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Abstract: Gerotor pumps are widely used for fuel and lubricating oil distribution, since they provide
an economic and compact solution for low-pressure fluid systems. Made of two internally coupled
gears, their behavioral and operative performances are strictly tied to their geometrical designs.
Traditionally, the external gear features circular lobes that give origin to a cycloidal profile for the
internal rotor. In this paper, the use of profiles based on asymmetric lobes made of elliptic arcs
is further explored and expanded. At first, a complete mathematical framework describing the
pump geometry and its dynamic behavior is provided, while algorithms used to compute a selected
number of performance indexes are presented and when possible, verified. Hence, a single-objective
optimization procedure is applied to the traditional cycloidal profile, in order to minimize each of
the following quantities: the flow rate irregularity, the expected wear rate, and the estimated rotor
mass. Finally, a multi-objective optimization process based on evolutionary strategy is employed,
to obtain several asymmetric profiles minimizing the combination of two or more performance
indexes. The results are hence compared, and the merits associated with the use of asymmetric lobes
are presented.
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1. Introduction

Gerotor pumps are obtained through the use of two internal spur gears. The external rotor
features N lobes, while the inner one just features only N−1 lobes. The volume variation of the N
isolated chambers along a complete rotation of the external rotor allow for fluid suction and delivery,
as sketched in Figure 1. This peculiar configuration allows for extremely compact and reliable devices
to be obtained, which have hence become one of the preferred choices for low-pressure systems in
mobile applications [1–4].
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The first study on the use of two conjugated gears for fluid pumping applications can be found
in the work published by J.R. Colbourn in 1974 [5]. Almost 20 years later, the works of Beard [6–8]
and Shung [9], focusing on the mathematical description of the profiles and on the trade-off between
several geometrical solutions, sparked a huge research effort aimed at the automation of the design
process, and at the improvement of the pump performances. With regard to the first subject, it is
important to underline the studies by Litvin, who applied the theory of gearing [10] to cycloidal
gerotors in [11], providing a general mathematical framework that is able to describe any kind of
rotor profile, and to describe the geometrical conditions that may cause discontinuities in the gear
profiles. Other formulations on the same problem, including an original geometrical interpretation by
Mimmi, can be found in [12–14], while the pump dynamics has been investigated by Ivanovic and
colleagues [15–17].

The dependence of the pump performances over the rotors geometry was first addressed by
Hsieh [18–20]. Several lobe geometries, such as elliptic, sinusoidal, poly-circular, and parabolic, have
been studied by Mancò [1] and Mimmi [21], while Bonandrini [22,23] and Demenego [24] focused on
research for novel rotor profiles, to limit the wear rate. To achieve similar objectives, Hsieh recently
published an original solution that makes use of variable clearance designs [25]. A significant amount of
research on multiple profiles geometries to optimize the pressure angle during the whole contact cycle
can be found in [26–33], while a different approach to rotor design, based on straight-line-conjugated
profiles can be found in [33–36]. Other significant contributions to this research field can be found
in [37], while a particularly interesting development on a magnetically-driven gerotor is proposed
in [38]. In order to overcome some of the traditional issues of gerotor pumps [39], the authors
recently proposed a novel solution, based on asymmetric teeth and radial ports, which allows for
some significant advantage in systems where the pump is driven in the same direction for the most
significant part of its operative life [40]. The present paper further expands this concept, and it is
articulated as follows. At first, a general overview of gerotor pumps and the mathematical description
of their rotors profile is provided; hence, major design constraints are presented and linked to the
profile geometry. A dynamic model of the pump used in the study is presented as well. To assess the
merits of the asymmetric profiles, three performance indexes are used: flow rate irregularity, wear
rate estimation through the Wear Rate Proportional Factor (WRPF), and rotors mass. At first, several
optimization cycles are performed through a provided method for each performance index, over the
traditional cycloidal profile. As such, several cycloidal profiles are obtained, each optimizing one
performance index for the selected reference speed. Through this first analysis, it is shown that the
geometrical parameters allowing for the optimization of a given performance index (i.e., flow rate
irregularity) are often extremely different from the ones that optimizing the other performance indexes
(i.e., rotors mass). The optimum values here obtained are used as a reference.

The of the authors is to demonstrate that the asymmetric lobes’ geometry can be used to design
gerotor pumps able to provide good results over a combination of two or more performance indexes
(i.e., wear rate and rotors mass, all three indexes etc.). To do so, several multi-objective optimization
cycles have been performed. The related performance indexes are then compared to the ones that are
obtained for the traditional profile.

2. General Design Theory for Gerotor Pump Profiles

To define the rotors geometries, the most efficient methods make use of closed form equations
specific of certain profile type [1,21]. Although it is simple to implement in automatic procedures
without requiring heavy computational effort, those methods have limited applicability, since it is
not always possible to describe the inner gear profile through implicit functions [21]. As such, the
proposed framework features a more general approach that is based on the theory of gearing [10],
and reported by several authors for its flexibility in describing non-circular profiles [11,12]. Following
this approach, and looking at Figure 2, three reference frames are introduced: (x, y)ext and (x, y)in are
the couples of the axis that are related to the external and to the inner gears, while (x, y) f is the still
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reference frame of an external observer. The (x, y)ext frame and the fixed axis have their origin Oext on
the rotational axis of the external gear, while the origin Oint of (x, y)in sits on the rotation axis of the
inner gear. The gerotor eccentricity e can hence be defined as the distance between Oext and Oint.
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The kinematics of two perfectly meshing gears can be described through a constant transmission
ratio τie, equal to the ratio between the two pitch dimensions rext and rin, and hence strictly dependent
on the eccentricity e, as shown through Equation (1).

τie =
ωin
ωext

=
rext

rin
=

rext

rext − e
=

N
N − 1

(1)

As shown in Figure 3, it is possible to add a local reference system (χ, ψ) for which origin C is
related to the rotor geometry through its distance with Oext (COext) and the eccentricity e. Defining
the vectors Γin and Γext as the inner rotor profile in the (x, y)in reference system and the external rotor
geometry in its (x, y)ext frame, the following conditions must be verified:

max(‖Γin‖) = COext − ρχ + e
min(‖Γin‖) = COext − ρχ − e
max(‖Γext‖) = rlim,ext = COext − ρχ + 2e
min(‖Γext‖) = COext − ρχ

(2)
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The ratio between COext and ρχ is often addressed as λ, and is of critical importance for the
profile design [1]. According to Mimmi [21] and as already reported by the authors in [40], the most
convenient way to define the lobe geometry is through the use of parametric equations expressed in
the local reference system (χ, ψ). Considering the teeth profiles defined by one or more ellipse arcs,
the following expression that is dependent on factor k can be considered.{

χ = ρχcos(ξ)
ψ = kρχsin(ξ)

(3)

{
tan(ϑ) = k tan(ξ)

0 ≤ ξ ≤ π
(4)

rk = CKi = ρχ

√
cos2(ξ) + k2sin2(ξ) (5)

The final expression of the external profile Γext in its reference frame can be found by repetition
around the rotor symmetry axis, given the angular pitch ∆α = (2π)/N [11].

Γext
ext =

[
xext

yext

]
=

[
cos(i∆α) −sin(i∆α)

sin(i∆α) cos(i∆α)

][
COext − rkcos(ϑ)

rksin(ϑ)

]
(6)

where i = 0, 1, . . . , N − 1.
To obtain the inner rotor profile, the authors make use of the general method that was first

introduced by Litvin [10]. This approach makes use of homogeneous coordinates to express the
external profile Γext in the (x, y)in frame, by means of the transformation matrix Min,ext [11]:

Γin
ext = Min,ext

 xext

yext

1

 (7)

Min,ext =

 cos(φin − φext) sin(φin − φext) −e cos(φin)

−sin(φin − φext) cos(φin − φext) e sin(φin)

0 0 1

 (8)

Applying Equation (1), we have φin = τieφext for ideal meshing. According to [29], it is known
that the normal to the meshing teeth profiles in the contact points passes through the center of rotation
P0, which coordinates (X0, Y0) in the reference system, (x, y)ext can be expressed as:{

X0 = rextcos(φext)

Y0 = −rextsin(φext)
(9)

The normal to the external rotor lobes can be described through Equation (10), provided that
vector Γext and its first derivative are continuous over their entire domain, and that ∂Γext/∂ξ 6= 0 [10]:

Next =

 NX
NY
1

 =
∂Γext

ext
∂ξ
× kext (10)

where kext is a unit vector directed along the zext axis. In order to obtain the correct meshing, the
normal to the contact point and the line passing through the contact point and P0 must coincide,
leading to the following condition [11]:

f (ξ, Φext) =
X0 − Xext

Y0 −Yext
− NX

NY
= 0 (11)
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The parametric expression of the inner rotor profile Γin is hence provided, combining Equations
(8) and (12):

Γin
in :

{
Γin

ext(ξ, Φext) = Min,extΓext
ext

f (ξ, Φext) = 0
(12)

The profile continuities can be verified through one of the methods from a selected list of robust
algorithms of general application, which can be found in the literature [11,12,14]. Other than the
geometrical issues described so far, the design of the rotors’ profiles is also determined by the pump
operating conditions. To avoid cavitation, it is in fact necessary to keep the fluid velocity under a
limiting value, which can be found from the first approximation defined as [41]:

vlim = ks

√
2(pin − pv)

ρ
(13)

This value mainly depends on the fluid pressure at the inlet port pin the fluid vapor tension at
the operating temperature pv, and its density ρ; a safety factor of ks ≤ 1 is often added in order to
limit or to prevent cavitation inception under unpredictable off-nominal conditions. In gerotor pumps,
the highest fluid velocity zones are in proximity to the rotors’ maximum radial dimensions, and since
the fluid velocity can be considered in the first approximation to be equal to the linear speed of the
pump gears, the maximum radius for the inner rotor rlim,in and the external gear rlim,ext at the reference
speed ωin can be computed as: 

rlim,in =

√
2(pin−pv)

ρω2
in

rlim,ext =

√
2(pin−pv)

ρ
(

ωin
τie

)2

(14)

Combining Equations (2), (3), and (14), an important design constraint linking the pump geometry
to its operating conditions can be found:

rlim,in + e ≤ rlim,ext ≤
√√√√2(pin − pv)

ρ
(

ωin
τie

)2 (15)

A low inlet pressure is also responsible for another design limitation, which is related to the
occurrence of incomplete filling of the chambers. This phenomenon can be observed whenever the
pressure drop across the inlet port is not high enough to completely fill the variable volume chamber
during the suction phase, leading to reduced pump flow rate capability, and to cavitation inception [20].
Slightly modifying the expression reported by Singh [42], it is possible to obtain an estimate of the
correct value of the ratio between the gerotor axial length H and the port area that is able to prevent
the insurgence of this problem at the rated speed ωin:

H
Ar

= K′
√

(pin − pv)

ρ

1

ωin
d Ach
d φin

(16)

where Ar is the inlet port area, Ach is the frontal area of the considered chamber, and φin is the shaft
angular position. K′ is a proportionality factor, depending on the port configuration and on the fluid
dynamic conditions. Please notice that for axial port gerotors, the maximum possible value of Ar is
equal to Ach.

3. Gerotor Dynamic Model

While the equations provided in Section 2 completely define the pump geometry, a dynamic
model of the system is required to simulate the gerotor behavior. As shown in Figure 4, three flow
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rates affecting a generic i-th chamber of Vi volume can be identified. Qp,i is the flow rate exchanged
with the external environment, while Qi−1,i and Qi,i+1 are the leakages between the i-th chamber and
the adjacent ones.
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The flow rate through the i-th port Qp,i depends on the pressure difference between the external
environment and the chamber, as well as on the port dimensions and on the fluid properties, according
to the following expression [43].

Qp,i = sign(pP − pi)Cd Ap

√
2|pP − pi|

ρ
(17)

where pp and pi are the environmental and chamber pressures, ρ is the fluid density, and Ap is the port
area that is seen by the i-th chamber, with a value that is defined by the rotor positions. The discharge
coefficient Cd is instead dependent on the fluid Reynolds number that is computed in the port section;
its values are obtained through the expressions proposed in [44], and already have been used by
authors for steady-state analysis in [40]. Leakages between adjacent chambers are modelled by using
the Hagen–Poiseuille law for gaps with rectangular sections [45].

Qi−1,i = (pi−1 − pi)
Hh3

g

12µlg
(18)

where H is the gerotor axial dimension, hg is the gap height, and lg is the gap length in the direction of
the leakage, while µ is the dynamic viscosity of the fluid. The net flow rate across the single chamber Qi
can hence be computed through Equation (19), where the adopted sign convention generates positive
values during volume filling and negative values during fluid discharge.

Qi = Qp,i + Qi−1,i −Qi,i+1 (19)

Applying the continuity equation to the examined control volume, it is possible to link the net
flow rate Qi with the chamber geometry variation, and consequent changes in fluid pressure pi through
the Bulk modulus β.

Qi − H
dAch

dt
=

Vi
β

dpi
dt

(20)

where the chamber frontal area Ach is a function of the inner rotor position. The instantaneous flow
rate that is delivered by the pump can be computed by summing only the negative contributions of Qi,
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while paying attention to eventually subtracting the quote, due to leakage between the external rotor
and its tracks Qs,r:

Q = −
N

∑
i=1

Qi|Qi<0 −Qs,r (21)

The leakages between the pump rotating parts and its stator are again evaluated according to the
Hagen–Poiseuille law, where pin and pout are the inlet and outlet port pressures [45].

Qs,r = (pout − pin)
Hh3

grs

12µlgrs
(22)

The net torque acting on the driving gear T can be simply obtained through the application of the
power conservation principle:

T(φin) =
Q(pout − pin)

ωin
(23)

Notice that the results obtained through Equation (23) are valid only if the gerotor pump is in
motion. Given the simulation results, a rapid check is performed to detect any evidence of cavitation
inception; addressing with pi(t) the simulated pressure in the i-th chamber at the simulation time t,
the following expression must be verified:

pi(t) > pv

∀i 1 ≤ i ≤ N
∀t t0 ≤ t ≤ tend

(24)

where t0 and tend are the simulation times related to the beginning and the end of the data acquisition.
The dynamic model has been implemented using Matlab/Simulink software, but the provided
equations have general validity, and can be employed into any other coding language.

4. Contact Stress Estimation

The determination of the contact stresses in the rotor profiles is made difficult by several factors
related to the nature of the meshing process and the presence of the pumped fluid. The first issue is
represented by the number of contact zones, which is variable inside of one pump cycle, and possibly
affected by non-uniform clearance distribution. Moreover, the load repartition is unknown a-priori,
from making a direct computation of the contact forces impossible. Further, the lubrication regime is
affected by the operating conditions, so that the actual contact pressure distribution is not constant
in time. In order to obtain a first-approximation analysis while keeping the computational time to
within reasonable limits, an iterative approach that is similar to the one proposed in [46] is applied.
The described method is valid for perfectly crafted rotors operating without clearances, and without
lubrication in the contact zones. Moreover, the gear supports and the shaft are considered to be
infinitely stiff with respect to the rotor teeth: as such, the deformations due to the contact forces are
applied only to the gear lobes. These assumptions are expected to cause contact stress overestimation,
since the effects of torsional deformations of the shaft are not computed.

Following this approach, force exchange between the mating teeth is supposed to occur only
along the suction side of the pump, as shown in Figure 5. Gearing in the portion of the device that is
connected to the delivery environment is instead considered to involve only geometric coupling.
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The application of a small arbitrary rotation δφin to the inner rotor causes interpenetration wi
between the teeth of the two gears. According to the Hertz theory [47], it is then possible to determine
the contact force vector Fc as:

Fc =
πH

4
(

1−ν2
in

Ein
+

1−ν2
ext

Eext

)w (25)

where H is the rotor’s axial length, and E and ν are the Young modulus and the Poisson coefficient for

the two gears. The vector w =
[

w1 w2 . . . wN

]T
contains the interpenetration distance for

each contact point. Its element wi is non-zero only when measured in the active zone. Considering the
frictionless contacts, it is possible to express the resistant torque acting on the driving shaft through
the contributions of each contact force Fc,i.

T(φin) =
N

∑
i=1

diFc,isin γ (26)

Since the overall resistant torque has been computed by the dynamic model through Equation (23),
it is then possible to estimate the contact forces Fc,I by the means of an iterative procedure. Given
an arbitrary δφin, it is in fact possible to compute through passages (25) and (26) the corresponding
T(δφin). This torque value is hence compared with a reference signal that is obtained through the
dynamic model simulation: if the difference falls below a tunable threshold, the results are accepted,
and the contact force value is saved. Otherwise, a proper variation is applied to δφin, and the procedure
is repeated.

The contact pressures for each tooth can hence be evaluated through the classic Hertz theory [47]:

σi =
2Fc,i

πai H
(27)

where the contact area characteristic dimension ai is determined, considering the formulas available in
the literature for cylinder-on-cylinder contact:

ai =

√√√√√4Fc,i

(
1−ν2

in
Ein

+
1−ν2

ext
Eext

)
πH(ρint,i + ρext,i)

(28)
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The external and the internal profile curvatures for the i-th contact point ρext,i and ρint,i can be
easily obtained, considering the geometrical properties of the elliptic lobes. The maximum values
of contact stress are then compared to the material limit for the static and repeated Hertzian contact.
The contact stress estimation method, and the effect of the use of a coupled dynamic model have been
verified through FEM analysis, performed on a reference radial port gerotor; the FEM analysis has been
performed in Ansys 14.0, making use of more than 250,000 tetrahedal cells; the results convergence was
ensured by progressively refining the mesh in correspondence with the contact points, and tracking the
behavior of the contact stress. The reference case has been designed for a 1 bar inlet pressure, and with
a speed of 5000 rpm for the driving gear.

The pressure of the delivery environment is supposed to be fixed and equal to 39.6 bar, while the
geometry parameters used for the example case are e = 3.5 mm and λ = 1.8; a simplified render of
the pump can be found in Figure 6. The gerotor axial length has been over-imposed as H = 0.4 Rext.
The analysis was performed by using over 200,000 tetrahedral cells while applying several congruent
rotations to the inner and outer rotors. For each angular position, the chambers pressure and the input
torque were imported from the dynamic model simulation results reported in Figures 7 and 8.
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The results of the algorithm are depicted in Figure 9, while a comparison with the FEM analysis
for one contact point is reported in Figure 10; the simulation trend was coherent with the FEM data,
even though some deviation in the numerical values was noticed. Focusing on the contact pressure
behavior, it was possible to notice two major peaks. The first one occurred during the beginning of the
gear meshing, and it was due to the change in the sign of the inner rotor curvature; the second peak
was due to variations in the number of meshing teeth.Machines 2019, 7, x FOR PEER REVIEW 10 of 22 
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5. Stochastic Optimization Algorithms

Optimization through stochastic algorithm has been widely used over the last few decades to
solve engineering problems, whereas it is difficult to provide an a priori hypothesis of the region
containing the optimum solution, whereas the objective function is to not continue over its entire
dominion [48]. This class of algorithm in fact searches for the optimum application of a certain degree
of randomness, and this only revolves around the evaluation of the objective function itself, without
the need to compute the function’s gradients. Stochastic methods mainly follow three alternative
approaches; genetic algorithms [49], and evolutionary strategies [50] mimic the evolutionary behavior
of nature, while simulated annealing imitates the behavior of cooling fluids [51]. Stochastic algorithms
have been already applied to pump stacking optimization in [52], and specifically to gerotor profiles
in [53] and [54]. Several declinations of the evolutionary strategy for single-objective optimization
are available in the literature [48], but they all share the same philosophy, based on the four base
principles of the process of organic evolution: reproduction, mutation, competition, and selection [55].
A flow-chart for the most general method, the (µ/ρ; λ) strategy, is reported in Figure 11 [56].Machines 2019, 7, x FOR PEER REVIEW 11 of 22 

 

 
Figure 11. Flowchart for the ሺ𝜇 𝜌⁄ ; 𝜆ሻ  strategy. 

Starting from an initial population, l elements are chosen as the parents, giving birth to r 
offspring; the simplest method to perform this step is through arithmetical crossover; that is, a linear 
combination of the vectors containing the optimization parameters of the parents [57]. For a two 
parents–two offspring scenario, this can be translated as: ቊ𝑑௨௡௠௨௧ଵ௞ାଵ = 𝛼𝑑௣ଵ௞ + ሺ1 − 𝛼ሻ𝑑௣ଶ௞𝑑௨௡௠௨௧ଶ௞ାଵ = 𝛼𝑑௣ଶ௞ + ሺ1 − 𝛼ሻ𝑑௣ଵ௞  (28) 

where 𝒅௨௡௠௨௧ଵ௞ାଵ  and 𝒅௨௡௠௨௧ଶ௞ାଵ are the offspring’s parameter vectors, 𝒅௣ଵ௞ and 𝒅௣ଶ௞ are the parents, and 
α  is the crossover operator. The offspring are hence mutated by applying a random factor chosen 
from a standard distribution v centered in 0 with standard deviation σ(α), which is divided or 
multiplied by a factor α at the beginning of each iteration [52]: 𝑑௠௨௧௞ାଵ = 𝑑௨௡௠௨௧௞ାଵ + 𝑣ሾ0, 𝜎ሺ𝛼ሻሿ (29) 

The population, this paper is comprehensive also for the parents, and is hence ranked, and the 
first μ elements are selected, while the others are discarded. Multiple stopping criteria are finally 
inserted to put a stop to the optimization loop. In this paper, four alternatives are considered: if one 
of them is met, the results exits the loop. The first one, is related to the algorithm convergence, and 
computed through the quadratic norm of the population, with respect to its mean value, as reported 
in [58]. The second criterion is the number of consecutive loops in which the variation of the 
optimization parameters remains under a certain threshold. This is due to the fact that each parameter 
considered is a geometrical quantity that is used to describe a physical object; as such, variations that 
remains below the geometrical tolerances of the possible production process are not useful. If this 
condition repeats itself on each parameter for more than three cycles, the algorithm stops the loop. 
The last condition, related to the computational time required, is the maximum number of iterations.  

Evolutionary strategies can be extended to multi-objective optimization by slightly modifying 
the flowchart that is reported in Figure 11, and paying particular care towards the competition step 
[59]. Several methods are reported in the literature [60–72]. In this paper, the fitness r of each possible 
solution to the optimization problem is defined by using the Fonseca version [61] of the Goldberg 
criterion, based on the number of dominating solutions [73]: 𝑟ሺ𝑑௜, 𝐾ሻ = 1 + 𝑛𝑞ሺ𝑑௜, 𝐾ሻ (30) 

Figure 11. Flowchart for the (µ/ρ; λ) strategy.

Starting from an initial population, l elements are chosen as the parents, giving birth to r offspring;
the simplest method to perform this step is through arithmetical crossover; that is, a linear combination
of the vectors containing the optimization parameters of the parents [57]. For a two parents–two
offspring scenario, this can be translated as:{

dk+1
unmut1 = αdk

p1 + (1− α)dk
p2

dk+1
unmut2 = αdk

p2 + (1− α)dk
p1

(29)

where dk+1
unmut1 and dk+1

unmut2 are the offspring’s parameter vectors, dk
p1 and dk

p2 are the parents, and α is
the crossover operator. The offspring are hence mutated by applying a random factor chosen from a
standard distribution v centered in 0 with standard deviation σ(α), which is divided or multiplied by a
factor α at the beginning of each iteration [52]:

dk+1
mut = dk+1

unmut + v[0, σ(α)] (30)



Machines 2019, 7, 17 12 of 23

The population, this paper is comprehensive also for the parents, and is hence ranked, and the first
µ elements are selected, while the others are discarded. Multiple stopping criteria are finally inserted
to put a stop to the optimization loop. In this paper, four alternatives are considered: if one of them is
met, the results exits the loop. The first one, is related to the algorithm convergence, and computed
through the quadratic norm of the population, with respect to its mean value, as reported in [58].
The second criterion is the number of consecutive loops in which the variation of the optimization
parameters remains under a certain threshold. This is due to the fact that each parameter considered is
a geometrical quantity that is used to describe a physical object; as such, variations that remains below
the geometrical tolerances of the possible production process are not useful. If this condition repeats
itself on each parameter for more than three cycles, the algorithm stops the loop. The last condition,
related to the computational time required, is the maximum number of iterations.

Evolutionary strategies can be extended to multi-objective optimization by slightly modifying the
flowchart that is reported in Figure 11, and paying particular care towards the competition step [59].
Several methods are reported in the literature [60–72]. In this paper, the fitness r of each possible
solution to the optimization problem is defined by using the Fonseca version [61] of the Goldberg
criterion, based on the number of dominating solutions [73]:

r(di, K) = 1 + nq(di, K) (31)

where nq(di, K) is the number of solutions dominating di during the K-th generation. One of the most
significant difficulties in multi-objective optimization is to avoid the formation of clustered solutions,
which causes the overrepresentation of parts of the variables space at the expense of the rest of the
dominion, and which may provide misleading results. To limit this issue, the fitness-sharing approach
proposed by Fonseca and Fleming [61] has been employed in this paper. This method is based on the
computation of the Euclidean distance DK between every solution pair

(
di, dj

)
in the objective space,

normalized between 0 and 1 during the K-th iteration of the optimization algorithm [61]:

DK
(
di, dj

)
=

√√√√√ no

∑
m=1

 f K
m(di)− f K

m
(
dj
)

max
k=1...K

fm − min
k=1...K

fm

2

(32)

Hence, given those distances, the number of solutions falling inside a niche of size σniche may be
calculated as:

nc(di, K) = ∑
j = 1 . . . (ρ + λ)

r(di) = r(dj)

max

(
σniche − DK

(
di, dj

)
σniche

, 0

)
(33)

Finally, the fitness r(di, K) of each solution for the K-th generation is adjusted as follows [61]:

r′(di, K) = r(di, K)nc(di, K) (34)

In this way, the overall ranking of the clustered solution in the minimization process is penalized,
hence reducing the probability of being selected for breeding, while enhancing the exploration of the
optimization parameter space.

We approached the optimization issue as a two-step multi-objective optimization, to highlight
the benefits that are associated with the use of asymmetric profiles in obtaining better results than the
optimum performances provided by the traditional geometry. Other approaches to the optimization
problems can be found in [62,63]; in particular, the authors in [62] used the Taniguchi method to find
the optimal combination of parameters to maximize the pumps’ flow rate, and to minimize the flow
rate irregularity. Although it is functional for simple optimization problems, the Taniguchi method
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is mostly used to evaluate the robustness of a proposed design, by studying the influence of small
variations of one or more design parameters over the system performances.

6. Profile Optimization

According to previous sections, we can identify a few optimization parameters that are meaningful
geometrical quantities that determine the rotor shape and performance. The optimization process has
been carried on for gerotors with five teeth in the external gear, since this solution allows for higher
flow rate capabilities at a given reference speed to be obtained [40]. To account for asymmetric teeth
based on the union of elliptic arcs, Equation (4) is modified as follows:

tan(ϑ) = ktan(ξ)
k = k1 ⇔ 0 ≤ ξ ≤ π

2
k = k2 ⇔ π

2 ≤ ξ ≤ π

(35)

Introducing the non-dimensional design parameter λ = a/rext, a generic optimization parameter
vector d can be defined as:

d =


λ

e
k1

k2

 (36)

Three indexes are used to evaluate the pump performance, and to perform the optimization
procedure: the flow rate irregularity ε, the wear Rate proportional factor (WRPF) and the estimated
rotors mass m. The flow rate irregularity is used to measure the flow ripples produced due to the
discontinuity in the fluid delivery. It is commonly expressed as the ratio between the ripples’ amplitude
and the average flow rate Qm, given a constant reference speed of the driving gear [74]:

ε =
max(Q)−min(Q)

Qm
(37)

The wear rate proportional factor proposed by Kwon [75] is used to rank the wear rate under the
hypothesis of a non-lubricated contact, and is defined as follows:

WRPF =
σivs

ωin
(38)

where σi is the contact stress, vs is the relative speed between the two rotors in the contact point, and
ωin the reference speed of the inner gear. The rotors mass estimate is provided by multiplying the
gear volume for the employed material density. For each parameter vector, the corresponding gerotor
pump is designed and tested through an integrated framework, employing the equations presented in
the previous sections. Its flowchart is reported in Figure 12: starting from the design inputs fixed for
the optimization process and the geometrical parameters vector, the rotor profiles are defined, verified,
and inserted into the high-fidelity dynamic model of the pump. The simulation outputs are hence
used to compute the pump’s performance indexes; the design loop is eventually reset if one or more
geometrical constraints or performance requirements are not met.
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6.1. Cycloidal Gears Optimization

The first step for assessing the capabilities of the asymmetric profile is to define a proper set
of reference values for each of the three optimization objectives. In order to do so, three series of
single-objective optimization cycles have been performed for the traditional ephitrocoidal profiles.
The reference speed of the driving rotor has been varied to between 5000 rpm and 10,000 rpm, to target
a mobile application, while the pressure at the inlet port is approximately 1 bar. The required flow
rate has been set to 100 L/min. For each reference speed, the pump geometry has been optimized
with respect to each performance index, leading to the definition of three sets of gerotor profiles, each
able to minimize the flow irregularity, wear rate, and rotor mass. The optimization parameters vector
is obtained, simplifying the one that is reported in Equation (21), by neglecting k1 and k2. Starting
from these parameters, the algorithm designs and tests the gerotor through the automatic framework.
The safety factor against cavitation is initially set to 1.

The number of parents in the evolutionary algorithm is set to λopt = 4, while the offsprings are
ρopt = 6. The population size that survives after each optimization cycles is µopt = 8. In order to
achieve a faster convergence, the parents are not discarded a-priori, and they take part in the ranking; as
such, it is possible for them to survive for more than one optimization cycle. To monitor the algorithm
behavior, the ratio of successful mutation for the k-th optimization cycle has been computed as:

pk
m =

∣∣∣Dk
ρ
⋂

Dk
µ

∣∣∣∣∣∣Dk
µ

∣∣∣ (39)

where Dρ and Dµ are respectively, the sets of the mutated offspring, and of the population that
survives after the k-th cycle. The maximum number of iterations allowed for the algorithm is Nmax = 50.
The results of the optimization process are reported in Figure 13. The wear rate and rotor masses tend
to progressively decrease, with the reference speed tending to reach a plateau towards the end of the
investigated speed range. This can be explained by considering that the flow rate requirement remains
the same for the whole speed range; as such, the benefits of downsizing the gerotor radial dimension
are progressively decreased by the increase in the pump length. For the same reason, no appreciable
variation of the optimum flow rate irregularity can be observed.
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A comprehensive description of the λ—e couple for each case is provided in Figure 14a, while
the corresponding rotors geometries are reported in Figure 15. In particular, some interesting
considerations may be performed: it can be noted how the rotor mass minimization makes use
of the highest value of eccentricity and the lowest λ parameters, while the opposite happens for
the flow irregularity. The wear optimization finds itself in the middle of the other two cases. From
the perspective of a multi-objective optimization, this seems to suggest that the minimization of the
(ε; WRPF) and (mass; WRPF) couples may be obtained more easily than that of the (ε; mass) one.

Looking at Figure 14b, it is possible to notice the immediate consequences of the different (λ, e)
sets. The profiles that optimize the rotors mass presented higher teeth, hence generating chambers
with higher frontal areas and shorter pumps. On the other side, geometries optimizing the flow-rate
irregularities featured small teeth that are able to provide a more regular flow rate output at the expense
of longer, and hence, heavier devices. Looking at the profiles depicted in Figure 15, it is possible to
notice how their shapes seem to be almost independent of the reference speed, and only change with
the function of the optimization objective. An explanation for this behavior can be provided by looking
at Figure 14a, and noticing that the eccentricity of the optimized profiles tend to decrease linearly
with speed.
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Figure 15. Optimized cycloidal profiles in the 5000–10,000 rpm range.

From Equation (14), it is known that the radial size of the gerotor pump is inversely proportional
to the speed of the driving gear; hence, the ratio between the eccentricity of each optimum solution
and the radial size of the device should be constant, given the inlet pressure, fluid properties, and
optimization objectives. The related results for the studied profiles are presented in Figure 16.

Machines 2019, 7, x FOR PEER REVIEW 15 of 22 

 

 

Figure 15. Optimized cycloidal profiles in the 5000-10000 rpm range. 

Looking at Figure 14b, it is possible to notice the immediate consequences of the different ሺ𝜆, 𝑒ሻ 
sets. The profiles that optimize the rotors mass presented higher teeth, hence generating chambers 
with higher frontal areas and shorter pumps. On the other side, geometries optimizing the flow-rate 
irregularities featured small teeth that are able to provide a more regular flow rate output at the 
expense of longer, and hence, heavier devices. Looking at the profiles depicted in Figure 15, it is 
possible to notice how their shapes seem to be almost independent of the reference speed, and only 
change with the function of the optimization objective. An explanation for this behavior can be 
provided by looking at Figure 14a, and noticing that the eccentricity of the optimized profiles tend to 
decrease linearly with speed.  

From Equation (14), it is known that the radial size of the gerotor pump is inversely proportional 
to the speed of the driving gear; hence, the ratio between the eccentricity of each optimum solution 
and the radial size of the device should be constant, given the inlet pressure, fluid properties, and 
optimization objectives. The related results for the studied profiles are presented in Figure 16. 

 

Figure 16. 𝑒 𝑅௘௫௧⁄  ratios for the optimized gerotors. 

6.2. Second-Order Optimization through Asymmetric Lobes 

The asymmetric lobe design could also be used as a second-order optimization on an optimized 
circular lobe profile. In this situation, the optimization parameter 𝑑 is reduced to: 

Figure 16. e/Rext ratios for the optimized gerotors.

6.2. Second-Order Optimization through Asymmetric Lobes

The asymmetric lobe design could also be used as a second-order optimization on an optimized
circular lobe profile. In this situation, the optimization parameter d is reduced to:

d =

[
k1

k2

]
(40)

while the (λ, e) couple is determined by the optimization of the traditional profile. The second-order
optimization was been performed over the combined behavior of the flow rate irregularity, rotor
masses, and WRPF. The optimized parameters are reported in Table 1.
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Table 1. Second-order optimization parameters.

Speed
(rpm)

Objective of the First Optimization Process

(ε) (m) (WRPF)

λ (-) e (mm) k1 (-) k2 (-) λ (mm) e (-) k1 (-) k2 (-) λ (mm) e (-) k1 (mm) k2 (-)

5000 2.118 3.074 0.720 1.159 1.820 5.326 0.747 1.070 2.063 3.643 0.939 1.115
6000 2.046 2.880 0.753 1.179 1.932 4.582 0.834 1.142 2.041 3.279 0.879 1.114
7000 2.000 2.388 0.775 1.037 1.821 3.807 0.780 1.091 2.047 2.671 0.851 1.099
8000 2.162 1.829 0.743 1.179 1.862 3.537 0.765 1.028 2.126 2.558 0.805 1.041
9000 2.244 1.636 0.878 1.109 1.813 3.074 0.761 1.080 2.126 2.025 0.815 1.175

10,000 2.159 1.486 0.757 1.016 2.110 2.525 0.913 1.103 2.168 2.014 0.859 1.122

The second-order optimization, as shown in Figures 17 and 18, allows for noticeable advantages
on the performance indexes to be achieved. Starting from the couple optimized for the flow rate
irregularity, the use of asymmetric teeth allows a significant reduction in the rotor masses (−5.68%) to
be obtained, while the expected flow-rate irregularity (+0.29%) and wear rate (+0.03%) remain almost
constant. In a similar fashion, the second-order optimization allows some advantages to be obtained
when applied to the WRPF-optimized profiles, achieving a small reduction in the expected (−0.66%),
wear rate (−1.31%) and rotor mass (−0.24%).
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More significant are the results that are related to the second-order optimization of the traditional
profiles that are first optimized with respect to the estimated mass. In this case, the use of asymmetric
teeth allows for an average decrease of the flow irregularity, computed as 1.40%, to be obtained,
while the estimated rotors mass sees an average variation that is equal to −3.23%; more importantly,
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a significant decrease (−14.61%) can be appreciated in the estimated wear rate. An example of the
second-order optimization effects over the pumps’ geometry is reported in Figure 19.
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7. Discussion and Further Work

The optimization activities described in this paper have proven that asymmetric lobes are able
to provide several advantages over the traditional profile for gerotor pumps operating in the same
direction for the most part of their operative life. At first, the theory and the design framework
implemented in this work have been presented and discussed, and hence used inside the optimization
loops. The proposed optimization procedure consists of two steps; the first one being the optimization
of the traditional profile to define the lobe sizes along the radial direction, and hence applying a
second-order procedure to optimize the lobe shapes. Following this procedure, the half-side of the
teeth involved in significant force exchange is optimized, to minimize the estimated wear rate, while
the other half is modified to reduce the predicted mass and flow irregularity. It has been proven that
through the use of asymmetric lobes, it is possible to obtain better performances over each of the
considered performance indexes, with respect to the optimum that is obtainable for the traditional
cycloidal profile. In particular, the results suggest marked performance improvements for those mobile
applications where weight reduction is the most significant issue, such as the aerospace field, where
gerotor pumps can be used in the lubrication systems of the aircraft engines. Further work will include
a comparison between the different shapes of the two half-lobes, and eventually applications towards
multi-curve geometries.
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Nomenclature

α Crossover operator
β Fluid bulk modulus
∆α Angular pitch
ε Flow rate irregularity
ξ Angular parameter for a parametric description of the lobe geometry
γ Angle between the normal to the contact point and the radial direction
Γext External gear profile in its integral reference system
Γin

ext External gear profile in the inner gear reference system
Γin Inner gear profile in its integral reference system
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φext Angular position of the external gear
φin Angular position of the inner gear
λ Non-dimensional design parameter
λopt Number of parents in the evolutionary algorithm
µ Fluid dynamic viscosity
µopt Number of surviving elements at each iteration of the evolutionary algorithm
ν Poisson ratio
ψ Profile parameterization
ρ Fluid density
ρext,i Curvature of the external profile
ρint,i Curvature of the internal profile
ρopt Number of offspring in the evolutionary algorithm
ρχ Local radius of the lobe
ϑ Angular coordinates for lobe geometry description
σi Contact stress
τie Transmission ratio between the gears
ωext Angular speed of the external gear
ωin Angular speed of the inner gear
χ Profile parameterization
Ach Frontal area of the chamber
Ap Port area
Ar Required port area
ai Characteristic dimensions of the contact area
C Center of the lobe profile
Cd Discharge coefficient
di Distance between the gerotor axis and the contact points
dk

p “Parent” parameter vector belonging to the k-th generation
dk+1

unmut Parameter vector for the k+1 generation before mutation
E Young’s modulus
e Gerotor eccentricity
Fc Contact force
k Elliptic parameter
ks Safety coefficient against cavitation
hg Height of the leakage path
H Axial length of the chambers
lg Length of the leakage path
Min,ext Transformation matrix
N Tooth number of the external gear
Next Normal to the external gear profile
Oext Center of the external gear centrode
Oin Center of the inner gear centrode
pi Mean pressure inside the i-th chamber
pin Pressure at the inlet port
pP Pressure at the port
pv Vapor tension
Q Pump total flow rate
Qi Net flow rate for the i-th chamber
Qi−1,i Flow rate between the i− 1th and i-th chambers
Qm Average pump flow rate
Qp,i Flow rate from the port to the i-th variable volume chamber
r′ Fitness of the optimization problem solution
rext Radius of the external gear centrode
rin Radius of the internal gear centrode
rlim,ext Limit value of the external gear radius
rlim,in Limit value of the inner gear radius
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rk Position of the generic point k in the lobe reference system
T Driving torque
Vi Volume of the i-th chamber
vlim Limit speed
vs Sliding speed between mating profiles
w Co-penetration between gears profiles
WRPF Wear rate proportional factor
(x, y)ext Reference frame integral with the external gear
(x, y) f Fixed reference frame
(x, y)in Reference frame integral with the inner gear
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