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Abstract: In this investigation, different computational methods for the analytical development and
the computer implementation of the differential-algebraic dynamic equations of rigid multibody
systems are examined. The analytical formulations considered in this paper are the Reference Point
Coordinate Formulation based on Euler Parameters (RPCF-EP) and the Natural Absolute Coordinate
Formulation (NACF). Moreover, the solution approaches of interest for this study are the Augmented
Formulation (AF) and the Udwadia–Kalaba Equations (UKE). As shown in this paper, the combination
of all the methodologies analyzed in this work leads to general, effective, and efficient multibody
algorithms that can be readily implemented in a general-purpose computer code for analyzing the
time evolution of mechanical systems constrained by kinematic joints. This study demonstrates
that multibody algorithm based on the combination of the NACF with the UKE turned out to be
the most effective and efficient computational method. The conclusions drawn in this paper are
based on the numerical results obtained for a benchmark multibody system analyzed by means of
dynamical simulations.

Keywords: nonlinear dynamics; Lagrangian mechanics; constrained mechanical systems; differential-
algebraic equations of motion; multibody solution algorithms

1. Introduction

In the last three decades, multibody system dynamics has emerged as an independent and
interdisciplinary research field dedicated to the analysis and the synthesis of the motion of mechanical
systems connected by kinematic pairs [1]. In the scientific literature, this particular class of dynamical
system is referred to as multibody mechanical systems [2,3]. Multibody systems are mechanical systems
defined by a collection of rigid and deformable continuum bodies, mechanical joints, force elements,
and force fields [4–10]. The mathematical description of the time evolution of a multibody system
is characterized by the presence of intrinsic nonlinearities that induce large reference displacements
and large finite rotations [11–13]. Therefore, the resulting complex dynamic behavior of a mechanical
system constrained by kinematic pairs can be described by a large set of nonlinear differential-algebraic
dynamic equations [14,15]. In the field of multibody system dynamics, general analysis approaches are
required in order to capture the dynamic behavior of a given multibody mechanical system. In general,
the analytical techniques used for modelling multibody systems need to facilitate the formulation
of the differential dynamic equations and lead to a consistent modelling of the mechanical joints
mathematically represented by nonlinear algebraic equations [16–20]. The correct modelling of a
multibody system is of paramount importance in several industrial applications such as, for example,
in vehicle system dynamics, in aerospace engineering, and, more generally, in the problem of
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the engineering design of control actuators for mechanical systems formed by rigid and flexible
components [21–29]. In particular, in the case of rigid-flexible multibody systems, advanced methods
must be adopted for obtaining an estimation of the system state, for identifying the unknown or
unmeasurable system parameters, and for controlling the system dynamical behavior [30–42].

As shown in several investigations, the multibody approach used for modelling the dynamics
of mechanical systems constrained by mechanical joints represents an effective and efficient method
for describing the kinematic structure of a given mechanical system and for analyzing the dynamic
behavior resulting from a prescribed loading condition [43–51]. In this paper, therefore, a comparative
study is carried out considering two general formulation strategies and two important solution
procedures for solving the differential-algebraic dynamic equations of mechanical systems composed
of multiple rigid bodies connected by mechanical joints. To this end, two modelling approaches
based on Cartesian coordinates are considered, namely the Reference Point Coordinate Formulation
based on Euler Parameters (RPCF-EP) and the Natural Absolute Coordinate Formulation (NACF) [52].
Unlike the RPCF-EP, the kinematic description of the NACF is based on the separation between
variables that are space-dependent and the coordinates that are time-dependent [53]. The property
of separation of variables used in the kinematic description of the NACF allows for formulating a
system of equations of motion, which is characterized by a mass matrix that is independent from the
generalized coordinate vector. As a result, the Coriolis and centrifugal generalized inertia terms do not
appear in the mathematical derivation of the multibody dynamic equations [54]. In this investigation,
on the other hand, two effective solution procedures for the calculation of the generalized acceleration
vector of a multibody mechanical system are examined. The solution procedures considered in this
paper are the Augmented Formulation (AF) and the Udwadia–Kalaba Equations (UKE) [55]. While the
AF is a well-established multibody computational procedure, the UKE represents a new methodology
recently discovered in the Lagrangian reformulation of classical mechanics. The UKE can be effectively
employed for computing the generalized acceleration vector of mechanical systems constrained by
holonomic and/or nonholonomic algebraic equations. Furthermore, the UKE represents one of the
most general methods of classical mechanics for obtaining closed-form solutions of the fundamental
problem of constrained dynamics. Therefore, the use of the UKE in the development of new, effective,
and efficient computational algorithms is of interest for the multibody research community. In order
to obtain a systematic comparison of the computational methodologies considered in this paper,
a mechanical model of a benchmark multibody system is employed as a numerical example for
performing numerical experiments.

The structure of this paper can be summarized as follows. In Section 2, the key equations of the two
general multibody formulation approaches of interest for this investigation are described. In Section 3,
the main features of the two general multibody solution procedures considered in this work are
illustrated. In Section 4, the numerical results obtained implementing the methods analyzed in the
paper in the case of a simple multibody benchmark problem are discussed. In Section 5, a discussion on
the methodologies considered in this paper, the conclusions obtained in this investigation, the summary
of the work, and some suggestions on future directions of research are provided.

2. Multibody Coordinate Formulations

The multibody formulation approaches considered in this section are the RPCF-EP and the NACF.

2.1. RPCF-EP

In the RPCF-EP, the generalized position of a body i is defined using a generalized coordinate
vector given by:

qi =
[ (

Ri)T (
pi)T

]T
, (1)

where Ri is the global position vector of the origin of a body-fixed reference system and pi is a vector
of rotational coordinates employed as orientation parameters. The orientation parameter vector pi
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used in the RPCF-EP is formed by a collection of four rotational coordinates called Euler parameters.
The orientation vector pi can be written as:

pi =
[

pi
0 pi

1 pi
2 pi

3

]T
, (2)

where pi
0, pi

1, pi
2, and pi

3 are four dependent Euler parameters. In the RPCF-EP, the transformation
matrix Ai that describes finite rotations in the three-dimensional space can be explicitly defined as:

Ai =

 1 − 2
(

pi
2
)2 − 2

(
pi

3
)2 2

(
pi

1 pi
2 − pi

0 pi
3
)

2
(

pi
1 pi

3 + pi
0 pi

2
)

2
(

pi
1 pi

2 + pi
0 pi

3
)

1 − 2
(

pi
1
)2 − 2

(
pi

3
)2 2

(
pi

2 pi
3 − pi

0 pi
1
)

2
(

pi
1 pi

3 − pi
0 pi

2
)

2
(

pi
2 pi

3 + pi
0 pi

1
)

1 − 2
(

pi
1
)2 − 2

(
pi

2
)2

 . (3)

The four Euler parameters pi
0, pi

1, pi
2, and pi

3 are not independent rotational coordinates since
they must form a quaternion pi having a unitary magnitude. Therefore, since the collection of Euler
parameters pi is a set of redundant rotational coordinates, it must be consistent with the nonlinear
algebraic constraint equation defined as:

Φi =
(

pi
)T

pi − 1 = 0, (4)

where Φi defines the normalization constraint equation for the body i. In the RPCF-EP, the position
vector of a generic point on the rigid body i referred to an inertial frame system can be expressed as:

ri = Ri + Aiūi, (5)

where ūi is the position vector of a generic point of the body i referred to the body-fixed frame
of reference. On the other hand, the following rectangular matrix Ḡi can be defined in terms of
Euler parameters:

Ḡi = 2

 −pi
1 pi

0 pi
3 −pi

2
−pi

2 −pi
3 pi

0 pi
1

−pi
3 pi

2 −pi
1 pi

0

 . (6)

In the RPCF-EP, the rectangular matrix Ḡi used in the kinematic description represents the linear
transformation matrix that allows for defining the angular velocity vector Ω̄i written with respect to
the local coordinate frame as a linear function of the time derivative of the orientation parameter vector
ṗi as Ω̄i = Ḡiṗi. The mass matrix Mi of a rigid body i can be expressed in the RPCF-EP as follows:

Mi =

 miI miAi
(

˜̄ui
Gi

)T
Ḡi

mi(Ḡi)T ˜̄ui
Gi
(
Ai)T (

Ḡi)T Īi
Oi Ḡi

 , (7)

where I is a 3 × 3 identity matrix, mi is the total mass of the body i, Īi
Oi is the inertia tensor associated

with the rigid body i, and ūi
Gi is the local position vector of the center of mass Gi of the body i. In the

definition of the mass matrix Mi, the tilde superscript over the vector ūi
Gi stands for indicating the

skew-symmetrical matrix that defines the cross product by the vector ūi
Gi . Since in the RPCF-EP the

mass matrix Mi is not a constant matrix, a nonlinear vector Qi
v called inertia quadratic velocity vector

results from the analytical formulation of the equations of motion. The inertia quadratic velocity vector
Qi

v modeled using the RPCF-EP can be analytically derived to yield:

Qi
v =

 miAi ˜̄Ω
i ˜̄ui

Gi Ω̄i

−
(
Ḡi)T ˜̄Ω

i
Īi

Oi Ω̄
i

 . (8)
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By using the virtual work of the generalized external forces, the generalized external force vector
Qi

e of the body i can be calculated in the RPCF-EP as:

Qi
e =

(
Li
)T

Fi
e, (9)

where Li is the Jacobian matrix of the body generalized configuration and Fi
e denotes a general external

force applied on an arbitrary point of the rigid body i. In the RPCF-EP, the Jacobian matrix Li is
given by:

Li =
[

I −Ai ˜̄uiḠi
]

. (10)

By using a Lagrangian formulation approach, one can write the index-three form of the
differential-algebraic dynamic equations of a rigid multibody system in the framework of the RPCF-EP
as follows: {

Mq̈ = Qv + Qe − CT
qv,

C = 0,
(11)

where q is the vector containing the total set of generalized coordinates of the multibody system,
M represents the system mass matrix resulting from the multibody assembly procedure, Qv denotes
the system quadratic velocity vector associated with the inertia terms, Qe indicates the generalized
external force vector that takes into account all the forces acting on the multibody system, v stands
for the vector of all the Lagrange multipliers relative to the algebraic constraint equations, C is the
complete vector of algebraic constraint equations, and Cq represents the Jacobian matrix of the entire
set of algebraic constraint equations. In the RPCF-EP, the complete vector of algebraic constraint
equations is defined as:

C =
[
(Φ)T (Ψ)T

]T
, (12)

where Φ represents the complete vector of normalization constraints associated with the unit
quaternions that serve as orientation parameters and Ψ is the vector of all the algebraic equations
relative to the mechanical joints.

2.2. NACF

In the NACF, the generalized position of a body i is defined using a generalized coordinate vector
given by:

ei =
[ (

Ri)T (
di)T

]T
, (13)

where Ri is the global position vector of the origin of a body-fixed frame of reference and di represents
a vector of rotational coordinates employed as orientation parameters. The orientation parameter
vector di used in the NACF is formed by a set of nine rotational coordinates given by the direction
cosines of the body-fixed coordinate system. The orientation vector di can be mathematically defined
as follows:

di =
[ (

ai)T (
bi)T (

ci)T
]T

, (14)

where: 
ai =

[
ai

1 ai
2 ai

3

]T
,

bi =
[

bi
1 bi

2 bi
3

]T
,

ci =
[

ci
1 ci

2 ci
3

]T
,

(15)

where ai, bi, and ci are the three unit vectors based on the set of the direction cosines associated with
the body reference system. In the NACF, the transformation matrix Ai that describes finite rotations in
the three-dimensional space can be explicitly defined as:
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Ai =

 ai
1 bi

1 ci
1

ai
2 bi

2 ci
2

ai
3 bi

3 ci
3

 . (16)

The nine direction cosines ai
1, ai

2, ai
3, bi

1, bi
2, bi

3, ci
1, ci

2, and ci
3 are not independent rotational

coordinates because they must form an orthonormal set of three unit vectors [56]. The normalization
conditions of the direction cosines are given by:

Φi =
[ (

ai)Tai − 1
(
bi)Tbi − 1

(
ci)Tci − 1

(
ai)Tbi (

ai)Tci (
bi)Tci

]T
= 0, (17)

where Φi represents a vector of algebraic constrains that contains the normalization equations of the
rigid body i. In the NACF, the position vector of a generic point on the rigid body i referred to an
inertial frame system can be expressed as:

ri = Siei, (18)

where:
Si =

[
I x̄iI ȳiI z̄iI

]
, (19)

where the constant matrix Si is a rectangular matrix that defines the geometric configuration of the
body i, I is a 3 × 3 identity matrix, whereas x̄i, ȳi, and z̄i are the Cartesian coordinates of the position
vector of a generic point defined in the body-fixed coordinate frame. The mass matrix Mi of a body i
that appear in the equations of motion can be expressed in the framework of the NACF as follows:

Mi =


miI J̄i

Oi ,x̄i I J̄i
Oi ,ȳi I J̄i

Oi ,z̄i I

J̄i
Oi ,x̄i I J̄i

Oi ,x̄i x̄i I J̄i
Oi ,x̄i ȳi I J̄i

Oi ,x̄i z̄i I

J̄i
Oi ,ȳi I J̄i

Oi ,x̄i ȳi I J̄i
Oi ,ȳi ȳi I J̄i

Oi ,ȳi z̄i I

J̄i
Oi ,z̄i I J̄i

Oi ,x̄i z̄i I J̄i
Oi ,ȳi z̄i I J̄i

Oi ,z̄i z̄i I

 , (20)

where I is a 3 × 3 identity matrix, mi is the total mass of the body i, while J̄i
Oi ,x̄i , J̄i

Oi ,ȳi , and J̄i
Oi ,z̄i are the

first moments of mass of the body i, whereas J̄i
Oi ,x̄i x̄i , J̄i

Oi ,ȳi ȳi , J̄i
Oi ,z̄i z̄i , J̄i

Oi ,x̄i ȳi , J̄i
Oi ,x̄i z̄i , and J̄i

Oi ,ȳi z̄i are the
second moments of mass of the body i. The first and second moments of mass can be obtained using
the local position of the body center of mass of the body i denoted with ūi

Gi and considering the body
mass moments of inertia that appear in the rigid body inertia tensor. In the NACF, the mass matrix Mi

is constant, symmetric, and positive definite. Since in the NACF the mass matrix is constant, the inertia
quadratic velocity vector Qi

v that represents the centrifugal and Coriolis generalized inertia effects
vanishes. On the other hand, in the NACF, the Jacobian matrix Li of the body i coincides with the
matrix of shape functions denoted with Si. Thus, by using the virtual work of the generalized external
forces, the generalized force vector Qi

e acting on a rigid body i can be expressed in the framework of
the NACF as:

Qi
e =

(
Si
)T

Fi
e, (21)

where Fi
e denotes a general external force applied on a generic point of the body i. The index-three

form of the differential-algebraic equations of motion of a rigid multibody system can be derived
considering a Lagrangian formulation approach and using the NACF multibody framework as follows:

{
Më = Qe − CT

e v,
C = 0,

(22)
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where e is the vector containing the total set of generalized coordinates of the multibody system,
M represents the system mass matrix resulting from the multibody assembly procedure, Qe indicates
the generalized external force vector that takes into account all the forces acting on the multibody
system, v stands for the vector of all the Lagrange multipliers relative to the algebraic constraint
equations, C is the complete vector of algebraic constraint equations, and Ce represents the Jacobian
matrix of the entire set of algebraic constraint equations. In the NACF, the complete vector of algebraic
constraint equations is defined as:

C =
[
(Φ)T (Ψ)T

]T
, (23)

where Φ represents the complete vector of normalization constraints associated with the direction
cosines and Ψ is the vector of all the algebraic equations relative to the mechanical joints.

3. Multibody Solution Methods

The multibody solution procedures considered in this section are the AF and the UKE. These two
multibody solution procedures can be equally applied to the dynamic equations mathematically
derived by using the RPCF-EP as well as the NACF. However, for simplicity, the index-one
differential-algebraic dynamic equations devived employing the RPCF-EP are considered in this
section for describing the multibody methods based on the AF and the UKE.

3.1. AF

In this subsection, the multibody solution method based on AF is discussed. To this end, consider
the following system of index-one differential-algebraic dynamic equations derived employing
the RPCF-EP: {

Mq̈ = Qv + Qe − CT
qv,

Cqq̈ = Qd,
(24)

where Qd is a vector called constraint quadratic velocity vector that includes the terms that are
quadratic in the generalized velocities. In the AF, the index-one equations of motion can be
reformulated in a matrix form as follows:[

M CT
q

Cq O

] [
q̈
v

]
=

[
Qv + Qe

Qd

]
. (25)

This matrix equation formulated using the AF can be written in a compact symbolic form as:

Maqa = Qa, (26)

where qa is the multibody system augmented generalized acceleration vector, Ma is the multibody
system augmented mass matrix, and Qa is the multibody system augmented generalized force vector
that are respectively defined as:

qa =

[
q̈
v

]
, Ma =

[
M CT

q
Cq O

]
, Qa =

[
Qv + Qe

Qd.

]
. (27)

The linear system of algebraic equations formulated by using the AF can be readily solved by
implementing any method for the numerical solution of a system of linear equations. By doing so,
one can easily obtain the system generalized acceleration vector q̈ and, at the same time, the Lagrange
multiplier vector v. The system generalized acceleration vector q̈ can be used in a standard numerical
integration scheme in order to calculate the numerical solution for the dynamic state of the multibody
system. The vector of Lagrange multipliers v, on the other hand, can be used for calculating the
generalized force vector that mathematically models the reaction force vector of the mechanical joints.
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3.2. UKE

In this subsection, the multibody solution approach based on UKE is illustrated. The UKE,
also known as fundamental equations of constrained dynamics, were discovered by Udwadia and
Kalaba during their important research in the field of analytical dynamics. Udwadia and Kalaba
focused their research on modern linear algebra methods as well as on the foundations of classical
mechanics such as the principle of least constraint originally formulated by Gauss [57]. In the general
form of the UKE, an auxiliary matrix M̄ and an auxiliary generalized force vector Q̄ are respectively
defined as:

M̄ = M + CT
qCq (28)

and
Q̄ = Qv + Qe + CT

qQd (29)

The multibody solution procedure based on the UKE leads to closed-form analytical solutions of
the generalized acceleration vector q̈. For this purpose, the UKE are defined as follows:

ā = M̄−1Q̄, ēc = Qd − Cqā,
K̄ = CqM̄−1CT

q , F̄ = K̄+,
v = −F̄ēc, Qc = −CT

qv,
āc = M̄−1Qc, q̈ = ā + āc,

(30)

where ā represents the system acceleration vector obtained when the algebraic constrains are absent,
ēc denotes the error vector associated with the algebraic equations, K̄ is referred to as the system
kinetic matrix, F̄ identifies the feedback matrix relative to the algebraic constrains generated by the
action of the mechanical joints, āc is the additional acceleration vector caused by the presence of the
algebraic constraints, and q̈ is the complete system generalized acceleration vector. In the UKE, the
matrix denoted with K̄+ represents the pseudoinverse matrix of the multibody system matrix K̄ called
kinetic matrix [58,59]. By using the UKE, one can readily find the generalized force vector Qc relative to
the entire set of algebraic constraints that limit the motion of the multibody system as well as the vector
of Lagrange multipliers v useful for quantifying the generalized reaction forces of the kinematic pairs.
Furthermore, the generalized acceleration vector q̈ of the multibody system necessary for performing
the progressive marching of the numerical solution of the differential-algebraic dynamic equations on
the time grid can be easily calculated in a closed-form employing the approach based on the UKE.

4. Numerical Results and Discussion

In this section, a numerical analysis is carried out in order to assess the performance and the
reliability of the formulation approaches and solution methods discussed in the paper. To this
end, a multibody computer code developed by the authors and programmed in MATLAB (R2013a
version) is used for obtaining the numerical results discussed in this section. In Figure 1, a schematic
representation of the multibody approach followed in this numerical study is shown.

In particular, the triple pendulum system represented in Figure 2 is considered as an illustrative
example of a simple multibody mechanical system that undergoes a complex dynamic evolution.

Excluding the ground, the triple pendulum system represented in Figure 2 is composed of three
rigid bodies and three spherical joints. As shown in Figure 2, the spherical joint collocated at the point
A connects the body number 1 to the ground, while the spherical joints collocated at the points B
and C serve as connections between the bodies 1, 2, and 3. The triple pendulum system is formed by
three pendulums having the same geometric dimensions, namely half length L = 2.0 (m), breadth
H = 0.2 (m), and width W = 0.2 (m). The additional numerical data used for modelling the triple
pendulum system are reported in Table 1.
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Figure 1. Multibody computational algorithm.

Figure 2. Triple pendulum system.

The configuration of the triple pendulum system at the initial stage of the dynamical simulation
is shown in Figure 2 and the initial velocities of all the rigid bodies forming the multibody system
are set equal to zero. The triple pendulum system is loaded with its own weight, which is due to a
uniform gravity force field. The multibody dynamic equations of the triple pendulum system form a
system of differential-algebraic dynamic equations that are analytically derived by using the RPCF-EP
and the NACF. Subsequently, the Robust Generalized Coordinate Partitioning (RGCP) method is
used for stabilizing constraint drift of the triple pendulum system as well as to enforce the kinematic
constraints at both the position and velocity levels [60,61]. The constraint tolerance used in the
Newton–Raphson (NR) numerical procedure implemented in the RGCP algorithm is equal to ε = 10−9.
Furthermore, both the AF and the UKE are alternatively used for solving the equations of motion of
the triple pendulum system at the acceleration level, whereas the fourth-order Adams–Bashforth (AB)
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method is used for the time marching of the numerical solution of the equations of motion. To this end,
a constant time step equal to ∆t = 10−3 (s) is employed for performing the dynamic analysis and a
time interval equal to T = 20 (s) is considered for the dynamical simulations. Figures 3–5 respectively
show the longitudinal, lateral, and vertical displacements and velocities of the point D at the tip of the
triple pendulum system.

Table 1. Triple pendulum system data.

Body Number Mass Moments of Inertia Gravity Acceleration

i (−) mi (kg) Ii
xx, Ii

yy, Ii
zz, Ii

xy, Ii
xz, Ii

yz (kg·m2) gi (m·s−1)

1 2 0.053, 2.693, 2.693, 0, 0, 0 9.81
2 3 0.080, 4.040, 4.040, 0, 0, 0 9.81
3 4 0.107, 5.387, 5.387, 0, 0, 0 9.81
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(a) Longitudinal displacement
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(b) Longitudinal velocity

Figure 3. Longitudinal displacement and velocity of the point D at the tip of the triple pendulum
system—(circle) RPCF-EP, (square) NACF.
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(a) Lateral displacement
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(b) Lateral velocity

Figure 4. Lateral displacement and velocity of the point D at the tip of the triple pendulum
system—(circle) RPCF-EP, (square) NACF.

The numerical solutions represented in Figures 3–5 refer to the dynamic equations of the triple
pendulum system modelled employing the RPCF-EP and the NACF as the multibody formulation
approach, whereas the system generalized acceleration vector is obtained by using the UKE as the
multibody solution algorithm. The numerical solutions obtained in the comparative study shown in



Machines 2018, 6, 20 10 of 15

Figures 3–5 exhibit a very good agreement and very similar numerical results are obtained employing
the AF as a multibody solution algorithm. The consistency of the numerical solutions found in this
work can be also observed from the trajectory of the tip of the triple pendulum system represented in
Figure 6, which exhibits a chaotic motion.
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)

(a) Vertical displacement
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w

 (
m

/s
)

(b) Vertical velocity

Figure 5. Vertical displacement and velocity of the point D at the tip of the triple pendulum
system—(circle) RPCF-EP, (square) NACF.

Figure 6. Trajectory of the point D at the tip of the triple pendulum system—D0: initial position, DT :
final position.

Although the multibody model of a triple pendulum system is mathematically simple to derive,
it is well known that this class of dynamical systems exhibits a complex physical behavior due to the
nonlinearity of the equations of motion that lead to the chaos phenomenon. From a computational
point of view, this property of the triple pendulum system implies that, if a small change in the initial
conditions or a perturbation is induced to the numerical solution of the equations of motion because
of the numerical approximations, a large difference in the resulting trajectory will be apparent in the
subsequent dynamical evolution. Therefore, the simple multibody model of the triple pendulum
system can be used in order to compare the numerical solution obtained employing the NACF and
the RPCF-EP with the numerical solutions derived by using the AF as well as the UKE. Since there
is a good agreement between the numerical solutions computed using the combination of these four
different approaches, one can assume that the equations of motion are correctly solved. Therefore,
the triple pendulum system can effectively serve as a multibody benchmark example in order to test
the accuracy and the performance of new multibody computational algorithms by means of numerical
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experiments. For this purpose, in order to evaluate the accuracy of the numerical solutions obtained in
this study, the norms of the constraint violations are computed for all the combinations of the methods
considered in this investigation. In particular, the residuals of the constraint equations are evaluated at
the position level as well as at the velocity level. To this end, Table 2 shows the maximum norms of
the constraint violations for the constraint equations and their time derivatives for all the multibody
methodologies analyzed in the paper.

Table 2. Violations of the constraint equations of the triple pendulum system.

AF UKE

Position Constraint Violations 2.1 · 10−15 (NACF) 2.3 · 10−15 (NACF)
1.5 · 10−10 (RPCF-EP) 1.5 · 10−10 (RPCF-EP)

Velocity Constraint Violations 2.8 · 10−14 (NACF) 2.5 · 10−14 (NACF)
1.5 · 10−14 (RPCF-EP) 1.6 · 10−14 (RPCF-EP)

The numerical results provided in Table 2 demonstrate that all the multibody formulation
approaches and solution strategies analyzed in this study are effective since they lead to a set of
numerical results that are physically accurate and numerically robust. Furthermore, the time evolution
obtained by means of dynamical simulations for the multibody system considered as a benchmark
example is consistent with the geometric shape of the triple pendulum system. Moreover, Table 3
shows the dimensionless computational times of all the dynamic simulations.

Table 3. Dimensionless computational times of the dynamical simulations.

AF UKE

Dimensionless Computational Times 1.0 (NACF) 1.0 (NACF)
2.3 (RPCF-EP) 2.2 (RPCF-EP)

The numerical results reported in Table 3 demonstrate that, while the AF and the UKE show
similar performance in terms of the computational times, the equations of motion formulated and
solved employing the new multibody method based on the NACF lead to more efficient dynamical
simulations when compared with the well-established multibody algorithm that relies on the RPCF-EP.
This behavior can be explained by noticing the fact that the dynamic equations formulated by using
the NACF have a constant mass matrix and the corresponding generalized inertia vector that contains
the terms that are quadratic in the generalized velocities is always a zero vector.

5. Conclusions

The main topics of interest for the research of the authors are multibody dynamics, system
identification, and nonlinear control [62–70]. This investigation represents a comparative analysis of
the principal computational methodologies suitable for the analytical derivation and the numerical
implementation of the dynamic equations of mechanical systems composed of rigid bodies constrained
by kinematic pairs. The coordinate formulations considered in this paper are the RPCF-EP and the
NACF, whereas the solution methods considered in this work are the AF and the UKE. The RPCF-EP is
a well-established coordinate formulation that is used in commercial and research multibody computer
codes for analyzing the dynamic behavior of mechanical systems constrained by kinematic joints.
The NACF, on the other hand, is a new method recently developed by the authors by combining the
key features of the well-known Reference Point Coordinate Formulation with Euler Angles (RPCF-EA)
and the conventional Natural Coordinate Formulation (NCF). Unlike both the RPCF-EA and the
RPCF-EP, the NACF leads to a system of differential-algebraic equations of motion in which the
mass matrix is constant, while the centrifugal and Coriolis generalized inertia effects are identically
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equal to zero. More importantly, a straightforward formulation of the nonlinear equations that model
the kinematic joints by means of algebraic constraints can be systematically obtained by using the
multibody framework based on the NACF. Furthermore, the AF is a well-known multibody algorithm
used for computing the generalized acceleration vector and the vector of Lagrange multipliers for
a mechanical system formed by rigid bodies and mechanical joints. On the other hand, the UKE
represents a new set of equations of analytical dynamics discovered by Udwadia and Kalaba. The UKE
have several applications that span far beyond their original interpretation. In particular, the UKE
can handle a general form of the algebraic constraint equations of holonomic and/or nonholonomic
nature and can be effectively used as an efficient computational method for the numerical solution
of multibody system problems. In the paper, a comparative analysis is carried out considering the
combination of all the analytical formulation strategies and numerical solution approaches mentioned
before. The numerical results arising from the numerical analysis carried out in this study showed
that the use of the NACF as a formulation approach in conjunction with the UKE as a solution
procedure represents a general, effective, and efficient computational algorithm suitable for analyzing
the dynamic behavior of complex mechanical systems connected by kinematic constraints. This work
represents a preliminary investigation oriented towards the future development of a more detailed
comparative analysis. To this end, an array of experimental benchmark examples will be used in future
investigations in order to compare the effectiveness and the efficiency of the approach proposed in this
paper with the computational methods already available in the literature.
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