the kinematic disturbance. 

Figure 15 shows the dependence of the maximum reaction force of the vibration-protected 
body on rolling element linear guides on the frequency and amplitude of the disturbance for 
different values of the surface coefficients provided a constant surface order and rolling element 
linear guides height values (first option of Table 2). The figure shows that the maximum values of 
the reaction force of the vibration-protected body on rolling element linear guides decrease as the 
value of the rolling element linear guides surface coefficient increases. The maximum values of the 
reaction force of a vibration-protected body are weakly dependent on the amplitude of the 
kinematic disturbance. Resonance frequencies do not change significantly. 

 
(a) 

 
(b) 

Figure 15. Dependence graph of the maximum reaction force of the vibration-protected body on 
rolling element linear guides on the frequency (a) and amplitude (b) of the disturbance for different 
values of the coefficients of the rolling element linear guide surface. 

Figure 16 shows the dependence of the maximum reaction force of the vibration-protected 
body on rolling element linear guides on the frequency and amplitude of the disturbance for 

Figure 14. Dependence graph of maximum reaction force of the vibration-protected body on rolling
element linear guides on the amplitude of the kinematic disturbance.

Figure 15 shows the dependence of the maximum reaction force of the vibration-protected body
on rolling element linear guides on the frequency and amplitude of the disturbance for different
values of the surface coefficients provided a constant surface order and rolling element linear guides
height values (first option of Table 2). The figure shows that the maximum values of the reaction
force of the vibration-protected body on rolling element linear guides decrease as the value of the
rolling element linear guides surface coefficient increases. The maximum values of the reaction force
of a vibration-protected body are weakly dependent on the amplitude of the kinematic disturbance.
Resonance frequencies do not change significantly.
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Figure 15. Dependence graph of the maximum reaction force of the vibration-protected body on rolling
element linear guides on the frequency (a) and amplitude (b) of the disturbance for different values of
the coefficients of the rolling element linear guide surface.

Figure 16 shows the dependence of the maximum reaction force of the vibration-protected body
on rolling element linear guides on the frequency and amplitude of the disturbance for different height
values provided constant values of the coefficients and the rolling element linear guide surface order
(second option of Table 2). From the figure, we can see that the maximum values of the reaction force
of the vibration-protected body on rolling element linear guides increase as the value of rolling element
linear guide height decreases. Abrupt changes are observed in the dependency of the maximum value
of the reaction force on the amplitude of the kinematic disturbance. After the jump, the maximum
values of the reaction force slowly change with the increasing value of kinematic disturbance amplitude.
The resonance frequencies shift toward increasing frequency of the kinematic disturbance.
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Figure 16. Dependence graph of the maximum reaction force of the vibration-protected body on rolling
element linear guides on the frequency (a) and amplitude (b) of the disturbance for different values of
rolling element linear guide height.

Figure 17 shows the dependence of the maximum reaction force of the vibration-protected body on
rolling element linear guides on the frequency and amplitude of the disturbance for various values of the
surface order provided constant values of the surface coefficients and the rolling element linear guide
height (third option of Table 2). The maximum values of the reaction force of the vibration-protected
body on rolling element linear guides increase as the order of the vibration-protected body on rolling
element linear guide surface increases. The maximum values of the reaction force slowly change as the
value of the amplitude of the kinematic disturbance increases. The resonance frequencies shift toward
the increasing frequency of the kinematic disturbance.
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element linear guides on the frequency (a) and amplitude (b) of the disturbance for different values of
surface order of the rolling element linear guide.

Thus, the analysis of the calculation allows us to draw the following conclusions: rolling element
linear guides limited by high-order rotation surfaces can be regarded as non-linear systems with soft
characteristics. The maximum values of the reaction force acting on the vibration-protected objects
are weakly dependent on the amplitude of the kinematic disturbance. For comparison, we note that,
for spherical bearings, the inertial forces acting on the vibration-protected bodies increase in proportion
to the amplitude of the kinematic disturbance, which is characteristic of all linear systems.

This property of rolling element linear guides limited by high-order rotation surfaces makes them
a promising solution for creating means of vibration protection for structures in the conditions of
strong kinematic excitations.
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9. Conclusions

A new mathematical model has been built and the dynamic features of vibro-protected devices,
the main elements of which are rolling bearings, bounded by the surfaces of rotation of high order,
have been investigated. It has been ascertained that such vibro-protected devices are highly nonlinear
and a clash phenomenon appears for these systems.

In the spectrum of response emerges the range of harmonics, multiple to the frequency of kinematic
disturbances. It is determined that inertial force, working on vibro-protected body on such bearings,
depends little on the kinematic disturbance level.

This feature of rolling bearings, bounded by surfaces of high order, gives them potential for creation
of the devices for vibro-protection of buildings under conditions of strong kinematic disturbances.
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