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Abstract: Motor power models are a key tool in robotics for modeling and simulations related to
control and optimization. The authors collect the dataset of motor power using the ABB IRB 120
industrial robot. This paper applies a multilayer perceptron (MLP) model to the collected dataset.
Before the training of MLP models, each of the variables in the dataset is evaluated using the random
forest (RF) model, observing two metrics-mean decrease in impurity (MDI) and feature permutation
score difference (FP). Pearson’s correlation coefficient was also applied Based on the scores of these
values, a total of 15 variables, mainly static variables connected with the position and orientation of
the robot, are eliminated from the dataset. The scores demonstrate that while both MLPs achieve good
scores, the model trained on the pruned dataset performs better. With the model trained on the pruned
dataset achieving R̄2 = 0.99924, σ = 0.00007 and ¯MAPE = 0.33589, σ = 0.00955, the model trained on
the original, non-pruned, data achieves R̄2 = 0.98796, σ = 0.00081 and ¯MAPE = 0.46895, σ = 0.05636.
These scores show that by eliminating the variables with a low influence from the dataset, a higher
scoring model is achieved, and the created model achieves a better generalization performance across
five folds used for evaluation.

Keywords: feature importance; industrial robotic manipulator; machine learning; multilayer perceptron;
random forest; regression; robot power; total motor power

1. Introduction

The power use of robots is one of the key physical quantities when discussing robotics
modeling and control. Precise modeling of robot power can be key when discussing robot
dynamics as it’s directly related to torque [1], energy use of robots [2], or for general control
of robotic manipulators [3,4]. Motor power is a possible input to different models—such as
fault detection based on machine-learning type observers [5], path control and correction [6],
energy consumption optimization [7], and general performance monitoring [8].

Robot power measurements are commonly collected during the operation, using measure-
ments. This process achieves satisfying results for initial modeling and live monitoring—but
the creation of computational models for power prediction can be extremely useful in case
a larger number of simulations are necessary—such as may be the case in optimization via
evolutionary computing algorithms [9,10].

Multiple researchers have performed the modeling of motor power use, or the directly
connected energy use, of industrial robotic manipulators. Jaramillo-Morales et al. (2020) [11]
attempt to create a direct numerical model for this target. Authors test the performance
on different types of trajectories, achieving the fitment of prediction between 96.64% and
81.25% depending on the trajectory path. Jiang et al. (2023) [12] demonstrate that better
results can be achieved using ML-based techniques, namely LSTM deep neural networks.
The authors use measurements on a KUKA KR60-3 robot, and the models created based on
the collected data achieve a MAPE error of 4.21%. LSTM-based prediction is demonstrated
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by Lin et al. (2024) [13]. Authors apply batch-normalized long short-term memory, using a
public test dataset from Yaskawa robots, and authors achieve an error of 3.67 %. A similar
is demonstrated by Huang et al. (2021) [14], for electrical motors, achieving a MAPE error
of 3.30%. For later comparison, the state-of-the-art results are included in the Table 1. In
studies with ranges and multiple results presented, the best results were selected.

Table 1. The best results demonstrated in relevant previous studies.

Paper Score

Jaramillo-Morales et al. [11] R2 = 0.97%
Jian et al. [12] MAPE = 4.21%
Lin et al. [13] MAPE = 3.67%

Huang et al. [14] MAPE = 3.30%

We can see that, while there is interest by researchers in modeling the power use
of industrial robotic manipulators, most research focuses on using LSTM networks for
predictions. These networks are used in the prediction of one-dimensional time-series [15],
and while this approach has its uses, there may be shortcomings to it based on the desired
application. There may be instances where the power use of the robot may need to be tested
in the given instant, based on other variables except past values of the energy use. This is
especially interesting in cases where the movement of the robot requires rapid changes in
speed and direction. Due to this, the research performed in this paper will focus on the
creation of a dataset that is meant to be used in a regression task, where the instantaneous
total motor power of an industrial robot manipulator can be predicted based on connected
variables. A regression model based on variables that do not include a set of previous
values of the targeted variable would allow for shorter-term prediction and instantaneous
modeling of energy power.

In this paper, the authors demonstrate the utilization of data-driven techniques for
predicting the total power of an industrial robot manipulator. The main goal is to develop
an ML-based model for integration into further tasks, such as optimization. Beyond that,
authors have multiple minor goals—collecting the dataset for power modeling based on
data, testing the individual parameter influence of measured quantities on the data output,
and attempting modeling based on a full and limited set of variables.

To help clarify the goals of this paper and the knowledge gap it is trying to address,
the authors pose the following research questions:

• RQ1—Can a data-driven model for total motor power use of an industrial robotic
manipulator be developed based on the data collected during operation?

• RQ2—What are the feature importances of the parameters that may be collected
during this process, and are some lower than the others?

• RQ3—Can some of the collected parameters be removed without sacrificing the
performance of the data-driven machine learning-based model?

In the previous work by the authors [1], an attempt was made to model the dynamics
of an industrial robotic manipulator using a similar methodology to the one applied in this
paper (an MLP regression ANN). In that paper, the authors applied the MLP to regress
the moments of torsion that appear on the motors during the operation. Compared to
that work, the work that the authors present in this paper addresses the following gaps
in knowledge:

• Utilization of real, experimentally collected data, compared to the mathematical
models, should create a more robust model, as the data may include noise and other
minor measurement errors not present in the data created by a mathematical model.

• The testing of the importance of individual features was not performed in the previous
work, mostly because the model was based on the mathematical model developed
with a method requiring predetermined variables (speeds, accelerations, and positions
of the robot joints). With the models newly developed in the presented work, features
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can be simply eliminated, allowing authors to test the possible benefits of that type
of preprocessing.

• The model developed in the aforementioned paper did not make use of certain vari-
ables that were not available to the model but may have a certain influence on the
output—such as kinematic variables pertaining to the limits and singularities.

To summarize, the presented work aims to improve the existing research by applying
a similar methodology to a real, laboratory environment. The dataset pruning methods are
applied to simplify the dataset collection process, which is now performed on an actual
robot and the created models may potentially be applied to the real data measured directly
from the industrial robot. This is further validated by the application of the models on the
simulation data for different industrial robotic manipulators.

While a model of the total motor power in a given moment can be developed math-
ematically, without the application of ML-based techniques, there are some pitfalls with
this approach. First, ML-based models may be significantly faster than the traditional
deterministic models [16,17]. This is important in such applications as path planning and
optimization, where the recalculation of the motor power needed to achieve a movement
may need to be repeated a large number of times. In addition to that, data-driven models
may include intricacies in the data that may not be thought to be included in the model,
such as minute differences in the construction of the particular analyzed industrial robot.
This can lead to a more precise model when applied in practice [18].

The authors will first present a dataset collection procedure and the process of dataset
analysis and preparation for regression modeling. This will include the variable influence
analysis. The regression modeling process will be then briefly described. The results of the
above process will be discussed and the conclusions presented.

2. Materials and Methods

This section will present how the dataset was collected and the variable pruning
processes. Then, the process of training and evaluating models is explained.

2.1. Dataset Collection

The dataset is collected using an industrial robotic manipulator IRB 120, produced by
ABB, with the datasheet given in [19]. The collection process is performed on its control unit
using the RobotStudio 2024.1.1 software package, produced by the same manufacturer [20].
The laboratory setup on which the measurement was performed can be seen in Figure 1,
with the IRB 120, manufactured by ABB Ltd., Zurich, Switzerland shown in the front, and
the control unit used for measurement given in the back.

The measurement is performed by a random selection of points in the joint space of
the robot, along with the movement speed and zone. The robot was programmed using
ABB RAPID programming language. To achieve the desired movement, the following
RAPID [21] code was used:

FOR i FROM 0 TO SIMULATION_COUNT DO
! Randomly select joint 1--6, speed and zone, and move to that position
MoveAbsJ [[((RAND()/RAND_MAX)*(J1_HI-J1_LO))+J1_LO,

((RAND()/RAND_MAX)*(J2_HI-J2_LO))+J2_LO,
((RAND()/RAND_MAX)*(J3_HI-J3_LO))+J3_LO,
((RAND()/RAND_MAX)*(J4_HI-J4_LO))+J4_LO,
((RAND()/RAND_MAX)*(J5_HI-J5_LO))+J5_LO,
((RAND()/RAND_MAX)*(J6_HI-J6_LO))+J6_LO],
[9E9,9E9,9E9,9E9,9E9,9E9]],
SPEED_ARR{1+ROUND((RAND()/RAND_MAX)*(SPEED_NUMBER-1))},
ZONE_ARR{1+ROUND((RAND()/RAND_MAX)*(ZONE_NUMBER-1))},
tool0;

ENDFOR
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Figure 1. The IRB 120 industrial robotic manipulator used for measurements.

As can be seen from the code, the process is repeated a total of SIMULATION_COUNT
times, which is selected to be 500. The command MoveAbsJ will move the robot to the
position of the joint space specified by the first six values (in the case of a six-degree-of-
freedom robot, such as ABB IRB 120 used in this research), with the given speed and
zone selected from the appropriate arrays. The random values are generated using RAND
function, which is a built-in RAPID function [21]. It returns a value between 0 and 32,767.
To normalize this value to the range of [0, 1], the returned value is divided by RAND_MAX
which is a variable that equals 32,767. The random values for each of the joint targets Ri
are limited using the equation given below. In the equation li represents the lower end of
the range and hi the higher end of the range for joint i (these values were coded as Ji_LO
and Ji_HI in the given code example), with r being the random variable obtained randomly
uniformly in the range [0, 32, 767]:

Ri = [
r

32, 767
∗ (hi − li)] + li (1)

Because of the limitations posed by the robot configuration and the laboratory setup,
the movement cannot be allowed to happen on the full possible range of the robot. By
experimenting with the robot setup and the laboratory walls within the simulation the
limits of the joints were selected to ensure no collisions happen, and they are given in
Table 2.

Table 2. The lower and upper limits of joints used in the simulation.

Joint i Lower Limit li [deg] Higher Limit hi [deg]

1 −90 90
2 −10 45
3 −100 40
4 −160 160
5 −120 120
6 −400 400

After connecting to the robot and uploading the RAPID code, the simulation in the
RobotStudio software package is set up to measure different values. The values measured
during the robot movement are:

• total Motor Power,
• for each of the joints (J1–J6):
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– position in degrees,
– linear velocity,
– angular velocity, and

• At the end effector:

– linear speed,
– orientation speed,
– linear acceleration,
– position:

* X,
* Y, and
* Z,

– orientation:

* Q1,
* Q2,
* Q3, and
* Q4,

– nearness of limit, and
– nearness of wrist singularity.

To set up RobotStudio to measure the listed values, the first step is to connect the
computer running the software package to the control unit of the robot. Then, the code
is executed, and the measurement is performed. This appearance of this measurement in
RobotStudio can be seen in the Figure 2.

Figure 2. The measurement data collected in the RobotStudio software, prior to CSV export.

The sampling frequency of the measurement is fs = 40 Hz. Over approximately 1 h
and 22 min, this process collected a dataset of 132,192 data points. The simulation time may
vary depending on randomly selected speeds of the robot movement. These values, a list
of which was given previously, are then exported to a comma-separated value (CSV) file,
in such a way that each variable is stored in a separate column. This CSV file will be used
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for further processing and measurement. The dataset collected in this part of the research
is made publicly available [22].

2.1.1. Correlation Analysis

The correlation analysis is performed between all of the values in the dataset. Pearson’s
correlation coefficient is calculated between each of the parameters in the dataset. Between
two variable sets x1 and x2 of length n, the Pearson correlation coefficient r is calculated as:

r =
Σn

i=1(x1
i − x̄1)(x2

i − x̄2)√
Σn

i=1(xi − x̄)2Σn
i=1(yi − ȳ)2

. (2)

Based on the correlation coefficient, the dataset is pruned using the following rule: if
an input variable has a correlation coefficient lower than 0.2 to the output variable ‘Total
Motor Power’ it is eliminated.

2.1.2. Feature Importance

Feature importance is determined with the random forest (RF) algorithm. RF algorithm
creates a large number of weak predictors which attempt to regress the target. The created
models are tree-based, and as such they are both simple and analyzable [23]. The analysis
of models can be performed using two metrics—the mean decrease in impurity (MDI) and
feature permutation (FP). FP tests the change of performance when one of the variables
is randomly permuted [24], while MDI measures the change of result quality when the
feature is added or removed [25]. Based on the results of the feature importance, the dataset
is pruned from variables if the MDI or FP value is lower than 0.01.

MDI is calculated according to the impurity. If yi is the value of the output, then I can
be calculated per:

I =
1
n

n

∑
i=1

(yi −
1
n

n

∑
i=1

yi)
2. (3)

The MDI is calculated by observing I of the tree model before the variable is included
in the model, and I′ after it was added in the model. Then, the difference ∆I = I − I′ is
calculated. The more important the variable is in the modeling of the output, the greater its
decrease of impurity should be after the inclusion in the model. FP is calculated by training
the dataset normally and noting the R2 score of the model. Then, one of the variables
is randomly shuffled, and the training is performed again. The performance of the two
models—one trained on the original dataset, and one trained on the dataset with a single
variable randomly shuffled is compared. If the variable is important then the score should
decrease significantly, while if the variable has a low influence on the output the score
should not change significantly.

In addition to the described techniques for dataset feature preprocessing, several other
techniques can be used to remove features with a low influence on the output. One of the
main benefits of the applied RF method, which is a tree-based method is that the method
provides a simple list of variables that have a low influence and may be removed, allowing
for an easy application in conjunction with correlation-based analysis. Decomposition
methods are also commonly applied by researchers, such as the principle component
analysis (PCA) methods which serve to transform the dataset into a set of principal compo-
nents [26,27]. Compared to the used approach, the PCA approach does not provide a clear
list of variables to be removed (or simply not collected), but the transformation needs to be
performed every time new data is collected, before using the developed regression model,
possibly adding time to the very fast prediction time of the developed MLP [28]. A more
direct approach would be the application of Lasso or Ridge regression to determine the
coefficients of the variables and lower them to zero to eliminate the low-influenced ones
from the dataset [29]. Still, RF does have some benefits in comparison to these methods
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such as robustness to non-linearity and multicollinearity, lower sensitivity to outliers and
unscaled features, and automatic variable interaction capturing [30,31].

2.2. Regression Methodology

The dataset regression is performed using the MLP method. As stated in the introduc-
tion, the goal of using a regression technique instead of an LSTM or similar approaches
is the ability to perform the modeling of the instantaneous power. In other words, the
authors want to establish a model which will be able to predict the motor power of the
industrial robot at any moment—with this prediction being based on the other measured
variables such as speed and position, and not the previous values of motor power, as this
may enable different optimization schemes. While many regression techniques could have
been applied to a dataset of this type authors have selected MLP based on two features,
and those are the high performance in similar modeling tasks in the previous research [1]
and a high computational speed of the trained models. MLP is constructed from neurons,
arranged in layers. Each neuron sums the values of the neurons in the previous layer,
multiplied by the values of the weighted connections. These connection weights are val-
ues that are updated during the training process [32]. In the training process, the output
value—which is the value of the single neuron in the last layer (so-called output neuron),
is compared to the expected output for a set of inputs. The error of this prediction is then
backpropagated—adjusting weights based on the error gradient in the direction from the
output neuron to the input neurons. By repeating this process for each of the data points,
over multiple training iterations, the model parameters (weights) are tuned to minimize
the error [33].

In addition to the parameters, the neural network also has the so-called hyperparam-
eters. These values describe the initial model of the network, regardless of the trained
parameters. These parameters include the number of layers in the network and the number
of neurons per layer. In addition, they include the learning rate value and adjustment
type which control how quickly are the parameters of the network adjusted during the
backpropagation, the activation function of the neurons which is the function that controls
the individual neuron output, the regularization parameter which controls the influence of
individual variables, and the solver—the algorithm used for recalculating the weights [34].
Hyperparameter tuning is key to obtaining a high-performing dataset, as hyperparame-
ters have a great influence on the model performance [35]. To determine the best set of
parameters the grid search procedure is used in this research. First, a set of discrete values
is selected for each of the hyperparameters, based on previous research targeting similar
topics [1]. These values are given in Table 3. Then, the MLP is trained for each of the
possible combinations of hyperparameters. Results are evaluated for each to determine the
performance, as it’s described below.

Table 3. The hyperparameters used in the grid search.

Hyperparameter Possible Values Count

Number of layers 1, 2, 3, 4, 5 5
Number of neurons 1, 2, 4, 8, 16, 32, 63, 128 8

Activation ReLU, Identity, Logistic, Tanh 4
Solver Adam, LBFGS 2

Learning rate type Constant, Adaptive, Inverse Scaling 3
Initial learning rate 0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001 6
L2 regularization 0.1, 0.01, 0.001, 0.0001 4

Two separate sets of MLPs are trained in this research. Both target the total motor
power of the industrial robotic manipulator, but one attempts to regress it with the entire
collected dataset (30 inputs), and the second attempts to regress it with the dataset pruned
according to the rules given in the previous section, the results of which are discussed in
the following section.
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The final structure of the model will consist of the neurons arranged in three types
of layers—the input layer, one or more hidden layers, and an output layer. Out of these
layers, the simplest one to define is the output layer. This layer will consist of a single
neuron. The value of this neuron will represent the predicted value for a given set of inputs,
as determined by the forward propagation through the hidden layers. As for the hidden
layers, their size will depend on the grid search procedure. As the grid search procedure
attempts to tune both the number of hidden layers (between one and five) and the number
of neurons in all of the selected layers (selected as 2n for n ∈ [0, 7]), the size of hidden
layers can vary between a single layer with one neuron at the smallest and five layers
with 128 neurons at the largest. This means that the smallest model would consist of
||x||+ 1 parameters—where ||x|| is the size of the input vector and the +1 comes from
the connection to the output layer. The largest model on the other hand would consist
of I + H + O parameters, where I = ||x|| · 128 (connection of the input layer to the first
layer), H = 4 × 1282 (connections between all neurons of one hidden layer to the next), and
finally O = 128 (connections of the last hidden layer to the output layer). In other words,
this is 128 · ||x||+ 65,664 parameters. The input layer can also vary in size, between two
values. This is due to the dataset pruning which is described in the following section. This
means that, for the original dataset, the size of the input layer is equal to 30. This means
that for it, the model ranges in size from 31 to 69,504 parameters. For the pruned dataset,
the input layer is shortened to 15 elements, as shown in the following sections, making its
total model parameters range from 16 to 67,584.

Regression Model Evaluation

Each of the models trained in the grid search procedure is subjected to the process of
five-fold cross-validation. This process is performed to ensure that the data is not overfitted,
and the model generalizes well across data [36]—as the model could overfit on a single part
of the dataset and falsely provide good performance metrics. This process is performed in
the following manner [37]:

1. Randomly split the dataset into five subsets Fi—F1, F2, F3, F4, F5.
2. For i in the range from 1 to 5:

• Create a dataset Ftrain/test consisting of the four folds whose index doesn’t equal i.
• Split the Ftrain/test train and test datasets by randomly selecting points in such a

way that Ftrain is 70% of the dataset, and Ftest is 30% of the dataset.
• Perform the training procedure using the two datasets and obtain a trained model.
• Calculate the performance indexes on the fold Fi which was not used in the

training set and save them.

3. Calculate the mean score and the standard deviation of the performance indexes
across all folds.

This means that for each of the possible combinations of hyperparameters, the model
is trained five times, each time using a different part of the dataset for validation. In
each of these five iterations, 74,028 data points are used as the training set (Ftrain), and
18,507 points are used as the test set (Ftest) during training, with results validated on the
39,657 data points. As mentioned, each of these folds is evaluated by using two separate
performance indexes—coefficient of determination R2 and mean absolute percentage error
MAPE. These values were selected because they are commonly used in the evaluation of
regression models, with R2 evaluating how well the predicted data follow the trends of the
original data across different outputs [38,39], and MAPE defines the absolute difference
between the predicted data and the real data across different inputs [40,41]. These two
values are utilized because individually they may not provide a good picture of model
performance—e.g., a model that has a good variance prediction but a large error will have
a good R2 and a poor MAPE, while the model which follows the data closely, but without
taking the trends across inputs into account will demonstrate the opposite.
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As mentioned R2 demonstrates the amount of variance of the original dataset
Y = [y1, y2, · · · , yN ] contained in the predicted dataset Ŷ = [ŷ1, ŷ2, · · · , ˆyN ] [42]. It ranges
between [0, 1], where 1 indicates the entirety of variance being contained in the predictions.
The higher values of R2 indicate a higher regression quality. R2 is defined as:

R2 = 1 − ∑N
i=0(yi − ŷk

i )

∑N
i=0(yi − ȳk

i )
. (4)

R2 will provide good scores for models that follow the variance, i.e., the trends
contained in the data. But to better express the absolute error of predicted points an error
metric should be used. MAPE was selected, as it performs similarly to a popular MAE, but
defines the absolute error expressed as a percentage which makes it more straightforward
to interpret [43]. It ranges from [0, 100], with the lower values indicating a better regression
model. It is calculated per [44]:

MAPE =
1
n

ΣN
i=0|

yi − ŷk
i

yi
|. (5)

3. Results

The results will be presented and discussed in this section. First, the results of the
metrics for dataset pruning will be considered, as these are needed to prune the dataset for
MLP training. Then the results of the models will be presented—with the hyperparameters
of the best models given, along with the comparison of the scores between models trained
on pruned and original datasets.

3.1. Dataset Pruning Results

The MDI, FP, and r values calculated for the dataset are given in Table 4. If MDI is
observed, according to the rules given in the methodology the following variables would
be eliminated: speed, X, Y, Z, Q1, Q2, Q3, Q4, Near Limit, Near Singularity, J1, J2, J3, J4,
J5, J6, J1 velocity, and angular speed, J3 velocity, and finally J4 velocity and angular speed.
Values that are eliminated according to FP are similar, although some values that were
eliminated by MDI were kept by FP—namely speed, J4 angular velocity, and J1 angular
velocity. The values that would be eliminated according to FP are X, Y, Z, Q1, Q2, Q3,
Q4, Near Limit, Near Singularity, J1, J2, J3, J4, J5, J6, J1 velocity, J3 velocity, and finally J4
velocity. Finally, the Pearson’s correlation coefficient can be observed, with the following
values showing a lower correlation: linear acceleration, X, Y, Z, Q1, Q2, Q3, Q4, Near Limit,
Near Singularity, J1, J2, J3, J4, J5, and J6.

Only those variables that were noted as unimportant by all three sets of methods used
for feature importance were removed from the dataset. According to this, the following
values are eliminated: X, Y, Z, Q1, Q2, Q3, Q4, Near Limit, Near Wrist Singularity, J1, J2, J3,
J4, J5, J6. For easier understanding, the data in Table 4, is visualized in the Figure 3. Here,
the stark difference in the influence of positional values compared to the dynamic values
connected to the speed of the industrial robotic manipulator is easily visible.

Table 4. The feature importance metrics calculated on the dataset.

Variable MDI FP r

Speed 0.006633 0.022868 0.864878
Orientation Speed 0.015512 0.06297 0.786160
Linear Acceleration 0.018431 0.01354 0.100195
X 0.003113 0.002259 0.015793
Y 0.004271 0.002472 0.004599
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Table 4. Cont.

Variable MDI FP r

Z 0.004953 0.005973 0.006784
Q1 0.001689 0.000749 −0.008261
Q2 0.00285 0.001533 −0.012481
Q3 0.002023 0.000823 0.005319
Q4 0.001947 0.000731 0.005534
Near Limit 0.000953 0.000534 0.023404
Near Wrist Singularity 0.000464 0.000076 −0.031361
J1 Position 0.005847 0.002896 0.009030
J2 Position 0.003984 0.0039 0.012479
J3 Position 0.00337 0.002305 −0.012455
J4 Position 0.003876 0.003745 −0.082532
J5 Position 0.004741 0.004204 −0.019140
J6 Position 0.004488 0.003533 −0.002446
J1 Velocity 0.00509 0.008328 0.869247
J1 Angular Velocity 0.006935 0.013666 0.869241
J2 Velocity 0.011475 0.012808 0.842528
J2 Angular Velocity 0.02747 0.024638 0.892606
J3 Velocity 0.004454 0.008734 0.842867
J3 Angular Velocity 0.612407 0.387411 0.905022
J4 Velocity 0.005742 0.004314 0.880788
J4 Angular Velocity 0.009264 0.01536 0.853524
J5 Velocity 0.085447 0.042204 0.884634
J5 Angular Velocity 0.017717 0.015253 0.859018
J6 Velocity 0.020685 0.016591 0.882829
J6 Angular Velocity 0.104168 0.039164 0.793835

Figure 3. The visualization of variable influences on the output.

Notably, all of the eliminated values have to do with the positioning of the robotic
manipulator. The joint positions J1 through J6 are in fact kinematically connected to the
position in tool-space (X, Y, and Z position and orientations Q1–Q4). The same can be
said for the information of closeness to limit and singularity. These values having low
importance and correlation to an output such as motor power make sense, as they are not
dynamic properties.
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3.2. Regression Results

The scores for regression are given in Table 5. The scores are given for the complete
dataset and the pruned dataset, for both metrics. Scores are given for each of the trained
folds, with the average value and standard deviation (σ) calculated. Minimum and max-
imum values are also separated. For the completed dataset, the best average R2 score is
0.98876, with MAPE of 0.49895. This was achieved by a neural network consisting of five
layers with 128 neurons, an adaptive learning rate of 0.0001, a ReLU activation function,
and a regularization factor of 0.1. The pruned dataset achieves better results with the same
methods—with an average R2 of 0.99904 and MAPE of 0.33589. Not only are these values
lower they are achieved with a smaller neural network of five layers, but with 64 neurons
in each layer instead of 128. The network used the same activation function and learning
rate as the one used on the original dataset. The smaller network implies that the second
problem was simpler to regress, as the network needed fewer parameters to model it.
Another notable difference is the value of the regularization factor, which is smaller in
the case of the pruned dataset at 0.001. This implies that the first network attempted to
lower the influence of variables with higher influence, probably because the parameters
that were kept in the pruned dataset had a much higher influence on the output. This was
unnecessary in the case of the pruned dataset, as those values are eliminated, and as such
the influence of variables does not need to be adjusted by the network during training.

One of the key issues with the application of any pre-processing to ML-based modeling
is the issue of increased time and computational complexity added to the modeling process.
A benefit of the pre-processing approach to dataset pruning is that it is completed in
advance. Compared to the application of methods such as PCA the variable selection is
performed in advance. All the future modeling can be based on the subset of variables
collected, which can even simplify the dataset collection and processing due to the smaller
dataset size (notably, the not-pruned dataset is 33.38 MB in size, while the pruned dataset
is 11.00 MB in size—a 67% decrease in size. When it comes to the preprocessing time
that is additionally taken up by the dataset pruning, the average time needed for the
application of all three feature importance methods (RF with FP and MDI, and Pearson’s
correlation) was 4 min and 11 s, with the standard deviation of 9 s. It should be noted
that the analyzed dataset is very large, and the modeling was performed on a desktop
computer with an Core(™) i5-6400 CPU, manufactured by Intel, Santa Clara, California,
USA (six cores and six logical processors, base clocked at 2.9 GHz), and 32 GB of RAM.
Scikit-learn Python library [34] was used to determine the feature importances based on RF,
while Pandas Python library [45] was used to calculate the correlation. Considering that
the MLP models took approximately two days of training on a workstation consisting of an
Epyc 7532 processor, manufactured by AMD, Santa Clara, California, USA (24 cores and
48 threads, base clock of 2.3 GHz) and 128 GB of RAM, the time added by the processing
of the dataset using feature importance analysis is practically negligible. Considering the
possible benefits (lower model complexity, lower training time, a smaller dataset, and most
importantly improved scores with the same method), it can be concluded that there is a
clear advantage to the application of the suggested method.

Table 5. The scores for best-performing models on pruned and complete datasets, per each fold,
with calculated average and standard deviation across folds, as well as minimal and maximum
values separated.

Dataset Metric Fold AVG σ MIN MAX1 2 3 4 5

Pruned R2 0.99935 0.99929 0.99922 0.99921 0.99915 0.99924 0.00007 0.99915 0.99935
MAPE 0.32432 0.33442 0.33379 0.33343 0.35349 0.33589 0.00955 0.32431 0.35349

Complete R2 0.98953 0.98792 0.98766 0.98744 0.98725 0.98796 0.00081 0.98725 0.98953
MAPE 0.41137 0.46954 0.57454 0.43379 0.45549 0.46895 0.05636 0.41136 0.57454
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The score comparison is apparent in the Figure 4. Not only is the a difference in scores,
with pruned achieving better scores—higher for R2 and lower for MAPE. But also, the
pruned dataset shows a better generalization performance. The standard deviation across
folds is 0.0007 for pruned and 0.00081 for original datasets considering R2 metric, and
0.00955 versus 0.05636 considering MAPE. This is apparent in ranges between maximum
and minimal values as well. For pruned the difference between the maximum and min-
imum R2 score is 0.00020, compared to 0.00228 for the original dataset. For MAPE, the
difference between the maximum and minimal score is 0.02916 for the pruned dataset and
0.16318. It can be seen that the differences across folds are a whole magnitude lower for the
pruned dataset in comparison to the complete dataset. All of this points towards the fact
that pruning the dataset of static values which had a low feature importance causes not
only a better performing model but a better generalizing one. Even not taking the general-
ization performance across folds, the minimum value of the best model is higher than the
maximal value for R2 and lower than the minimal for MAPE—making the performance
of the pruned dataset-based model on the worst fold better than the performance of the
complete dataset-based set on its best-performing fold.

Figure 4. Graphical comparison of scores between two datasets.

Comparing the results to the ones achieved by the previous researchers, as shown in
Table 1, the applied methodology achieves significantly better results, when the average
scores are observed, with an improvement of almost 3% when MAPE is observed and
0.02 increase in the R2 score. As the improvement is present even when the focus is given
to the minimal scores, it can be concluded that the given method of using regression
techniques instead of focussing on time-series modeling has a definite merit. The same
holds true when the additional validation is performed on different simulated robots as
shown in the following section.

3.3. Validation of Results on Different Industrial Robotic Manipulators

To further validate the obtained results, the authors have evaluated different industrial
robotic manipulators in a simulated environment. The simulated environment was chosen,
due to lack of access to similar robots to the authors. It has to be noted that this process has
some limitations—for example, any simulated measurements will not include any noise that
may appear during the process of measurement on the real industrial robotic manipulator.
Additionally, a real industrial manipulator may have certain influences which affect its
motor power use—such as the environment temperature, or the component condition,
which are not included within a simulated environment. Despite this, the measurement
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should be similar enough that a prediction can be established. The process of performing
the measurement is done in much the same way as the original data collection. The main
change lies in the fact that there is no connection to the robot controller. Instead, an internal
virtual controller, included in the ABB RobotStudio [20] is used to control the robot and
simulate the measurement. The code used to generate the simulation points is the same,
except the limits of the robots are adjusted to reflect the limits provided by the manufacturer
in the technical documentation and reference of each robot used for validation—as there
are no potential collision points with the environment (e.g., fences, cables, pneumatic
lines. . . ) that exist in the real laboratory environment. The robots selected were: IRB 1010,
IRB 1100, IRB 1200, IRB 1410, IRB 2600, IRB 4600, IRB 5710. The comparison between
the robots is given in Figure 5 The robots were selected as ones having the same virtual
controller and overall configuration of joints and degrees-of-freedom as ABB IRB 120—in
other words, robots capable of providing the same measurements, with multiple different
sizes of robots selected.

Figure 5. The robots used in the validation — in order from left to right: IRB 1010, IRB 120, IRB 1100,
IRB 1200, IRB 1410, IRB2600, IRB 4600, IRB 5710.

Due to this being validation, only ten random points were selected for the database,
resulting in datasets that ranged between 300 and 400 individual data points. The mea-
surement was performed only on the variables remaining after the pruning, according
to the previously presented methodology. Then, the prediction was performed using the
best-performing MLP model given in the previous subsection. The average R2 and MAPE
were calculated between the simulated Total Motor Power and the predicted one, and
given in Table 6, below. In the table, the results for IRB 120 are shown both on the separate
validation set collected in the laboratory environment and within the simulation.

Table 6. The validation results on the simulation data, per robot.

Robot R2 MAPE

IRB 120-laboratory 0.99538 0.34914
IRB 120-simulation 0.98943 0.70443

IRB 1010 0.97658 0.93569
IRB 1100 0.98014 0.81644
IRB 1200 0.97213 0.97089
IRB 1410 0.97025 1.01027
IRB 2600 0.95134 1.11287
IRB 4600 0.95345 1.23064
IRB 5710 0.95152 1.26427

The results show that there is a significant drop in performance between the real and
simulated IRB 120 robot data, with the MAPE increasing from 0.33 to 0.70—more than
doubling. Other robots used in the validation procedure also show drops in performance.
With the error increasing the more different the robot configuration is (this is mostly
addressing the size of the robot). Interestingly, the IRB 1100, which is the ABB replacement
for IRB 120 has the lowest error, after the simulated IRB 120. All the other robots, even



Machines 2024, 12, 225 14 of 17

though the error is increased, still fall within a satisfactory range for MAPE and R2. For
simplicity, the data is also visually represented in Figure 6.

Figure 6. Comparison of validation results across different robots.

4. Conclusions

In the presented work a dataset was collected using an ABB IRB 120 industrial robotic
manipulator. The dataset in question measured a multitude of quantities related to the
position and the speed of the industrial robotic manipulator during the movement. This
dataset was analyzed using RF feature importance metrics—MDI and FP and Pearson’s cor-
relation coefficient. Then, variables that had a low significance according to these features
were eliminated. An MLP was trained using both the full dataset and the pruned dataset.

The evaluation shows that the model trained on the pruned dataset achieves higher
scores compared to the one trained on the original dataset. Comparing the scores, pruning
the dataset shows the improvement in the average R2 score of 0.01128 and the average
MAPE score of 0.13306. The achieved results are better than the results achieved by similar
past research focused on using different network types, proving that regression may be
a useful approach to this type of modeling, as opposed to using time-series modeling. In
addition to this observing standard deviations and minimum/maximum scores across folds
shows a better generalization performance for the model trained on the pruned dataset.
Based on this, the following conclusions are apparent: (RQ1) A data-driven model with
high performance can be developed using the dataset created in this process. (RQ2) Some of
the features, namely the static features describing the position of the robotic manipulator in
the joint and tool spaces, have a significantly lower influence on the output when analyzed
using RF feature importance analysis and Pearson’s correlation coefficient. (RQ3) Not only
does the elimination of the variables with lower influence not hurt the performance, but this
process also improves the performance across all metrics and subsets used in evaluation,
with a smaller neural network.

A limitation of the presented paper is the use of a single industrial robotic manip-
ulator for the dataset creation. Shuffling together data sourced from multiple different
manipulators could show a better generalizing model, that could be more securely applied
to the power use prediction of different robots. Due to the complexity and cost of access-
ing multiple industrial robots for these measurements, this research was kept to a single



Machines 2024, 12, 225 15 of 17

robot—but in the future, based on the positive results it could be expanded to multiple
robots using the same methodology. This could serve to improve the performance of the
model on different industrial robotic manipulators, as the validation shows a significant
drop in performance between models. Future work should also focus on the application of
more advanced regression techniques to test if the results could be improved, even without
resorting to feature importance-based pruning.
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