
machines

Article

Unmanned Ground Vehicle Modelling in
Gazebo/ROS-Based Environments

Zandra B. Rivera 1, Marco C. De Simone 2,* and Domenico Guida 2

1 MEID4 Srl, via Giovanni Paolo II, 84084 Fisciano (SA), Italy; zrivera@unisa.it
2 Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II,

84084 Fisciano (SA), Italy; guida@unisa.it
* Correspondence: mdesimone@unisa.it

Received: 31 March 2019; Accepted: 9 June 2019; Published: 14 June 2019
����������
�������

Abstract: The fusion of different technologies is the base of the fourth industrial revolution.
Companies are encouraged to integrate new tools in their production processes in order to improve
working conditions and increase productivity and production quality. The integration between
information, communication technologies and industrial automation can create highly flexible
production models for products and services that can be customized through real-time interactions
between consumer, production and machinery throughout the production process. The future of
production, therefore, depends on increasingly intelligent machinery through the use of digital
systems. The key elements for future integrated devices are intelligent systems and machines,
based on human–machine interaction and information sharing. To do so, the implementation of
shared languages that allow different systems to dialogue in a simple way is necessary. In this
perspective, the use of advanced prototyping tools like Open-Source programming systems,
the development of more detailed multibody models through the use of CAD software and the use of
self-learning techniques will allow for developing a new class of machines capable of revolutionizing
our companies. The purpose of this paper is to present a waypoint navigation activity of a custom
Wheeled Mobile Robot (WMR) in an available simulated 3D indoor environment by using the Gazebo
simulator. Gazebo was developed in 2002 at the University of Southern California. The idea was to
create a high-fidelity simulator that gave the possibility to simulate robots in outdoor environments
under various conditions. In particular, we wanted to test the high-performance physics Open
Dynamics Engine (ODE) and the sensors feature present in Gazebo for prototype development
activities. This choice was made for the possibility of emulating not only the system under analysis,
but also the world in which the robot will operate. Furthermore, the integration tools available
with Solidworks and Matlab-Simulink, well known commercial platforms of modelling and robotics
control respectively, are also explored.

Keywords: wheeled mobile robot; robotics; multibody dynamics; gazebo; Matlab

1. Introduction

The term “Wheeled Mobile Robot” (WMR) underlines the ability of a vehicle to operate without
a human presence on board or remote controlling the vehicle, in order to navigate in environments
for which it is designed (ground, air, water). The form and degree of control of the vehicle provide
the type and level of autonomy, ranging from the absence of automation to full automation, generally
through a robotic detection system that uses model-based approaches and learning to increase their
levels of driving. A definition of a mobile robot is presented by [1] that identifies their features
and purpose: “A mobile intelligent robot is a machine capable of extracting information about its
environment and using the knowledge of its world to move in a meaningful and safe way”. Unmanned

Machines 2019, 7, 42; doi:10.3390/machines7020042 www.mdpi.com/journal/machines

http://www.mdpi.com/journal/machines
http://www.mdpi.com
https://orcid.org/0000-0002-7593-8314
http://dx.doi.org/10.3390/machines7020042
http://www.mdpi.com/journal/machines
https://www.mdpi.com/2075-1702/7/2/42?type=check_update&version=2

Machines 2019, 7, 42 2 of 21

mobile robots are being used in difficult, dangerous and/or highly unpleasant tasks to be carried
out by human beings since the costs of accessibility, safety, and survival is high, or when fatigue,
time, or unpleasantness are increased [2,3]. Therefore, the nowadays missions for ground, aerial and
underwater-unmanned vehicles fulfil tasks like monitoring infrastructures as bridges, canals, offshore
oil, and gas installation. Furthermore, mobile robotics are generally integrated into exploration,
intervention, surveillance activities and, increasingly, it is taking root in new fields such as agriculture
and health sector [4–6]. A more generic distinction allows us to understand the degrees of development
reached that we will describe later, thus the “mobile robotics”, which involves all unmanned vehicles
in all the environments described previously, and the “intelligent vehicles”, which deals with the
mobility of people and goods on regular surfaces commonly. The basic components of mobile
robots include at least one controller, a power source, a software or control algorithm, some sensors,
and actuators [7–10]. The areas of knowledge usually involved in the field of mobile robotics are:
mechanical engineering, responsible for the design of vehicles and, in particular, the mechanisms of
locomotion; computer science, responsible for visualization, simulation, and control with algorithms
for detection, planning, navigation, control, etc.; electrical engineering, capable of integrating systems,
sensors, and communications; cognitive psychology, perception, and neuroscience that study biological
organisms to understand how they analyse information and how they solve problems of interaction
with the environment. Finally, Mechatronics, which is the combination of mechanical engineering
with computing, computer engineering and/or electrical engineering [11–15]. Therefore, there is
important “knowledge” and “know-how” from conception to experiments and implementation. The
degree of development of mobile robots varies greatly according to the time and the impetus with
which the research topics, technologies, and initiatives are approached. The academic community
generally makes a classification as Autonomous Ground Vehicles (AGV), autonomous land vehicles
(ALV) or mobile robots for vehicles travelling on land, which would be the “Intelligent vehicles”.
Unmanned Aerial Vehicles (UAV) generally classified in fixed wings and rotating wings. Autonomous
Submarine Vehicles (ASV) or Unmanned Surface Vehicles (USV) for those travelling below and above
the surface of the water [16–18]. Unmanned ground vehicles (UGV) are vehicles that operate while in
contact with the ground and without a human presence on board. The development of such systems
began as an application domain for Artificial Intelligence research at the end of the 1960s. The initial
purpose was to recognize, monitor and acquire objects in military environments. The “Elmer and
Elsie” tortoises, composite acronyms for the electromechanical and photosensitive robots, respectively,
were the first automatic vehicles invented by the neurophysiologist William Gray Walter at the Burden
Neurological Institute in Bristol from 1947–1950, and are considered one of the first achievements of
cybernetic science and as the ancestors of ground robots and “intelligent” weapons [19,20]. These
turtles identified the sources of dim light and approached them, so they had locomotion, detection,
and evasion of obstacles capabilities. The most notable advance of these battery turtles is their ability
to make intelligent associations such as “soft light”, “intense light”, or even “light equal to a type of
sound” so they were able to react to these stimuli as “conditioned reflex”, thus they are recognized as
the pioneers of Artificial Intelligence (AI). Another important step in the development of mobile robots
was the development of Shakey in 1966–1967, who was able to navigate from one room to another and
even transport an object. Shakey, which means, “who trembles”, was capable to translate by themselves
only because he can “feel” his surroundings, although to make each movement he needed a good
hour of calculation. Its morphology could be described as a large camera as a head that could rotate
and lean, its body was the large computer that rested on a platform with three wheels that were its
means of locomotion. The robot used electrical energy, and it carried with it several sensors: a camera,
a distance measuring device and tactile sensors to perceive obstacles, actuators as step by step motors.
It served as a test-bed for AI’s work funded by DARPA at the Stanford Research Institute [21–23].
The Shakey system is the pioneer of WMRs, establishes the functional and performance baselines for
mobile robots, identifies the necessary technologies and together with the Bristol turtles help define
the research agenda of Artificial Intelligence (AI) in areas such as planning, vision, conditioned reflex

Machines 2019, 7, 42 3 of 21

processing and natural language [24]. The Shakey system had a new development momentum at the
end of the 80s, with the implementation of an eight-wheel all-terrain vehicle with standard hydrostatic
steering, able to move on roads and in rough terrain, this vehicle converted into an unmanned ground
vehicle had all the electronics and software for the search of objectives and navigation [25]. The result
in 1987 was a road trip guided by vision along 0.6 km at speeds of up to 3 km/h on rough terrain,
avoiding ditches, rocks, trees, and other small obstacles [26,27]. Another type of WMRs called rovers
serve to explore, analyse and photograph the surface of the planet Mars, the first was named Sojourner,
meaning “hero” or “traveller”, launched in 1997. It was active from 6 July to 27 September. Its mission
was to explore Mars in a radius of action of 20 m around the landing platform called PathFinder. This
platform served as communication with the land. Later, Spirit and Opportunity, two twin rovers were
launched in January 2004, again to explore Mars in a wider area. Then, Curiosity, sent in August 2012
in the mission Scientific Laboratory on Mars and it is expected that in 2021 the rover call Mars2020
will be sent in mission. The development of increasingly performing robots, capable of performing
missions effectively, goes hand in hand with the development of robust computational platform and
tools to be used for rapid prototyping, evaluate robots design, simulate virtual models and sensors,
provide and evaluate models and controllers, capable of satisfying the expanding demand and the
renewed interest in robotics [28–30]. It is also important for developers and implementers to be
aware of the available platforms, methods, algorithms, hardware components that are most used,
as well as their underlying physical and numerical paradigms, advantages, and disadvantages [31,32].
Those are the reasons why in this paper we present a robotics framework from a broader perspective,
with an emphasis on open-source ones. The main characteristics and components are discussed and
compared. In 2012, a paper presenting MIRA middleware did a comparative benchmarking of the
robotics platforms available at this moment. Updated general information of these platforms and their
basic characteristics are summarized in Table 1.

Table 1. Middleware platforms summary.

ROS Robot Operating
System http://www.ros.org/

For complex mobile and manipulator
robots, based on algorithms and actuated
sensing. Distributed.

MIRA Middleware for
Robotic Application

http://www.mira-
project.org/joomla-mira/

Distributed applications of several different
processes (algorithms for certain task) on
different machines (either in real time).

YARP Yet Another Robot
Platform http://www.yarp.it/

Modular, code reuse, transport-neutral
interprocess communication based on Ports
with different protocols.

Urbi Universal Robotic https://github.com/
urbiforge/urbi

UObject (C++ API) for drivers and
algorithms designed and exposed to
urbiscript (event-based) used to connect
components in an application. Distributed
at runtime.

LCM
Lightweight
communications and
marshalling

https://lcm-proj.github.
io/index.html

platform- language independent,
publisher/subscriber, low-latency message
passing systems for real-time robotics
research applications

Player Player/Stage Project
http://playerstage.
sourceforge.net/index.
php?src=index

Fits well for simple, non-articulated mobile
platforms. Offers more hardware drivers,
provide easy access to sensors and motors
on laser-equipped.

MOOS Mission Oriented
Operating Suite

http://www.robots.ox.ac.
uk/~mobile/MOOS/
wiki/pmwiki.php/M

star-shaped topology network. Data as
named messages stored in MOOSDB. Other
clients can fetch also the history of changes.

http://www.ros.org/
http://www.mira-project.org/joomla-mira/
http://www.mira-project.org/joomla-mira/
http://www.yarp.it/
https://github.com/urbiforge/urbi
https://github.com/urbiforge/urbi
https://lcm-proj.github.io/index.html
https://lcm-proj.github.io/index.html
http://playerstage.sourceforge.net/index.php?src=index
http://playerstage.sourceforge.net/index.php?src=index
http://playerstage.sourceforge.net/index.php?src=index
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/M
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/M
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/M

Machines 2019, 7, 42 4 of 21

The benchmarking could help to realize which platform will fit better to specific robotics’ needs
and purposes. It is even possible to combine them for large robotics environments or projects.
Robotic software must cover a broad range of topics and expertise from low-level embedded systems,
for controlling the physical robot actuators, all the way up to high-level tasks such as collaboration
and reasoning [33–35]. The many layers of computation must seamlessly be able to communicate and
integrate with each other for a robotic system to function successfully. Additionally, several tasks,
such as mapping and navigation, are common to many robotic applications. Then, a layer of software
above the operating system but below the application program appears in the market to wrap this
complexity and to provide a common programming abstraction across a distributed system [36].

Table 2 summarizes the advantages of these platforms. The primary research areas are Control,
Locomotion, Machine learning, Human-Robot Interaction (HRI), Planning, Mechanical design,
Cognitive robotics and Mathematical modeling. The primary application fields instead are Humanoid
robotics, Mobile robotics, Multi-legged robotics, Service robotics, Industrial robotics and Numerical
simulation of physical systems [37,38]. Gazebo-ROS is a powerful combination used by the robotics
community in general for its ability to simulate with credibility their environments and the flexibility,
robustness, and availability of common features for thefts, capable of supporting complex distributed
environments with multiple robots performing tasks in a coordinated manner [39]. That being said,
it is easy to understand that this management of complexity that allows both flexibility and integration
with other robotic environments requires some solid knowledge to exploit the full potential of this
Gazebo-ROS platform [40,41]. The authors for some time have been using 3D design software to
develop detailed models for dynamic simulations. In particular, the use of the SimMechanics link tool
allows the creation of rigid multibody models in the multi-domain simulation environment. In this
environment, it is possible to build multi-domain models as in the case of mechanical parts driven
by electric actuators. These tools therefore make it possible to obtain a good model with regard
to geometry and mass distribution. However, the force fields that surround the system we want
to analyse are left to the designer who has the task of modelling the forces present at the interface
between the system and the environment. The Gazebo simulation environment instead takes into
account system-environment interactions allowing a more truthful study on the dynamic behaviour of
the system under analysis. In literature, it is easy to find examples of robotic simulations in Gazebo
through the use of multibody models supplied directly by the manufacturers. Instead, it is more
difficult to find applications with custom robots. For this reason, we decided to test this platform by
recreating a mobile robot that we have in our laboratory, in order to test the strengths and weaknesses
of this prototyping environment. The paper is organised as follows. In Section 2, we describe the
Gazebo robot simulator and its potential. Moreover, the design process for creating the multibody
model is shown together with the modeling of the contact forces between wheels and floor. Section 3
describes the co-simulation activity conducted by using Gazebo 10.0 and Matlab 2018b softwares.
Finally, in the last sections, we present our considerations.

Table 2. Middleware advantage summary.

Portability Common programming model across language and/or platform
boundaries, as well as across distributed end systems

Reliability Can be reused and optimized with confidence over many applications

Managing complexity Low-level programming abstractions can be made more accessible
through suitable (possibly object-oriented) libraries. However,
programming combinations of these abstractions can be excessively
tedious and error-prone. Programming within the context of pattern
aware middleware can drastically reduce both chances of introducing
errors into the code, and the amount of pain that the programmer must
endure when implementing the system (Schmidt et al., 2000).

Machines 2019, 7, 42 5 of 21

2. Materials and Methods

Gazebo development starts as part of a Ph.D. research project. After 2009, it had been integrated
with ROS in a PR2 robot at Willow Garage Company (Menlo Park, CA, USA), which becomes the most
important financial support since 2011. Now, the version 10 is on development, and it is expected to be
launched by January 2019. V.11 is already describing new functionalities and is expected to be released
by January 2020. Therefore, respecting the promise, Gazebo launches a new major version once a
year, with a useful life of two and five years for even and odd versions, respectively [42]. Gazebo is
a powerful 3D simulator, capable of being integrated into various robotic platforms; however, it is
the natural complement of ROS. One of the recognized strengths is the ability to incorporate different
physical engines, each of which has their own level of development and some has a marked orientation
to the simulation of certain types of robots, as in the case of Simbody for humanoids [43]. For the
selection of the various engines, it will be enough to invoke them during the launch in the scripts that
invoke the packages to be executed with their respective parameters. Another important component
during robotics simulation is rendering this management of the appearance of the moving image.
Both the rendering and the physical engine will make the simulation plausible; even so, there is a
compromise to achieve between accuracy of response to the physical phenomenon of the modeled
environment and the capacity to respond in computational terms [44]. A simulator must synthetically
simulate the environment from a visual perspective as physical (laws of physics) of the environment
they represent. To this graphical environment, Gazebo calls it “world” where the various static and/or
dynamic objects must be represented; it identifies them as “model” that, according to the mission to be
developed, will be rich in terms of set design and/or dynamism. Both the “world” and the “model”
have a series of configuration parameters to which it is possible to access from the graphic Gazebo
environment, through plugins (executable with specific functionalities) or through control platforms
such as ROS or others [45,46]. Described in this way, everything seems very simple, but working
in a virtual environment simulating the basic capabilities of a mobile robot is not as simple as it
seems. These tools are powerful because they just hide all this complexity in the functionalities they
offer and allow us to interact with them through configurable parameters, which in the case of the
physical environment are interrelated, and, in many cases, have immediate implications on each
other. It is therefore important to have knowledge of the basic concepts and laws that govern them,
to understand how they have been incorporated into these tools and what they really mean in each
environment [47]. Thus, Gazebo is a three-dimensional open-source dynamics simulator for single and
multi-robots’ mechanisms, for inside and outside environments. Despite the fact that it was created to
close the gap of realistic robot simulation in outdoor environments, the users mostly use it for indoor
simulations. Gazebo attempts to create realistic worlds for the robots, relying heavily on physics-based
characteristics; what it means is that, when the model is pushed, pulled, knocked over, or carried
“reflecting the physics” [48].

The general structure (see Figure 1) remains simple and almost unchanged since it was presented
in 2004 because it relies on third-party software packages as ODE for articulated rigid bodies dynamics
and kinematics; and system independent visualization toolkit, called GLUT, for the creation of 2D
and 3D interactive applications (over a standard library OpenGL). This characteristic makes Gazebo
an independent platform, which permits, for example, to add Dynamics Engines as Bullet, Simbody,
and DART for different versions and platforms; however, the original ODE remains the default
engine [49]. By doing so, Gazebo’s major feature is the creation and addition of models, which
are virtual dynamic objects such as robots, actuators, sensors, ground surfaces, buildings or other
stationary objects, relying on ODE Dynamics by means of Newton–Euler equations and First-order
time integrator for Motion; Frictionless joints for Constraints; Perfectly inelastic collision for Collisions
and Friction pyramid for Contacts. The World represents these models and environmental factors
as gravity, lighting, and so on. Finally, user Interfaces are used by client programs to communicate
and control models [50]. As reported in the Gazebo aArchitecture scheme, there is a division between
server and client, which are provided by two executable programs “gzserver” for simulating the

Machines 2019, 7, 42 6 of 21

physics, rendering, and sensors; and “gzclient” for a graphical interface to visualize and interact
with the simulation. The client and server communicate using the Gazebo communication library
Google Protobuf and boost::ASIO, for message serialization and transport mechanism, respectively [51].
The Gazebo features are described on their official website and there are also tutorials and models to
use in order to understand such powerful environments. For modelling, Gazebo uses SDF (Simulation
Description Format), which is an XML format to describe objects and environments, capable of
describing all properties of robot model (links, joints, sensors, plugins), static and dynamic objects,
lighting, terrain, and even physics. Links are described by Inertial (mass, a moment of inertia), Collision
and Visual (geometry) which are used by physics, collision and render engines, respectively. Joints
connect two links and are used to constrain their movement, limiting the DOF (degrees of freedom)
by the type (revolute, prismatic, revolute2, universal, ball, screw) of their configuration [52]. Because
of the above, the framework, conceived as a robotic platform and a work environment, has been
developed under the guidelines and scope of the chosen base robotic middleware call GAZEBO-ROS
and the integration capabilities that expand its usage possibilities [53]. It is also known in the robotics
community how several difficulties are faced while developing robotics applications due to the
heterogeneity of the concepts in the field. In fact, in the case of mobile robotics, they must master
the details related to the locomotion medium of robots, its morphology, and its sensors. In addition,
the variability of the hardware makes the robotic applications fragile, which means that a hardware
change in an already developed application would imply the rewriting of the code [54]. To respond
to the observation of hardware variability, some robotic middleware such as ROS, MIRO, and PyRO,
proposed abstractions of the hardware components in relation to the technical details of these; it is thus
possible to encapsulate specific data and instead provide higher level data. However, these abstractions
are still at a low level and do not allow the isolation of some hardware components’ changes [55].
After evaluating the different alternatives reported in Table 1, we choose Gazebo-ROS as the base
middleware environment because it supports the simulation and control of complex robotic missions,
thanks to its easy integration with tools such as Simulink, MATLAB, and Solidworks.

Version October 23, 2018 submitted to Robotics 3 of 16

Gazebo attempt to create realistic worlds for the robots, relying heavily on physics-based characteristics;81

what it means is that when the model is pushed, pulled, knocked over, or carried "reflect the physics"82

[18]. The general structure reported in Fig. 1, remains simple and almost unchanged since it was

Figure 1. Gazebo General Structure. Source: Adapted from Koenig et Howard (2004 p.2150).

83

presented in 2004, because it relies on third party software packages as ODE for articulated rigid bodies84

dynamics and kinematics; and system independent visualization toolkit, called GLUT, for the creation85

of 2D and 3D interactive applications (over a standard library OpenGL). This characteristic makes86

Gazebo to be an independent platform, which permits for example to add some Dynamics Engines as87

Bullet, Simbody, and DART for certain versions and platforms; however the original ODE remains as a88

default engine.89

In this way, Gazebo major feature is the creation and addition of models, which are virtual dynamic90

objects such as robots, actuators, sensors; and ground planes, buildings or other stationary objects.91

Relying on ODE Dynamics by the means of Newton-Euler equations and First order time integrator92

for Motion; Frictionless joints for Constraints; Perfectly inelastic collision for Collisions and Friction93

pyramid for Contacts. The World represents these models and environmental factors as gravity,94

lighting, and so on. Finally, user Interfaces are used by client programs to communicate and control95

models [19].96

As we could see in Gazebo Architecture, there is a division between a server and client, which are97

provided by two executable programs "gzserver" for simulating the physics, rendering, and sensors;98

and "gzclient" for graphical interface to visualize and interact with the simulation. The client and99

server communicate using the gazebo communication library (Google Protobuf and boost::ASIO, for100

message serialization and transport mechanism respectively) [20].101

The Gazebo features are described on their official website, http://gazebosim.org/#status, where102

there are also tutorials and models to use in order to get confidence in their usage. In this paper,103

the functionalities on which we are interested are related to robot modelling, sensors data treatment,104

control plugins and dynamics simulation.105

For modelling, Gazebo uses SDF (Simulation Description Format) which is an XML format to describe106

objects and environments, capable of describing all properties of robot model (links, joints, sensors,107

plugins), static and dynamic objects, lighting, terrain, and even physics. Links are described by Inertial108

(mass, moment of inertia), Collision and Visual (geometry) which are used by physics, collision and109

render engines respectively. Joints connects two links and are use to constraint their movement,110

limiting the DOF (degree of freedom) by the type (revolute, prismatic, revolute2, universal, ball, screw)111

of their configuration.112

The current SDF protocol versions are 1.4, 1.5 and 1.6. Also, Gazebo has a dependency on SDFormat (a113

C++ library) to brings protocol needed by Gazebo to describe every aspect of simulation. The library114

(SDFormat) handles automatically the version dependencies (SDF protocol), those are summarized115

in Table 1: Sensors in Gazebo are independent units and are usually attached to models; the plugins116

Figure 1. Gazebo general architecture.

Wheeled Robot Modelling in a Gazebo-Based Environment

The mathematical modelling of mobile robots, in general, is carried out in order to understand
their behaviour in an established acting environment. This mathematical formulation describes the
kinematic and dynamic models that will serve as the basis for the design and control of robots in
general [48,56]. When designing mobile robots, the aim is to achieve models with levels of reliability
and manoeuvrability necessary to fulfil the desired functionalities, such as precision and speed, while

Machines 2019, 7, 42 7 of 21

having stable mechanical structures [57]. Furthermore, such analysis, depending on the morphology,
allows to study the best arrangement of the components like sensors and actuators, in order to fulfil
the purpose of the robot. Kinematic and dynamic characteristics are expressed in mathematical
formulations that may or may not consider the geometry of the robot [58,59]. It is also possible to
develop several mathematical models to represent the same mobile robot, each of them having different
utility depending on the functionality that we want to achieve, observe or analyse. The WRM, reported
in Figure 2, is the prototype of wheeled mobile robot, designed and assembled in the laboratory
of Applied Mechanics of the Department of Industrial Engineering of the University of Salerno.
It has a conventional geometry that facilitates the study of control design application, identification
techniques and autonomous navigation algorithms. Furthermore, it is normally used for educational
activities in order to provide a first approach to robotics for our students [60,61]. The chassis of
the three-wheeled mobile robot is made of metal-acrylic and has a combination several sensors for
performing different tasks. For obstacle avoidance, SRF05 and SRF06 ultrasonic sensors are installed
on the vehicle together with three other sensors on the front dedicated to object recognition activities.
Such ultrasonic sensors have a range of claimed detection distance ranging from 2 cm to 450 cm and
from 2 cm to 510 cm, respectively, with an accuracy of 2 mm. The two fixed-axle wheels are driven by
electric DC motor-reducers with digital incremental encoders. The system is controlled, depending
on the experimental activities, by an Arduino-Galileo, a board based on the Intel Quark SoC X1000
application processor or an Arduino Mega2560. The sensors, actuators, and microcontrollers work
with a 12-volt battery (see Figure 2).

Figure 2. The wheeled mobile robot.

On the rear, a castor wheel gives stability to the rover and allows the chassis to remain horizontal.
The traction-steering system associated with our robot allows for independently managing the linear
and angular speed, with the advantages derived from the mechanical structure and the control
electronics, make this configuration a simple solution that can be subjected to various laboratory
tests [62,63]. These advantages could be summarized as follows:

• simple mechanical structure that facilitates kinematic modelling;
• low manufacturing costs;
• facilitates calculations of safe space (free of obstacles) by using the biggest dimension of the rigid

platform as “robot radio”.

It facilitates the calibration of various components that tend to present systematic errors such as
unequal wheel diameters, wheel misalignment, effective contact points of the wheel with the floor,
and loss of efficiency of encoders [64]. However, the disadvantages are:

• difficulty moving on uneven surfaces;

Machines 2019, 7, 42 8 of 21

• the loss of contact of one of the active wheels with the ground can change the orientation sharply;
• sensitivity to the sliding of the wheels, due to slippery floors, external or internal forces.

In order to create a good model capable of reproducing the dynamic behaviour of the WMR,
we decided to build a multi body model of the rover by using a CAD assembly file from Solidworks
software [65].

Such Cad files, through the use of Blender software, allowed us to obtain a multi body model
of the rover for the Gazebo environment (see Figure 3). Instead, in the Gazebo-ROS platform, it is
common to have a model in a “.urdf” or “.urdf.xacro” file types are used in “RVIZ”, a visualization tool
heavily used for testing and debugging as reported in Figure 4. Once the system has been modelled,
we concentrated on the force fields that surround the robot in the environment in which it is located.
In general, the kinematic modelling of a rover depends on the physical characteristics of the robot and
its components [13–15]. Their characteristics will make them suitable for a certain task, and vice versa,
the task itself will be the one that will determine in a first stage the structural particularities of the
vehicle. The design must consider the mobility required to carry out the assigned task, energy efficiency,
weight/load ratio, dimensions, and manoeuvrability; in the same way the environment of ground
operation [66,67]. The ground mobile robots distribute their traction and steering systems on the axes
of their wheels according to the demands of speed, manoeuvrability, and characteristics of the terrain
in which they must perform. The capacities required according to the missions will determine the type
of more convenient wheels, the number and the arrangement; as well as the traction and direction
system, and finally the physical form of the robot. Therefore, several mathematical models can be used
to represent the kinematic characteristics of the robot, by incorporating various properties that will be
of interest to achieve or observe the particular behaviour.

CHAPTER III

60

Figure III.1 Unisa-UGV 3D prototype

(Source: DIIN – UNISA Department of Industrial Engineering)

Thus, the structure of our UGV is formed by a rigid platform equipped with

two conventional fixed front wheels and a rear wheel or castor that gives

stability and moves in a horizontal plane. During the movement, the plane of

each wheel remains vertical and the front wheels rotate on the same horizontal

axis. In addition, the contact between the wheels and the ground is ideally

reduced to three individual points as can be seen in Figure III.2 (structure).

Figure III.2 UNISA-UGV Structure

(Source: self-elaboration)

The traction-steering system associated with our robot allows to

independently manage the linear and angular speed, with the advantages

derived from the mechanical structure and the control electronics, make this

configuration a simple solution that can be subjected to various laboratory

tests. These advantages could be summarized as follows:

• It has a simple mechanical structure that facilitates kinematic modeling

• Low manufacturing cost

• Facilitates calculations of safe space (free of obstacles) by using the

longest rigid platform side as "robot radio"

Figure 3. Wheeled mobile robot 3D multibody model in the Gazebo environment.

Based on these models, it determines the different positions in which it is located and the speeds
at which it moves. For our rover, we have chosen standard wheels that meet the three conditions
defined for this design:

• The front wheels are equidistant in the common axis of rotation, without lateral variations, while
the castor, located in the rear, provides a pure rotation contact between it and the ground without
causing slips in the vehicle when moving.

• The mechanical design of the two front wheels as “fixed” confers a speed restriction in the driving
direction (only forward and backward), while the castor wheel has free movement.

Machines 2019, 7, 42 9 of 21

Figure 4. The wheeled mobile robot in the Gazebo environment.

The two front wheels are controlled by the two actuators, while the idler wheel is passively
controlled, meaning that it is influenced by the general movement of the chassis and does not provide
an additional speed restriction in the movement of our robot [68]. For our vehicle, the origin of its
frame on the coordinate system of reference has been located at the midpoint of the line that joins the
two fixed wheels and an axis coinciding with this line forming the orthogonal [69]. Three possible
movements for vehicles that use this technique are revealed in literature—the first straightforward
movement when the speeds of both front wheels are equal, the second a rotation in its central axis
(the midpoint of the common axis) when the wheel speeds are equal but in opposite directions and
third a rotation around one of the wheels, when one of them has zero speed. There is no possibility for
lateral movement; this restriction is called singularity. The other singularities related to the errors in
the relative speeds of the wheels, or the small variations in the level of the ground are mitigated by the
castor wheel [70]. When the front wheels act independently, i.e., by varying their speeds, we will make
the mobile robot move with linear trajectories or with turns, to the right or to the left depending on
the lower speed value of one of the wheels. All movements are appreciated with respect to the frame
of the vehicle. If we want the vehicle to move in a circle, the robot must turn around a point that is
along the common axis of the right and left wheels. The point on which the robot rotates is known as
instantaneous curve center [71]. The mobile robots need mechanisms of locomotion that allow them to
move through the environment to carry out the assigned mission; these mechanisms of locomotion
on land can be different and, depending on the choice made and implemented, the robots can walk,
jump, run, slide, crawl and roll. The mechanism of locomotion on the ground preferred and chosen by
researchers and the robotics industry has been by far the wheel, being mechanically simpler and more
efficient, especially on flat surfaces [72]. The key components that influence the total kinematics of
the WMR are undoubtedly the wheels, so the selection and the arrangement of these in the vehicle
are important. There are four types of wheels commonly used, with advantages and disadvantages,
and have very diverse kinematics, these are:

• Standard wheel: two degrees of freedom, rotation around the wheel axle (usually motorized) and
the point of contact;

• Rotating wheel: two degrees of freedom, rotation around a controllable displaced joint;
• Swedish wheel (Swedish): three degrees of freedom, rotation around the wheel axis (usually

monitored), around the rollers or bearings, and around the point of contact;
• Ball or spherical wheel: technically difficult realization.

According to the selection and disposition of this type of wheels, the WMR will have different
degrees of freedom, which will characterize its manoeuvrability, how easily it rolls in a straight line,
or makes turning motions. Omnidirectional robots have the maximum manoeuvrability in the plane.
Such behaviour is granted by the Swedish wheels; this freedom of movement can also be achieved in the
plane with steerable wheels centered with traction and steering motors that control each of the wheels
in an independent and synchronized way through mechanical systems of belts or electronic means.

Machines 2019, 7, 42 10 of 21

The last option has a degree of mechanical and electronic complexity to achieve good coordination
between the wheels—requiring also having a complex control algorithm, so its use is very limited [73].
The efficiency of wheeled robots depends to a large extent on the quality of the terrain, particularly the
smoothness or hardness of the terrain, the type of surface (flat or non-flat), and the number of obstacles
(free or dense). Thus, conventional vehicles on wheels usually move on regular and hard enough
terrain, while, for irregular terrains, track wheels with gears and adapted diameters are required.
For example, a robotic vehicle for floor cleaning missions will have an appropriate configuration to the
displacement on polished and/or carpeted floors in general, while the ground mobile robots that will
have to attend to monitoring requests in devastated places will have a diverse configuration that can
adapt to irregular terrain, with debris and other conditions that will limit its displacement. In Gazebo,
when two objects collide, like wheels rolling on a surface, a friction force is generated; to manage
those forces, there are physical engine systems defined in simulator software. Gazebo has different
physics engines including ODE, Bullet, Simbody, and DART, and it is possible to choose one through
the <physics> element in a .world file. These physics parameters’ configurations permit to personalize
the characteristics and values needed in the simulation environment through profiles, available via the
C++ API or gz command line tool [74]. The performance, accuracy, and general behaviour of physics
simulation depend to a great degree on the physics engine and how the main parameters of them are
defined. Some of these parameters are shared between the different physics engines supported by
Gazebo, like maximum step size and target real-time factor. To manage them, Gazebo has a physics
preset manager interface that offers a way to easily switch between a set of physics parameters and save
them into Gazebo’s .sdf robot configuration. This physics configuration could be called and redefined
at any plugin creation by calling world→ GetPresetManager() in C++ programs. The default physical
engine in Gazebo is ODE. In such engine, the main friction elements are composed of two parameters,
“mu” and “mu2”, friction coefficients along the contact surface, which stands for:

• “mu” is the Coulomb friction coefficient µ for the principal contact directions or the first
friction direction;

• “mu2” is the friction coefficient for the second friction direction (perpendicular to the first
friction direction).

Another important element that works closely related to each other is:

• the two contact stiffness kp and damping kd for rigid body contacts; those are defined as Gazebo’s
links parameters, “kp” and “kd”;

• the joint stop constraint force mixing (cfm) and error reduction parameter (erp) used to
simulate damping.

In simulation, the dynamics world (dWorld) stores bodies (dBody) and is responsible for
computing where they are at any given time. Thus, the “state” of all the rigid bodies are recalculated
at every “step time”, meaning that, at a selected period of time, a new position vector (x,y,z) and
linear velocity (vx,vy,vz) of the body point of reference that usually correspond to the body’s center of
mass, are calculated, in addition to their orientation, represented by a quaternion (qs,qx,qy,qz) or a
3 × 3 rotation matrix; and their angular velocity vector (wx,wy,wz) [75]. When two bodies are close
enough, the simulator will call a function to determine which bodies or “geometries” are potentially
intersecting/colliding. It creates a collision space (dSpace) to store geometries corresponding to bodies
(dGeom), flags those bodies, and actually specifies the maximum of contact joints to create, so that
the dynamics world can adjust its velocity accordingly. Each body has its collision space, which is
tested for collisions against each other before and then dGeoms inside them are tested in case these
are nested. ODE has its own built-in collision detection with collision spaces and dGeoms that will
return a number of “Contact Joints” that define where the bodies are in contact. All contact joints that
ODE finds are placed in the “contact” array. The functions that are called for space creation and flags
control look like:

Machines 2019, 7, 42 11 of 21

void dSpaceColl ide (dSpaceID space , void ∗data , dNearCallback ∗ c a l l b a c k) ;
i n t dColl ide (dGeomID o1 , dGeomID o2 , i n t f l a g s , dContactGeom ∗ contact , i n t skip) .

The CFM (Constraint Force Mixing) and ERP (Error Reduction Parameter) can be independently
set in many joints; both are floating point values between 0.0 and 1.0. The first one will permit a degree
of joint constraint violation, and collisions will have a “spongy” look; the second one refers to how
much “joint error” is fixed in each time step. Gazebo tutorials suggest default values as 0.2 and 0.8 for
both of them, respectively [76]. ERP and CFM can be selected to have the same effect as any desired
spring and damper constants. If you have a spring constant kp and damping constant kd, then the
corresponding ODE constants are:

ERP =
hkp

hkp + kd
,

CFM =
1

hkp + kd
,

where “h” is the step size.
Between each step time, the user can call functions to apply forces to the rigid body. These

forces are added to “force accumulators” in the rigid body object. It means that dynamic steps when
the next step time happens start with the sum of all the applied forces to be used to push the body
around; then, a collision detection is called, if ODE finds a possible collision, it creates a “Contact
Joint”. Gazebo’s friction has models: cone friction, pyramid friction, and box friction. Thus, depending
on “ f riction_model” variable setting, the specific pieces of code will set the parameters and call the
functions named needed to tread the collisions. If it is not specified, the dxConeFrictionModel will be
used. The Coulomb friction model has a simple relationship between the normal and tangential forces
present at a contact point [77]. The rule is:

|FT | ≤ µ|FN |,

where FT is the Tangential force vector, FN is the Normal force vector and µ is the friction coefficient.
In ODE’s friction cone model (see Figure 5), to achieve the “adhesion mode”, the vector of the

total friction force must be inside the cone, and the friction force must be enough to prevent the contact
surfaces from moving with respect to each other. If this vector is on the surface of the cone, then the
contact is in “sliding mode” and the friction force is usually not large enough to prevent the surfaces
in contact from sliding. The parameter “mu” represents the maximum ratio of tangential force to
normal force.

Figure 5. Open dynamics engine’s friction cone model.

Machines 2019, 7, 42 12 of 21

In this model, there are currently two approximations to choose from:

• “mu” is the force limit to be chosen appropriately for the simulation, which means that the
maximum friction (tangential) force that can be present at a contact, in either of the tangential
friction directions. This is rather non-physical because it is independent from the normal force,
but it is the computationally cheapest option.

• The friction cone is approximated by a friction pyramid aligned with the first and second friction
directions. First, ODE computes the normal forces assuming that all the contacts are frictionless;
then, it computes the maximum limits Fm for the friction (tangential) forces from |Fm| ≤ µ|FN |
and then proceeds to solve for the entire system with these fixed limits.

This differs from a true friction pyramid in that the “effective” mu is not quite fixed and can be
set to a constant value around 1.0 without regard for the specific simulation.

ODE will automatically compute the first and second friction directions; however, it is possible
to manually specify the first friction direction in the model description file “.sdf” or in “.urdf” if it is
used in a Gazebo-ROS environment. The two objects in collision specify their own “mu” and “mu2”.
Gazebo will choose the smallest “mu” and “mu2” from the two colliding objects. The valid range of
values for “mu” and “mu2” is any non-negative number, where 0 equates to a friction-less contact and
a large value approximates a surface with infinite friction. Tables of friction coefficient values for a
variety of materials can be found in engineering handbooks or through an online toolbox.

The cone friction model algorithm computes the corresponding hiact and loact for friction
constraints. For each contact, we have lambdan, lambda f 1, and lambda f 2. Now, couple the two
frictions and, to satisfy the cone Coulomb friction model tangential velocity at the contact frame:

v_f1 = J _ f 1 ∗ v
v_f2 = J _ f 2 ∗ v
v = s q r t (v_f1 ^2 + v_f2 ^ 2) ;

i f (v < eps)

l o _ a c t _ f 1 = 0 ;
h i _ a c t _ f 1 = 0 ;
l o _ a c t _ f 2 = 0 ;
h i _ a c t _ f 2 = 0 ;
e l s e
h i _ a c t _ f 1 = abs (v_f1) / v ∗ (mu ∗ lambda_n) ;
l o _ a c t _ f 1 = − l o _ a c t _ f 1 ;
h i _ a c t _ f 2 = abs (v_f2) / v ∗ (mu ∗ lambda_n) ;
l o _ a c t _ f 2 = − l o _ a c t _ f 2 .
end

For our wheel–terrain interaction model, we consider nondeformable wheels because our
real WRV has solid plastic materials and the weight load charge during operation in simulation
and real experiments would not be that important that it would change the rigidity. The indoor
environments selected were on solid pavement; therefore, the wheel–terrain interaction can be
reasonably approximated as a point contact, which permits the use of a classical Coulomb friction
to describe bounds on available tractive and lateral forces as a function of the load (basically
power, motors, sensors, actuators, and other components carried on) with a coefficient of friction
in Gazebo-ROS.

In our case, based on our 3D model characteristics, the charge of the load carried on, and the
wheel–terrain interaction hypothesized, we configure the values of mu and mu2 with the same value
of 0.8 for either two frontal wheels and for the back caster one in the WMR .urdf configuration
file. We configure <kp>100000000.0</kp> and <kd>10.0</kd> for all three wheels. In addition,

Machines 2019, 7, 42 13 of 21

in the .world file, the element <constraints> for our simulated environment with the values of
<cfm>0.00001</cfm> and <erp>0.2</erp>.

3. Results

The described capabilities required by autonomous vehicles, such as mobile robots, can
incorporate techniques that allow them to estimate their position and location build or use a map,
navigate in them or without any knowledge of the environment, identifying brands, planning routes
and following them [78]. To do so, it is necessary to identify the mobile robot in an abstract way,
as a point (x, y) in a continuous or delimited space of two or three dimensions, generally, a Cartesian
plane, to describe its state also called pose (position and orientation). When the mobile robot moves,
it changes its position and orientation, but it must do so through free spaces; each free space is called
Cfree and could house the robot in its path.

It is also possible to represent the mobile robot as a set of rigid bodies, for example, the WMR
have the chassis, the wheels, the actuators and sensors on board and communication equipment.
With these three fundamental abstractions “space”, “pose” and “free space”, we can create techniques
for path planning, location, perception or sensing, mapping and SLAM (simultaneous localization and
mapping) to give the mobile robot a safe journey. An example of such tecniques has been reported in
Figure 6. It is possible to observe the rover in the Gazebo environment called “empty world” on the left
side of the screenshot, in the middle the plot of the executions aligned with the first three points tours
with precision by our WMR. The first three points correspond to a simple square that we prepare as a
mission to fulfil during WMR navigation; finally, on the right side of the screen capture, it is possible
to see the main components of the Matlab–Simulink control program for this way-points navigation
activity in Gazebo. The virtual model of our unmanned vehicles was made using an XML-like language
(Xacro, URDF, and SDF), compatible with the Gazebo simulator environment. Despite the primitives
shapes of our rover, it was not easy to construct the model directly on Gazebo’s building editor, due
to the limited building tools. Thus, we use two strategies for modelling; in both, it was necessary to
pay special attention to geometry and relationship of all the components. In addition, we must adhere
apply, as much as possible, to the three most important ROS standards—one related to Standard
Units of Measure (REP-103), another to Coordinate Conventions (REP-105, in robotics, the orthogonal
coordinate systems are commonly called frames) and finally ROS Package Naming (REP-144) [79].
The first strategy was to download and modify a xacro file from another simple wheeled mobile
robot provided by the ROS community on the GitHub platform. In our case, it was a four-wheeled
vehicle. The second strategy was to design our WMR model in SolidWorks and import it as a .dae
file through a plugging that converts a 3D model into URDF. Comparatively, both roads give as a
virtual 3D model, but the time expended to create a model from scratch and to export an adequate
model from a CAD tool is both comparable time-consuming. Both strategies give us a virtual 3D
model; the second one generated in Solidworks could be exported with the links’ inertial information
calculated directly from the model, as well as with the sensors and their characteristics. In this way,
the model is completely ready to use; however, the plugin used to convert to an urdf or sdf file was
not a straightforward endeavour; there had been a lot of workarounds to do in order to align the
reference frames and the poses. The key process in taking a CAD model in SolidWorks and bringing it
through the exportation process into Gazebo for simulating requires to have a complete description
of the robot and its components. In a Gazebo-ROS platform, there are two kinds of files, Universal
Robot Description Format (URDF) and Simulation Description Format (SDF). The URDF file type
is used heavily in ROS for visualizing and controlling and SDF files are what Gazebo uses when
performing the simulation. Before importing the model CAD into Gazebo, it is advisable to simplify
the assembly as much as possible so that there are no errors during the export process. Thus, the bodies
are assembled together if those will not act independently in any way; the parts of the body that will
participate to the motion are considered as a rigid body and must be identified correctly. To export
from SolidWorks to Gazebo, it is necessary to generate the meshes for the main body and all the

Machines 2019, 7, 42 14 of 21

components. Then, it will be necessary to check that the various parts are positioned in the right way
by opening the robot in Gazebo. If the collision models are not in the same place as the visual model,
there may be an error with the origins in the SolidWorks model. To make it easier, it is necessary to
place the origins of the visual and collision model in the same place. It is also preferable to check the
meshes in software as a Blender and move the part origin to the exact position if necessary.

Figure 6. Wheeled mobile robot in Gazebo–ROS–Waypoints Navigation activity.

The flowchart, reported in Figure 7, shows the procedures to follow in order to achieve a multibody
model for the Gazebo environment. The first process uses a plugin in Solidworks, called SW2URDF,
to get a kind of ROS package to be used with Gazebo-ROS; once compiled (catkin process), the .urdf
file is available to be used in any ROS application. The second process is a procedure to follow called
Gazebo Exporter that give .sdf files with the robot description all the files needed to be launch in
Gazebo simulator. There is a small application, a plugin in Solidworks, which helps with the task of
getting the files needed for Gazebo-ROS. To work with, the plugin sw2urdf must be installed and
configured. Immediately after the button exporter is activated, “Export to URDF” is available from the
file menu. Gazebo Export generates an SDF file, a graphical scheme helps to choose the components
of the main body. The first step is to choose the model name (without spaces), select the base plane
and the axis direction. Another important thing to do, on the first screen, is to insert the various
links to the base they are attached to. For each link, it is necessary to specify the name, collision and
visual component (selecting the component itself from the SolidWorks model), the mass and the inertia
matrix. It is also possible to add sensors, cameras or motors to the links.

Solidworks

SW2URDF

.URDF file
Meshes,

yaml. f iles,
launch. f ile

Ros-Gazebo

Gazebo Exporter

.world file
sdf file
Meshes

config file

Gazebo

Figure 7. Flow chart for modelling a generic system from Solidworks to Gazebo.

The values of physical properties could be set up at this stage for each rigid body component;
it could be also managed in a global configuration later. The inertia values are generated by Solidworks,

Machines 2019, 7, 42 15 of 21

which helps a lot while simulating in Gazebo-ROS. ROS uses Forward and Inverse kinematics, through
RobotModel and RobotState core classes, which come with MoveIt! ROS-based package. Invoking
their functions and variables, it is possible to retrieve and set values and limits of the all frames models
and their states individually or grouped (for example related frames put together a defined as the
left arm in a humanoid). This package uses the function “setToRandomPositions” to get information
of an end-effector or any special link or joint or group of them. The MoveIt! package is mostly used
to control robotic arms. To control a WMR, it is possible to use one of the differential driver plugins
available in every Gazebo-ROS implementation. It is a model plugin that provides a basic controller
for differential drive robots in Gazebo. There is another ROS-based package call Navigation, which
also has a differential drive algorithm, but, to use it, a planar laser must be mounted somewhere on
the mobile base sending an appropriate ROS message; and a tf ROS-based package in order to keep
track of multiple coordinate frames over time, related to each other in a tree fashion. Navigation takes
information from odometry and sensor streams and outputs velocity commands to send to a mobile
base [80]. It is possible to install one of the packages made available by the ROS community in the
GitHub site; there are versions written in C++ and Python; they differ in performance, restrictions,
and lighten code. Once downloaded and made usable by the catkin compilation processes, those will
be available as other ROS-based packages. Finally, customized packages could be created by the use of
available classes in C++ programs that need to be compiled in an ROS package. For all ROS-based
packages, it is usual to invoke the functionalities through launch files, which are script files used to
spawn 3D models in a simulator or launch ROS nodes with desired characteristics through parameters
configurations. The kinematics and dynamics declarative definitions of transmissions are contained in
the robot’s “.urdf” or “.yaml” files. In general, the control flow in ROS-based framework starts when the
joint state data and input set point are taken as input from robot’s actuator’s encoders; then, a generic
control loop feedback mechanism, typically a PID controller, controls the output, typically effort or
velocity, which is sent to robot’s actuators. The ros_control framework, Navigation, MoveIt! and other
ROS-based packages and plugins as the differential drivers for a different kind of steering mechanism
include Kalman Filtering and Bayesian-based approaches in the algorithms of robot motion to deal with
positioning and sensor uncertainty. To interact with the environment, there is a need for sensing and
actuating instruments, it will be the robot capabilities and the mission (indoors or outdoors navigations,
mapping, grasping, face recognition) or goal achievement expectancies (real-time or accuracy expected)
that will guide the selection of the number and precision capabilities of sensors and actuators to put
on the WMR. Gazebo and ROS have plugins for most used sensors and actuator, if there is a need for
a different kind or brand of sensor, motor or other components, it is possible to adapt every plugin
available, changing the particular features that usually are described in the component information
card. Those definitions are usually implemented in the calling “.launch” or “.world” files, or “.yaml”
configuration files as parameters to be configured. We used a laser distance sensor Lidar 360 LDS-01
and IMU with three axes for gyroscope, accelerometer, and magnetometer as can be seen in Figure 3.
We defined their geometries and placement by links and joints characteristic for both of them in
“.urdf.xacro” and “.gazebo.xacro” files associated within libgazebo_ros_laser.so and libgazebo_ros_imu.so
plugins, respectively. Another add-on used is libgazebo_ros_diff_drive.so a differential driver plugin that
was already described in the control section above. Some robots’ motions could require a fine-grained
control of velocities in-between trajectory points—for example, if they need to manipulate or carry-on
fragile or dangerous objects. To send velocity commands, there are different options; WMR usually
uses a keyboard or joystick for teleoperation, and building algorithms that use sensor and actuators
controlled programmatically for unmanned vehicles. In addition, Gazebo-ROS offers alternatives
packages ready to use in the case of keyboard teleoperation; the one called teleop_twist_keyboard
is available as installation from package manager since Indigo distribution version; some other
implementations are available as one of PAL robotics key_teleop. For joysticks and gamepads, such
as PS3 and Xbox360, the teleop_twist_joy is available for Indigo and Kinetic ROS distributions that use
parameters to scale the inputs for the command velocity outputs [81]. There are two kinds of files

Machines 2019, 7, 42 16 of 21

for performing simulation, the Universal Robot Description Format (URDF) file type used heavily in
ROS for simulation and testing; and Simulation Description Format (SDF) files used by Gazebo. In the
Gazebo-ROS platform, it is common to have a model in a “.urdf” or “.urdf.xacro” file types are used in
“RVIZ”, a visualization tool heavily used for testing and debugging. The robot description in .urdf is
converted automatically into “.sdf”, on the fly, when it is launched into the Gazebo simulator. Our
WMR could be seen simultaneously in Gazebo and RVIZ; the first is the simulator environment where
it is possible to use the sensor’s plugins to see and control the robot behaviour in a world configured
with a simulated physics characteristic, while, in a visualization environment, it is possible to see
built-in display types as, for example, the RobotModel and their Axes of reference, Grid Cells, data
of Laser Scan, Point Cloud, Pose Array, the Map and their Path of navigation. Display Markers, TF
transform hierarchy, and Ranges as cones represent range measurements from sonar or infrared sensors.
To show the integration capabilities of Gazebo-ROS platform, we used the Matlab–Simulink software,
connected as an ROS node, for controlling our WMR. We developed a Simulink controller to guide
the simulated WMR to follow consecutive waypoints. In order to complete the mission in a smooth
and appropriate way, we take care of some considerations such as getting to within 0.1 m of each of
the waypoints, and setting up the maximum forward velocity as 0.5 m/s and the maximum angular
velocity to 1.0 rad/s. In addition, we paced the update rate of the Simulink to 20 Hz [82]. The controller
developed permitted having an unmanned vehicle that will do a selected mission controlling the
velocities required following each prefixed waypoint. It included a PI (Proportional-Integral) and a PID
(Proportional-Integral-Derivative) controller, which adjusts the control force based on the error signal
at time step t, called e(t), between the desired value of the system (the setpoint) and the measured
output value. In Figure 6, we can observe the rover in the Gazebo environment called “empty world”
on the left side of the screenshot, in the middle the plot of the executions aligned with the first three
points tours with precision by our WMR. The first three points correspond to a simple square that
we prepare as a mission to fulfil during WMR navigation; finally, on the right side of the screen
capture, it is possible to see the main components of the Matlab–Simulink control program for this
way-points navigation activity in Gazebo. Instead, in Figure 8, the way-point navigation conducted in
co-simulation between Gazebo simulator and the controller designed in Simulink is reported.

(a) PI Controller Test (b) PDI Controller Test

Figure 8. Waypoint navigation tests for the optimization of the control system developed in a
Matlab-Simulink Environment.

To test the dynamic behavior of the WMR, in simulation, various tests were performed
experimenting with various plugins for odometry, mapping of three-dimensional environments and
autonomous navigation. In Figure 8, a navigation activity for way-point is reported to test the design
in Simulink of control laws. Among the various simulations, it was decided to show these results to

Machines 2019, 7, 42 17 of 21

appreciate the role of the swing wheel. The goal was to let the WMR traverse a trajectory by rotating
the rover in place. In Figure 8a, the influence of the wheel self-alignment can be seen after the trajectory
change. This behavior can be strongly mitigated by making the control system robust as shown in
Figure 8b.

4. Discussion

The goal of this work was to test new tools for creating multibody models and new simulation
environments. The advent of this fourth industrial revolution based on the fusion of different
technologies is the new goal for companies. The authors have long been engaged in the search
for new tools and methods to model and simulate machines and systems. In particular, the use
of opensource software, thanks to the formation of user communities, allows a dynamism in the
development of new tools, not comparable with the evolution of proprietary software. There are
many software programs that allow the modelling of complex systems starting from three-dimensional
geometries. In fact, the creation of detailed models passes mainly from a geometry and a detailed
mass distribution. Among the most used simulation environments, there is undoubtedly SimScape,
a multi-domain environment of Mathworks that allows the integration of mechanics, electronics,
hydraulics, etc. in a single simulation environment. The software instead chosen for this work is
the open source simulation software Gazebo, which allows in a single environment to simulate not
only the system as a whole, but also the environment with which it must interact. Furthermore,
the Gazebo-ROS framework allows a quick simulation and control of robots, since it allows the reuse
of open source large capacity created to customize its use through customizable parameters depending
on the robot and the desired simulation environment as well as the degree of reliability and precision
of the expected physics, even though this will be a negotiation between the “degree of reality” and the
available computing capacity. The rigid body dynamics already integrated into the physics engine
ODE as default in Gazebo use solutions of the ordinary differential equations or spring-dumper
models for physical properties in contacts between rigid bodies or soft bodies which could co-exist
in the simulation environment in addition to algorithms of constraint methods or penalty systems
that manage the impacts of collisions between bodies depending on the forces entered in each unit of
time during the simulation [83]. After testing various techniques for modelling the rover in Gazebo,
the authors used the 3D Solidworks design software to import the geometry of the rover into the
simulation environment. The next step concerned the definition of the forces present at the interface
between wheels and floor. The plugins provided by the software allow, in a simple and intuitive way,
calculation of the normal reaction between wheel and plane and, consequently, the traction force due to
the presence of friction. In our case, the simulation of the rigid bodies has required the configuration of
parameters of the objects in simulation; that is to say, the parameter for each component of our WMR
such as friction mu and mu2 of the wheels, the contact stiffness, and damping Kp and Kd, respectively,
to characterize the materials in contact of the land on which they roll, and the environment parameters
like cfm and erp as constraints [84].

5. Conclusions

The potential of these plugins, as well as allowing the vehicle to advance, is demonstrated by the
excellent dynamic behaviour of the tilting wheel, present on the rear of the due rover, recorded during
the simulations. Another contribution of this work is the demonstration of the perfect integration of
this software with other programs including the Matlab calculation software. To test the potential
of this integration, a waypoint navigation activity was simulated by designing the control system in
Simulink. Given the potential of such a modelling and development method, the comparison between
the response of a rover modelled in Gazebo environment will be compared with the response of the
real rover in a future paper.

Machines 2019, 7, 42 18 of 21

Author Contributions: Conceptualization and Software, Z.B.R.; validation, curation and writing-original draft,
review and editing, M.C.D.S. and D.G.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arkin, R.C.; Arkin, R.C. Behavior-Based Robotics; MIT Press: Cambridge, MA, USA, 1998.
2. Prassler, E.; Nilson, K. 1001 robot architectures for 1001 robots [Industrial Activities]. IEEE Robot. Autom.

Mag. 2009, 16, 113. [CrossRef]
3. Flynn, A.M. Redundant Sensors for Mobile Robot Navigation; Report No. AI-TR-859; MIT Artificial Intelligence

Laboratory: Cambridge, MA, USA, 1985.
4. Borenstein, J.; Everett, H.R.; Feng, L. Navigating Mobile Robots: Systems and Techniques; AK Peters: Wellesley,

MA, USA, 1996; pp. 1–225.
5. Koenig, N.; Hsu, J.; Dolha, M.; Howard, A. Gazebo. Retrieved 2012, 3, 2012.
6. Hsu, J.M.; Peters, S.C. Extending open dynamics engine for the DARPA virtual robotics challenge.

In International Conference on Simulation, Modeling, and Programming for Autonomous Robots; Springer: Cham,
Witzerland, 2014; pp. 37–48.

7. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai,
Japan, 28 September–2 October 2004; pp. 2149–2154.

8. Inoue, K.; Otsuka, K.; Sugimoto, M.; Murakami, N. Estimation of place of tractor and adaptive control
method of autonomous tractor using INS and GPS. In Proceedings of the International Workshop on Robotics
and Automated Machinery for Bio-Productions, Valencia, Spain, 21–24 September 1997; pp. 27–36.

9. Lyshevski, S.E.; Nazarov, A. Lateral maneuvering of ground vehicles: Modeling and control. In Proceedings
of the 2000 American Control Conference, Chicago, IL, USA, 28–30 June 2000; Volume 1, pp. 110–114.

10. O’Connor, M.; Bell, T.; Elkaim, G.; Parkinson, B. Automatic steering of farm vehicles using GPS. Precis. Agric.
1996, 3, 767–777.

11. de Wit, C.C.; Siciliano, B.; Bastin, G. Theory of Robot Control; Springer-Verlag: London, UK, 1996.
12. Samson, C.; Ait-Abderrahim, K. Feedback control of a nonholonomic wheeled cart in cartesian space.

In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA,
USA, 9–11 April 1991; pp. 1136–1141.

13. Muir, P.F.; Neuman, C.P. Kinematic modeling of wheeled mobile robots. J. Robot. Syst. 1987, 4, 281–340.
[CrossRef]

14. Campion, G.; Bastin, G.; Dandrea-Novel, B. Structural properties and classification of kinematic and dynamic
models of wheeled mobile robots. IEEE Trans. Robot. Autom. 1996, 12, 47–62. [CrossRef]

15. Alexander, R.M. Optimization and gaits in the locomotion of vertebrates. Physiol. Rev. 1989, 69, 1199–1227.
[CrossRef]

16. Chen, X.; Chen, Y.Q.; Chase, J.G. Mobile Robots: State of the Art in Land, Sea, Air, Collaborative Missions; InTechm:
Manhattan, NY, USA, 2009.

17. Klancar, G.; Zdesar, A.; Blazic, S.; Skrjanc, I. Wheeled Mobile Robotics: From Fundamentals towards Autonomous
Systems; Butterworth-Heinemann: Oxford, UK, 2017.

18. Litman, T. Autonomous Vehicle Implementation Predictions; Victoria Transport Policy Institute: Victoria, BC,
USA, 2017.

19. Dasic, P. Comparative analysis of different regression models of the surface roughness in finishing turning
of hardened steel with mixed ceramic cutting tools. J. Res. Dev. Mech. Ind. 2013, 5, 101–180.

20. Cammarata, A.; Caliò, I.; Greco, A.; Lacagnina, M.; Fichera, G. Dynamic stiffness model of spherical parallel
robots. J. Sound Vib. 2016, 384, 312–324. [CrossRef]

21. Callegari, M.; Cammarata, A.; Gabrielli, A.; Sinatra, R. Kinematics and dynamics of a 3-CRU spherical
parallel robot. In Proceedings of the ASME 2007 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, Las Vegas, NV, USA, 4–7 September 2007;
pp. 933–941.

http://dx.doi.org/10.1109/MRA.2009.932180
http://dx.doi.org/10.1002/rob.4620040209
http://dx.doi.org/10.1109/70.481750
http://dx.doi.org/10.1152/physrev.1989.69.4.1199
http://dx.doi.org/10.1016/j.jsv.2016.08.014

Machines 2019, 7, 42 19 of 21

22. Cammarata, A.; Lacagnina, M.; Sinatra, R. Dynamic simulations of an airplane-shaped underwater towed
vehicle marine. In Proceedings of the 5th International Conference on Computational Methods in Marine
Engineering, MARINE, Hamburg, Germany, 29–31 May 2013.

23. Sequenzia, G.; Fatuzzo, G.; Oliveri, S.M.; Barbagallo, R. Interactive re-design of a novel variable geometry
bicycle saddle to prevent neurological pathologies. Int. J. Interact. Des. Manuf. 2016, 10, 165–172. [CrossRef]

24. Barbagallo, R.; Sequenzia, G.; Cammarata, A.; Oliveri, S.M.; Fatuzzo, G. Redesign and multibody simulation
of a motorcycle rear suspension with eccentric mechanism. Int. J. Interact. Des. Manuf. 2018, 12, 517–524.
[CrossRef]

25. Barbagallo, R.; Sequenzia, G.; Oliveri, S.M.; Cammarata, A. Dynamics of a high-performance motorcycle
by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. Part K J. Multi–Body Dyn. 2016,
230, 207–221. [CrossRef]

26. Guida, D.; Pappalardo, C.M. Control Design of an Active Suspension System for a Quarter–Car Model with
Hysteresis. J. Vib. Eng. Technol. 2015, 3, 277–299.

27. Barbagallo, R.; Sequenzia, G.; Cammarata, A.; Oliveri, S.M. An integrated approach to design an innovative
motorcycle rear suspension with eccentric mechanism. In Advances on Mechanics, Design Engineering and
Manufacturing; Springer: Dordrecht, The Netherlands, 2017; pp. 609–619.

28. Calì, M.; Oliveri, S.M.; Sequenzia, G. Geometric modeling and modal stress formulation for flexible
multi-body dynamic analysis of crankshaft. In Proceedings of the 25th Conference and Exposition on
Structural Dynamics, IMAC-XXV, Orlando, FL, USA, 19–22 February 2007; pp. 1–9.

29. De Simone, M.C.; Russo, S.; Rivera, Z.B.; Guida, D. Multibody Model of a UAV in Presence of Wind
Fields. In Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics and
Optimization, Prague, Czech Republic, 20–22 May 2017; pp. 83–88. [CrossRef]

30. De Simone, M.C.; Guida, D. On the development of a low-cost device for retrofitting tracked vehicles for
autonomous navigation. In Proceedings of the AIMETA 2017—23rd Conference of the Italian Association of
Theoretical and Applied Mechanics, Salerno, Italy, 4–7 September 2017; Volume 4, pp. 71–82.

31. Iannone, V.; De Simone, M.C.; Guida, D. Modelling of a DC Gear Motor for Feed–Forward Control Law
Design for Unmanned Ground Vehicles. Actuators 2019, in press.

32. Villecco, F. On the Evaluation of Errors in the Virtual Design of Mechanical Systems. Machines 2018, 6, 36.
[CrossRef]

33. Milosavljevic, B.; Pesic, R.; Dasic, P. Binary Logistic Regression Modeling of Idle CO Emissions in order to
Estimate Predictors Influences in Old Vehicle Park. Math. Probl. Eng. 2015, 2015, 463158. [CrossRef]

34. Pappalardo, C.M.; Guida, D. On the Computational Methods for the Dynamic Analysis of Rigid Multibody
Mechanical Systems. Machines 2018, 6, 20. [CrossRef]

35. Serifi, V.; Dasic, P.; Jecmenica, R.; Labovic, D. Functional and Information Modeling of Production using
IDEF Methods. Strojniski Vestnik/J. Mech. Eng. 2009, 55, 131–140.

36. Dasic, P.; Franek, F.; Assenova, E.; Radovanovic, M. International Standardization and Organizations in the
Field of Tribology. Ind. Lubr. Tribol. 2003, 55, 287–291. [CrossRef]

37. Dasic, P. Determination of Reliability of Ceramic Cutting Tools on the basis of Comparative Analysis of
Different Functions Distribution. Int. J. Qual. Reliab. Manag. 2001, 18, 431–443.

38. De Simone, M.C.; Guida, D. Dry friction influence on structure dynamics. In Proceedings of the COMPDYN
2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and
Earthquake Engineering, Crete Island, Greece, 25–27 May 2015; pp. 4483–4491.

39. Zhai, Y.; Liu, L.; Lu, W.; Li, Y.; Yang, S.; Villecco, F. The application of disturbance observer to propulsion
control of sub-mini underwater robot. In Computational Science and Its Applications–ICCSA 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 590–598.

40. Dasic, P.; Dasic, J.; Crvenkovic, B. Applications of Access Control as a Service for Software Security. Int. J.
Ind. Eng. Manag. 2016, 7, 111–116.

41. Villecco, F.; Pellegrino, A. Entropic measure of epistemic uncertainties in multibody system models by
axiomatic design. Entropy 2017, 19, 291. [CrossRef]

42. Formato, A.; Ianniello, D.; Villecco, F.; Lenza, T.L.L.; Guida, D. Design optimization of the plough working
surface by computerized mathematical model. Emirates J. Food Agric. 2017, 29, 36–44. [CrossRef]

http://dx.doi.org/10.1007/s12008-015-0293-0
http://dx.doi.org/10.1007/s12008-017-0402-3
http://dx.doi.org/10.1177/1464419315602825
http://dx.doi.org/10.1109/ICCAIRO.2017.26
http://dx.doi.org/10.3390/machines6030036
http://dx.doi.org/10.1155/2015/463158
http://dx.doi.org/10.3390/machines6020020
http://dx.doi.org/10.1108/00368790310496437
http://dx.doi.org/10.3390/e19070291
http://dx.doi.org/10.9755/ejfa.2015-10-918

Machines 2019, 7, 42 20 of 21

43. Sena, P.; D’Amore, M.; Pappalardo, M.; Pellegrino, A.; Fiorentino, A.; Villecco, F. Studying the influence
of cognitive load on driver’s performances by a Fuzzy analysis of Lane Keeping in a drive simulation.
IFAC Proc. Vol. 2013, 46, 151–156. [CrossRef]

44. De Simone, M.C.; Rivera, Z.B.; Guida, D. Finite element analysis on squeal-noise in railway applications.
FME Trans. 2018, 46, 93–100. [CrossRef]

45. Pappalardo, C.M.; Guida, D. System Identification Algorithm for Computing the Modal Parameters of
Linear Mechanical Systems. Machines 2018, 6, 12. [CrossRef]

46. De Simone, M.C.; Rivera, Z.B.; Guida, D. Obstacle avoidance system for unmanned ground vehicles by
using ultrasonic sensors. Machines 2018, 6, 18. [CrossRef]

47. Pappalardo, C.M.; Guida, D. System Identification and Experimental Modal Analysis of a Frame Structure.
Eng. Lett. 2018, 26, 56–68.

48. Colucci, F.; De Simone, M.C.; Guida, D. TLD Design and Development for Vibration Mitigation in Structures.
Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2020; Volume 76, pp. 59–72.

49. De Simone, M.C.; Guida, D. Identification and control of a Unmanned Ground Vehicle by Using Arduino.
UPB Sci. Bull. Ser. D Mech. Eng. 2018, 80, 141–154.

50. Pappalardo, C.M.; Guida, D. Dynamic Analysis of Planar Rigid Multibody Systems Modelled Using Natural
Absolute Coordinates. Appl. Comput. Mech. 2018, 12, 73–110. [CrossRef]

51. Pappalardo, C.M. A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of
Rigid Multibody Systems. Nonlinear Dyn. 2015, 81, 1841–1869. [CrossRef]

52. Pappalardo, C.M.; Guida, D. Control of Nonlinear Vibrations using the Adjoint Method. Meccanica 2017,
52, 2503–2526. [CrossRef]

53. Pappalardo, C.M.; Guida, D. A time-domain system identification numerical procedure for obtaining linear
dynamical models of multibody mechanical systems. Arch. Appl. Mech. 2018, 88, 1325–1347. [CrossRef]

54. Pappalardo, C.M.; Guida, D. Use of the Adjoint Method in the Optimal Control Problem for the Mechanical
Vibrations of Nonlinear Systems. Machines 2018, 6, 19. [CrossRef]

55. Pappalardo, C.M.; Guida, D. On the Lagrange multipliers of the intrinsic constraint equations of rigid
multibody mechanical systems. Arch. Appl. Mech. 2018, 88, 419–451. [CrossRef]

56. Pappalardo, C.M.; Guida, D. Adjoint-based Optimization Procedure for Active Vibration Control of
Nonlinear Mechanical Systems. ASME J. Dyn. Syst. Meas. Control 2017, 139, 081010. [CrossRef]

57. Concilio, A.; De Simone, M.C.; Rivera, Z.B.; Guida, D. A new semi-active suspension system for racing
vehicles. FME Trans. 2017, 45, 578–584. [CrossRef]

58. Cammarata, A.; Sinatra, R. On the elastostatics of spherical parallel machines with curved links.
Mech. Mach. Sci. 2015, 33, 347–356.

59. Cammarata, A.; Lacagnina, M.; Sinatra, R. Closed-form solutions for the inverse kinematics of the Agile Eye
with constraint errors on the revolute joint axes. In Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016.

60. Quatrano, A.; De Simone, M.C.; Rivera, Z.B.; Guida, D. Development and implementation of a control
system for a retrofitted CNC machine by using Arduino. FME Trans. 2017, 45, 565–571. [CrossRef]

61. De Simone, M.C.; Guida, D. Control design for an under-actuated UAV model. FME Trans. 2018, 46, 443–452.
[CrossRef]

62. Cammarata, A.; Angeles, J.; Sinatra, R. Kinetostatic and inertial conditioning of the McGill Schönfliesmotion
generator. Adv. Mech. Eng. 2010, 2, 186203. [CrossRef]

63. Cammarata, A. Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory
2016, 105, 272–284. [CrossRef]

64. Dasic, P.; Natsis, A.; Petropoulos, G. Models of Reliability for Cutting Tools: Examples in Manufacturing and
Agricultural Engineering. Stroj. Vestnik/J. Mech. Eng. 2018, 54, 122–130.

65. Dasic, P.; Dasic, J.; Crvenkovic, B. Service Models for Cloud Computing: Search as a Service (SaaS). Int. J.
Eng. Technol. 2016, 8, 2366–2373. [CrossRef]

66. Cammarata, A. Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems.
Mech. Mach. Theory 2015, 83, 175–186. [CrossRef]

67. Zhang, Y.; Li, Z.; Gao, J.; Hong, J.; Villecco, F.; Li, Y. A method for designing assembly tolerance networks of
mechanical assemblies. Math. Probl. Eng. 2012, 2012, 513958. [CrossRef]

http://dx.doi.org/10.3182/20130904-4-JP-2042.00167
http://dx.doi.org/10.5937/fmet1801093D
http://dx.doi.org/10.3390/machines6020012
http://dx.doi.org/10.3390/machines6020018
http://dx.doi.org/10.24132/acm.2018.384
http://dx.doi.org/10.1007/s11071-015-2111-4
http://dx.doi.org/10.1007/s11012-016-0601-1
http://dx.doi.org/10.1007/s00419-018-1374-x
http://dx.doi.org/10.3390/machines6020019
http://dx.doi.org/10.1007/s00419-017-1317-y
http://dx.doi.org/10.1115/1.4035609
http://dx.doi.org/10.5937/fmet1704578C
http://dx.doi.org/10.5937/fmet1704565Q
http://dx.doi.org/10.5937/fmet1804443D
http://dx.doi.org/10.1155/2010/186203
http://dx.doi.org/10.1016/j.mechmachtheory.2016.07.011
http://dx.doi.org/10.21817/ijet/2016/v8i5/160805034
http://dx.doi.org/10.1016/j.mechmachtheory.2014.09.012
http://dx.doi.org/10.1155/2012/513958

Machines 2019, 7, 42 21 of 21

68. Cammarata, A. A novel method to determine position and orientation errors in clearance-affected
overconstrained mechanisms. Mech. Mach. Theory 2017, 118, 247–264. [CrossRef]

69. Cammarata, A.; Sequenzia, G.; Oliveri, S.M.; Fatuzzo, G. Modified chain algorithm to study planar compliant
mechanisms. Int. J. Interact. Des. Manuf. 2016, 10, 191–201. [CrossRef]

70. Oliveri, S.M.; Sequenzia, G.; Calì, M. Flexible multibody model of desmodromic timing system. Mech. Based
Des. Struct. Mach. 2009, 37, 15–30. [CrossRef]

71. Ghomshei, M.; Villecco, F.; Porkhial, S.; Pappalardo, M. Complexity in energy policy: A fuzzy logic
methodology. In Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge
Discovery, Tianjin, China, 14–16 August 2009; pp. 128–131.

72. Pappalardo, C.M.; Guida, D. On the use of Two-dimensional Euler Parameters for the Dynamic Simulation
of Planar Rigid Multibody Systems. Arch. Appl. Mech. 2017, 87, 1647–1665. [CrossRef]

73. Ghomshei, M.; Villecco, F. Energy metrics and Sustainability. In Proceedings of the Computational Science
and Its Applications–ICCSA 2009, Seoul, Korea, 29 June–2 July 2009; pp. 693–698.

74. Villecco, F.; Pellegrino, A. Evaluation of Uncertainties in the Design Process of Complex Mechanical Systems.
Entropy 2017, 19, 475. [CrossRef]

75. Sena, P.; Attianese, P.; Pappalardo, M.; Villecco, F. FIDELITY: Fuzzy Inferential Diagnostic Engine for
on-LIne supporT to phYsicians. In 4th International Conference on Biomedical Engineering in Vietnam; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 396–400.

76. Pellegrino, A.; Villecco, F. Design optimization of a natural gas substation with intensification of the energy
cycle. Math. Probl. Eng. 2010, 2010, 294102. [CrossRef]

77. Sena, P.; Attianese, P.; Carbone, F.; Pellegrino, A.; Pinto, A.; Villecco, F. A fuzzy model to interpret data of
drive performances from patients with sleep deprivation. Comput. Math. Methods Med. 2012, 2012, 868410.
[CrossRef] [PubMed]

78. Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. Robot Operating System (ROS): The Complete Reference (Volume 1);
Springer International Publishing: Cham, Witzerland, 2016; pp. 595–625.

79. Foote, T. tf: The transform library. In Proceedings of the 2013 IEEE International Conference on Technologies
for Practical Robot Applications (TePRA), Woburn, MA, USA, 22–23 April 2013; pp. 1–6.

80. Koubâa, A. Robot Operating System (ROS): The Complete Reference; Springer: Berlin, Germany, 2017; Volume 2.
81. Chitta, S.; Jones, E.G.; Ciocarlie, M.; Hsiao, K. Perception, planning, and execution for mobile manipulation

in unstructured environments. IEEE Robot. Autom. Mag. Special Issue Mob. Manip. 2012, 19, 58–71. [CrossRef]
82. Browning, B.; Tryzelaar, E. Übersim: A multi-robot simulator for robot soccer. In Proceedings of the Second

International Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, VIC, Australia,
14–18 July 2003; pp. 948–949.

83. Naviglio, D.; Formato, A.; Scaglione, G.; Montesano, D.; Pellegrino, A.; Villecco, F.; Gallo, M. Study of the
Grape Cryo–Maceration Process at Different Temperatures. Foods 2018, 7, 107. [CrossRef] [PubMed]

84. Senatore, A.; Pisaturo, M.; Sharifzadeh, M. Real time identification of automotive dry clutch frictional
characteristics using trust region methods. In Proceedings of the 23rd Conference of the Italian Association
of Theoretical and Applied Mechanics, Salerno, Italy, 4–7 September 2017; pp. 4–7.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mechmachtheory.2017.08.012
http://dx.doi.org/10.1007/s12008-016-0299-2
http://dx.doi.org/10.1080/15397730802552266
http://dx.doi.org/10.1007/s00419-017-1279-0
http://dx.doi.org/10.3390/e19090475
http://dx.doi.org/10.1155/2010/294102
http://dx.doi.org/10.1155/2012/868410
http://www.ncbi.nlm.nih.gov/pubmed/22969834
http://dx.doi.org/10.1109/MRA.2012.2191995
http://dx.doi.org/10.3390/foods7070107
http://www.ncbi.nlm.nih.gov/pubmed/29986416
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

