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Abstract: In the experimental identification of dynamic bearing coefficients, usually small
perturbations around the static equilibrium position are assumed and linear coefficients are considered.
In the literature, studies on non-linear effects in plain journal bearings, especially from a numerical
point of view, are reported. Few similar studies can be found on tilting pad journal bearings (TPJB).
The present work reports some peculiar aspects observed during the experimental identification
procedure of TPJB linear dynamic coefficients. The tests are performed on a test bench designed
for large size journal bearings operating at high peripheral speeds and static loads. A quasi-static
procedure is developed to quickly check the results obtained from the usually adopted dynamic
excitation. It consists of applying a slowly rotating force to the floating stator and measuring the
relative displacement of the stator from the rotating shaft. Different levels of static and dynamic load
are applied to two different TPJBs with four and five pads. Deformed orbits have been observed
increasing the ratio between dynamic load and static load, suggesting the presence of non-linearity.
Similar results are obtained with simple analytical models assuming suitably tuned non-linear
stiffness terms.

Keywords: tilting pad journal bearing; nonlinear behavior; experimental characterization

1. Introduction

Tilting pad journal bearings (TPJB) are widely used in turbomachinery because of their stability
characteristics at high speeds. For design purposes it is essential to know the coefficients that
characterize their dynamic behavior. These coefficients are usually obtained with the assumption of
small amplitude motions with respect to the static equilibrium position, which allows linearization
according to the well-known Lund model [1] and many different experimental procedures have been
proposed to identify them [2,3].

For plain journal bearings, Qiu [4] has experimentally verified that the error in the estimation of
dynamic coefficients not considering nonlinearity is negligible when the perturbation displacement
amplitude is in the order of magnitude of 0.02 of radial clearance (c) and suggests displacement
amplitudes not exceeding 0.05c to contain the error within 2.5%.

However, in industrial practice, the amplitude of the shaft vibrating motion can reach about 0.1c in
operating conditions, violating the hypothesis of small perturbations. Moreover, in experimental tests
for the identification of linearized dynamic coefficients, the choice of imposing small perturbations
conflicts with the need for measuring small displacements with reduced errors.

From an analytical/numerical point of view, several authors have tackled the problem of
nonlinearity, especially in plain journal bearings. The approach consists of the direct integration of
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the Reynolds equation [5] and the description of the oil-film forces with a larger number of dynamic
coefficients with respect to the classical linearized eight ones, by retaining more terms of the Taylor
series expansion [6,7]. The proposed nonlinear models proved to represent well the nonlinear effects
within the considered journal bearings. A parametric analysis to study the sensitivity of non-linear
forces in journal bearings of different types is reported in Reference [8]. Results are presented for a
two-lobe elliptical bearing showing the effects of several parameters on size, shape, and orientation of
the elliptical orbits produced by synchronous vibrations.

As far as the TPJB is concerned, the literature offers less contributions compared to plain journal
bearings. From the analytical/numerical point of view, nonlinear effects were studied by direct
integration of the Reynolds equation in References [9–14], showing how the rotor orbit increasingly
deviates from the theoretical elliptical orbit of the linear case as the ratio of dynamic and static
load amplitudes increases. The effect of different unbalanced loads on a four-pad TPJB in the
load-between-pad (LBP) configuration was investigated considering thermal and deformation effects
in Reference [9]. Slightly triangular journal orbits were found with a dynamic load about 70% of
the static one while nearly quadrilateral orbits were found with a dynamic load greater than the
static one. The position and the shape of the orbits appeared to be influenced by thermal effects on
both viscosity and pad deformations, while the influence of the elastic deformations appeared to
be smaller. Thermo-elasto-hydrodynamic theory should be used to predict more accurate results as
shown also in Reference [10]. The effect of the liner compliance on the nonlinear dynamic behavior of
the same TPJB used in References [9,10] supporting vertical and horizontal rotors was investigated
in Reference [11]. Almost square orbits were found when the unbalanced load was applied to the
vertical rotor (with zero static load) whilst three-lobed orbits were found with a dynamic load 50% of
the static one applied to the horizontal rotor. Particularly for the horizontal configuration, shape and
size of the orbits are influenced by several factors such as liner thickness and material, preload, pivot
offset, and radial clearance. Three-lobed orbits were also found for a TPJB with two loaded pads in
LBP configuration [12,13] and five-lobed orbits for a five-pad bearing [14] also with an approximated
analytical solution using Fourier series developments. Other researchers have proposed models with
an increased number of coefficients identifying them from the dynamic response obtained by direct
integration [15].

From the experimental point of view different TPJBs were tested in Reference [16] with two
different test rigs detecting typical non-linear behaviors. Symptoms of a non-linear behavior of the pad
journal bearings of two industrial machines were found in Reference [17]. The dynamic coefficients of
three nonlinear models were identified with a different number of coefficients (28, 24, 36) on a five-pad
TPJB bearing, with a 100 mm diameter [18]. The results of the three nonlinear models and the linear
one are in good agreement regarding the identified linear terms. Moreover, the identified stiffness and
damping coefficients appear to decrease with increasing dynamic force amplitude with a reduction of
up to 60% for direct stiffness in the case of a dynamic force increase from 5% to 30% of the static load.

Following a preliminary investigation on possible nonlinear effects in a large size TPJB [19],
the present paper focuses on the nonlinear response of tilting pad journal bearings to harmonic
excitation observed during the experimental procedure for the identification of the linear dynamic
coefficients. In particular it uses the tests to ascertain the linear and nonlinear range of displacements
prior to the dynamic characterization campaign. Nonlinear effects related to the dynamic/static load
ratio should in fact be considered in the experimental identification procedure and accounted for or
avoided. There are very few experimental results published on this topic and in particular on large size
TPJB. De Falco et al. [16] and Chatterton et al. [18] have dealt with the problem with smaller bearings
and different test rig configurations. Moreover, as far as the authors are aware, the application of
an asynchronous rotating force instead of harmonic forces with constant directions, with different
dynamic/static load ratios, is new. The tests are performed on a unique experimental apparatus realized
for large size journal bearings operating at high peripheral speeds and static loads, with single tone or
multi-tone dynamic loads. The design criteria are described in Reference [20]. The main characteristics
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of the realized bench and the first experimental results obtained during the commissioning with a
four-pad TPJB are reported in [21,22]. Results obtained under stationary and slow variable conditions
are particularly reported in Reference [21]. The different systems related to the test rig are shown in
more detail in Reference [22] together with the procedures adopted for both static and dynamic tests.

2. Materials and Methods

Figure 1 shows a picture and a schematic drawing of the test bench. The rotor, supported by rolling
bearings, is driven by an electric motor connected to a gearbox with a gear ratio of six. A torque meter
measures the driving torque. The test bearing housing is floating, and the static load and the dynamic
ones are applied to it by three hydraulic actuators. The static load acts upwards in the vertical direction
while the dynamic loads are applied in mutual orthogonal directions, at 45◦ with respect to the vertical
one (Figure 2). The dynamic actuators can work one at a time or simultaneously. In the second case, if
they operate with equal amplitude in phase, they can produce a vertical force (y direction), in antiphase
a horizontal force (x direction), and in quadrature a rotating force. Three pitch stabilizers, placed at
120◦ around the bearing, provide the bearing housing with axial constraints that can be adjusted to
align the bearing with respect to the rotor. Table 1 summarizes the main characteristics of the test rig.
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Figure 2. Drawing of the test cell.

Table 1. Main characteristics of the experimental apparatus.

Characteristic Value Range

Bearing diameter [mm] 150–300

Bearing length to diameter ratio 0.4–1

Shaft rotational speed [rpm] 0–24,000

Bearing peripheral speed [m/s] 0–150

Static load [kN] 0–270

Dynamic load [kN] 0–40

Dynamic load frequency [Hz] 0–350

Bearing oil flow rate [L/min] 125–1100

Bearing oil inlet temperature [◦C] 30–120

Electric motor power [kW] 630

Plant maximum total power [kW] 1000

Load cells and instrumented stingers, capable of measuring dynamic loads, measure all significant
forces acting on the bearing housing while high-resolution proximity sensors measure the relative
displacements of the bearing housing and the rotor in the directions of the dynamic actuators shown in
Figure 2 (U and V directions shown in Figure 3). Eight sensors are employed, placed on two parallel
planes perpendicular to the bearing axis. Four accelerometers measure the acceleration of the stator at
the mid-section in the direction of the dynamic actuators.

Three different oil supply systems are used for the TPJB, the actuators, and the
multiplication gearbox.

Tests are managed by a very complex control and data acquisition system. Up to 30 high-frequency
signals (forces and torque, displacements, rotational speed, accelerations) can be acquired and sampled
at up to 100 kHz, while up to 60 low-frequency (quasi-static) signals (temperatures, pressures, and
flow-rates in the main and auxiliary lubrication systems and motor electric current) can be acquired
and sampled at 1 Hz. A high sampling rate means an accurate description of signals but also a large
amount of stored data; however, since the identification tests are rather short, data storage is not a
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problem. High-frequency signals are also averaged every second and their mean values are stored
together with the low-frequency ones.
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Figure 3. Test cell displacement and acceleration sensor positions.

The test articles consisted of a four-pad (without offset) and a five-pad (with offset) TPJBs provided
by an industrial partner. The bearings had a 280 mm inner diameter and were tested in the load between
pads configuration. No additional data will be given about the bearings and their characteristics due
to a non-disclosure agreement with the company.

Two main types of test are usually carried out with the test apparatus:

1. The bump test to identify the bearing clearance, center, and alignment
2. The dynamic identification test to identify bearing stiffness and damping coefficients.

In the first test a rotating force vector applied to the bearing housing is generated by sinusoidal
signals with 90◦ phase difference. The oil is not supplied, and the shaft is not rotating. The force must
be increased until the polygon shaped orbit does not change.

In the second test the forces applied during excitation can contain one (“single tone” test) or
more (“multitone” test) frequency components. As dynamic coefficients can vary with frequency,
excitation tones are chosen below and above the rotational frequency avoiding harmonics and test
bench resonances. The required synchronous values are then obtained by interpolation to avoid
imbalance disturbance. Multitone tests with n frequency components have been proven to provide the
same results of n single tone tests but in the time of a single test. For the identification of the dynamic
linear coefficients, two tests with linearly independent excitations are required for each excitation
frequency. The two tests consist in two distinct excitations, vertical (subscript y) and horizontal
(subscript x), respectively, obtained using the dynamic actuators in in-phase (subscript f) and anti-phase
(subscript a) operation modes. The bearing impedance matrix H, expressed in terms of stiffness (k) and
damping (c) coefficients: [

Hxx Hxy

Hyx Hyy

]
=

[
kxx kxy

kyx kyy

]
+ iω

[
cxx cxy

cyx cyy

]
(1)

where ω is the excitation frequency, is determined in the frequency domain, using the Fast Fourier
Transform (FFT), by multiplying the [2 × 2] bearing force complex matrix by the corresponding inverse
displacement complex matrix:[

Hxx Hxy

Hyx Hyy

]
=

[
Fbx f Fbxa
Fby f Fbya

][
Dx f Dxa

Dy f Dya

]−1

(2)

where Fb indicates the amplitude of the force transform and D indicates the amplitude of the
displacement transform. Synchronous coefficients are obtained at the shaft rotational frequency.
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The stiffness dynamic coefficients have shown to be practically independent of frequency for a wide
range starting from quasi-static conditions. They are the basis of the simplified models that will be
presented in Section 3.2.

In addition to such tests, in order to ascertain the linear and nonlinear range of displacements
prior to the dynamic characterization campaign, and also to have a reference stiffness estimate, another
procedure has been developed. The stator is subjected to a slowly rotating force vector generated
by equal amplitude sinusoidal forces with a 90◦ phase angle difference, applied by the two dynamic
actuators. The force low rotational speed allows to consider the damping coefficients negligible.
This work focuses on this latter test procedure that makes it possible to evidence nonlinear effects by
detecting the loss of the typical elliptical orbit related to linear bearing film stiffness. In the tests reported
in this work the shaft rotational speed was set at 1000 rpm while the frequency of the rotating load was
set at 1 round every 100 s (i.e., 0.01Hz). Different static load levels were applied in load-between-pad
configuration combined with different dynamic load levels ranging 3% to 36% of the static load. Forces
and displacements were recorded at a rate of one sample/s.

3. Results

3.1. Experimental Results

Figure 4 shows the plots of the applied horizontal and vertical dynamic load, obtained in four
different tests for the four-pad TPJB for two levels of static load, with the higher (L2) about double the
lower one (L1).
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Figure 4. Horizontal and vertical dynamic load plot for the four-pad tilting pad journal bearings (TPJB).
Red and blue lines for the lower static load L1 and increasing dynamic/static load ratio, and green and
yellow for the higher static load L2 and increasing dynamic/static load ratio.

The dynamic load plot is circular because it is a rotating vector with a constant amplitude controlled
by means of the dynamic actuators with the feedback of the load sensor system. The dynamic load is
indicated in the label as percentage of the static load. About five rotating load cycles are shown for
each test. The corresponding stator orbits are shown in Figure 5. The zero values correspond to the
central position of the bearing. The displacement fluctuation, related to the centrifugal force due to the
shaft rotation, is noticeable particularly for the low static load conditions. It is evident that the orbit
position is related to the static load level while its shape is greatly influenced by the dynamic/static
load ratio, becoming more elliptical and closer to the linear orbits (Figure 5 case L2-3%) as the ratio
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decreases. The shapes are similar to the ones theoretically found by direct integration of the Reynolds
equation in References [9,11,12] for four-pad TPJBs.Machines 2019, 7, x FOR PEER REVIEW 7 of 14 
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3.2. Simple Analytical Models

In order to give a possible explanation for the obtained orbits, the influence of different factors
was evaluated by simulation with simple bearing models represented by linear and quadratic
dynamic coefficients.

Analytical models with increasing complexity were devised assuming hydrodynamic forces
having the following non-linear relations with displacements, obtained by adding quadratic terms to
the commonly used linear relations, neglecting damping due to the low excitation frequency of the
rotating load:

fx = kxxdx + kxydy + kxx2d2
x + kxy2d2

y, (3)

fy = kyxdx + kyydy + kyx2d2
x + kyy2d2

y (4)

The main objective of this work was not the identification of nonlinear coefficients but to
preliminarily investigate the possibility of replicating the experimental nonlinear orbits with simple
nonlinear models. Thus, the linear coefficients of Equations (3) and (4) were set equal to those obtained
by the identification tests described in the previous section while the quadratic coefficients were
determined by a trial and error procedure to get a good fit of the experimental orbits with analytical
ones based on the proposed models.

The simplest analytical linear model takes into account only the direct stiffness coefficients in the
linear relation with displacements:

dx =
fx

kxx
, dy =

fy

kyy
. (5)

The linear stiffness model takes into account both direct and cross-coupled stiffness coefficients in
the linear relation with displacements:

dx =
kyy fx − kxy fy

kxxkyy − kxykyx
, dy =

kxx fy − kyx fx
kxxkyy − kxykyx

. (6)
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The simplest nonlinear model takes into account only direct linear and quadratic
stiffness coefficients:

dx =
−kxx +

√
k2

xx + 4kxx2 fx

2kxx2
, dy =

−kyy +
√

k2
yy + 4kyy2 fy

2kyy2
(7)

A second non-linear model takes into account linear direct and cross-coupled stiffness coefficients
and quadratic direct stiffness coefficients. First of all, the force and displacement components of
Equations (1) and (2) were expressed in polar coordinates:

fx = F cos(θ+ ϕ), fy = F sin(θ+ ϕ), (8)

dx = R cos(θ), dy = R sin(θ). (9)

After squaring the terms of both Equations (3) and (4), they were summed obtaining an equation
of the fourth degree of R that can be solved analytically as a function of θ:

R4
(
k2

xx2 cos4(θ) + k2
yy2sin4(θ)

)
+R3

[
2kxx2cos2(θ)

(
kxxcos(θ) + kxysin(θ)

)
+ 2kyy2sin2(θ)

(
kyxcos(θ) + kyysin(θ)

)]
+R2

[(
kxxcos(θ) + kxysin(θ)

)2
+

(
kyxcos(θ) + kyysin(θ)

)2
]
− F2 = 0.

(10)

A rotating load was imposed as a sum of two sinusoidal functions with the same amplitude
and a 90◦ phase shift, and the corresponding displacements were calculated. The case L1-36% (low
static load, high load ratio) was chosen as reference case due to its extreme dynamic load conditions.
For the sake of comparison, the same experimentally identified stiffness coefficients for the four-pad
TPJB were used in all the analytical models while, for the quadratic coefficients, values tuned to fit
the experimental orbits were adopted for the x and y directions for all nonlinear models. The value
zero in the diagrams corresponds to the static equilibrium position. Further non-linear models were
obtained by considering the dependence of stiffness coefficients from the actual vertical load, sum of
the static load, and the vertical component of the rotating load, according to a fit of experimental
results obtained for different static vertical loads and small dynamic ones. In such a case, a phase angle
of a few degrees between the displacement vector and the force vector was included, affecting the
model related to Equation (10). The orbits obtained with the different analytical models are presented
in Figure 6, with dashed blue lines representing those of the constant stiffness models and red lines
representing those of the load dependent stiffness models.

Comparing the orbits of Figure 6, one can observe that if only direct stiffness coefficients are
included the orbits are necessarily circular due to the same bearing stiffness along the orthogonal
directions. The inclusion of the linear cross-coupled stiffness coefficients in the model modifies the
orbit shape in a tilted slightly elliptical one. Including second order direct stiffness coefficients in the
model yields an orbit with a shape more similar to the experimental one with three lobes. It seems that
including cross-coupled stiffness coefficients in this latter model makes it more adaptable but does not
bring significant improvements unless a specific optimization procedure is performed. The inclusion
of coefficient load dependence produces a vertical shift of all the orbits, an increase of the ellipticity for
the simpler models, and more pronounced lobes for the nonlinear ones.

3.3. Comparison of Analytical and Experimental Results

In order to evaluate the capability of analytical models to simulate the actual bearing behavior,
experimental loads and corresponding linear stiffness coefficients were implemented in the models,
tuning the quadratic coefficients, to obtain orbits to be compared with the experimental ones. Figure 7
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shows a comparison of orbits calculated with different load dependent stiffness models and experimental
ones for three different load ratios.
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cross-coupled stiffness coefficients; (c) nonlinear constant and load dependent direct stiffness coefficients
only; (d) nonlinear constant and load dependent direct stiffness coefficients with linear constant and
load dependent cross-coupled stiffness coefficients. Case L1-36%.

The more complex nonlinear model is omitted at this point because its optimization deserves a
further in-depth analysis and thus it is left to future development. It is evident especially at high load
ratios that the nonlinear model overcomes the limitations of the linear ones and succeeds in replicating
the experimental orbit shape. At lower load ratios the differences are less marked as the orbits tend to
a more elliptical shape.

For very low load ratios, that is for reduced values of the dynamic force the orbit tends to become
more circular and all models, linear and nonlinear, give similar results, as shown in Figure 7c for the
case L2-3%, thus indicating a linear behavior. Note that in this case, since both displacement and
force experimental values are very small, the measurement relative error increases and it is also quite
difficult to control the rotating force vector at such load ratios. Those are the main reasons for the
discrepancy of experimental and analytical orbits shown in Figure 7c.
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4. Discussion

The results obtained for the four-pad TPJB that has equal direct stiffness coefficients and equal
cross-coupled ones indicate that only models including second order direct stiffness coefficients can
replicate the characteristic shape of the experimental orbit.

The non-elliptical shape of the orbits is reflected in the appearance of multiple frequency peaks in
the Fast Fourier Transform (FFT) of the displacement signal as shown in Figure 8a (case L1-36%). As the
excitation is a single tone force, the FFT content of the displacement with multiple frequencies indicates
non-linear or coupled phenomena. Figure 8b shows the results of the same analysis performed for the
L2-3% case whose orbit is surely more elliptical (Figure 7c). Note that the shaft rotational frequency
(16.67 Hz) is not present in these diagrams focused on the low frequency zone. Figure 9 shows
the experimental orbit of the case L1-36% compared with the orbits obtained filtering the results at
the force rotational frequency (1X) and twice (2X) and three times (3X) the fundamental frequency.
While the 1X harmonic component of displacement corresponds indeed to the linear orbit for low load
ratios (case L2-3%, Figure 7c), the 1X filtered ellipse observed for a higher load ratio (case L1-36%) in
Figure 9 appears with a tilt that is not justified with a linear model considering the negligible linear
damping and cross-coupled stiffness coefficients, thus indicating the apparent effects of nonlinearity.
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Note that all data recorded during the rotation of the force vector are plotted in Figure 9b (four cycles
in this case) instead of the averaged values as in Figure 7. This provides better evidence of the signal
fluctuations due the difficulties in controlling and measuring low values of forces and displacements
as mentioned above.
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At the end of the tests some geometrical differences among the pads were also found. It is
worth mentioning that geometrical errors can also influence the results, as reported for example in
Reference [18].

In order to confirm the previous findings, the case of another TPJB was analyzed. It was quite
different from the previous one as it had five offset pads of the same size. It underwent the same tests
of the four-pad TPJB in the LBP configuration. Unlike the four-pad TPJB this bearing has quite different
direct stiffness coefficients in the x and y directions (kyy greater than kxx), and that has obviously a
remarkable impact on the orbit shapes. Figure 10 presents some experimental orbits for the five-pad
TPJB for different load ratios and two different static load levels. The load L3 is about 60% of L2, so a
little greater than the load L1 used for the four-pad TPJB. Figure 11 presents calculated and experimental
orbits for three different models with load dependent direct stiffness coefficients. The difference in
direct stiffness coefficients produces the ellipticity even of the orbits of the simpler models but the
coefficient load dependence causes a distortion of the ellipse, though there is still a difference in its
orientation compared to the experimental one. Again, when the load ratio is small, as in cases L3-5%
and L2-3% of Figure 10, the orbit is elliptical and, as shown in Figure 11b, quite close to the classical
linear model predicted one. Moreover, the model with quadratic coefficients produces an orbit more
similar to the experimental one, particularly noticeable for larger load ratios. Nonetheless there is still
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margin for an optimized tuning of the estimated quadratic coefficients. Better results can be expected
from a best fit optimization involving all dynamic coefficients, including the linear ones. The set
of linear coefficients obtained by linear identification could be the starting solution of the nonlinear
identification procedure that will be the object of future work.
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The peculiar three lobe orbit shape, predicted by simulations [9,11,12] for horizontal rotors and
found experimentally in the present work, has been ascribed to the number of pads involved in the
bearing reaction to the load. With four pads, with a high static load between pads and a rotating load
not overcoming the static one, the bearing behavior is similar to that with only two pads, like the one
described in Reference [12]. The same behavior occurs with five pads with load between the pads,
as can be deduced observing the results reported in this section. 3X components in the journal orbit,
in addition to 1X and 2X, have been also reported in Reference [18] for a five-pad TPJB on a floating
shaft configuration test rig. Unfortunately, comparison can be only qualitative because experimental
conditions are quite different.

5. Conclusions

This paper presented new experimental results on the nonlinear response of large size TPJBs related
to the dynamic/static load ratio, showing that nonlinear effects, usually neglected in conventional
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experimental identification procedures of the bearing dynamic coefficients, should be considered.
A quasi-static procedure devised for a preliminary estimate of the bearing stiffness and of the linear
displacement range was used to investigate, in a novel way, the nonlinear response of TPJBs. It consists
of applying a slowly rotating force to the floating stator. Orbits with particular shapes, different from
elliptical, were observed for increasing dynamic to static load ratio.

Numerical simulation using simple bearing models and assuming quadratic stiffness terms and
coefficient load dependence generated orbits with shapes similar to the experimental ones for high
load ratios where linear models fail, proving the presence of nonlinearities in the bearing reaction to
excitation as also indicated by the presence of 2X and 3X harmonic components in the FFT of stator
displacements but absent in the FFT of the dynamic load.

These results are the first step for a further study on nonlinear identification of first and higher
order coefficients by optimization techniques.
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