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Abstract: The paper analyzes the correlation features between stress strength, multiple failure
mechanisms, and multiple components. It investigates the effects of different correlation features
on reliability and proposes a method for structural reliability analysis that considers the joint effects
of multiple correlation features. To portray the stress–strength correlation structure, the Copula
function is utilized and the influence of the correlation degree parameter on reliability is clarified. The
text describes the introduction of time-varying characteristics of structural strength and correlation
parameters. A time-varying Copula is then constructed to calculate the structural reliability under the
stress–strength correlation characteristics. Additionally, a time-varying hybrid Copula is constructed
to characterize the intricate and correlation features of multiple failure mechanisms and components.
The article proposes the variational adaptive sparrow search algorithm (VASSA) to obtain optimal
parameters for the time-varying hybrid Copula. The effectiveness and accuracy of the proposed
method are verified through actual cases. The results indicate that multiple correlation features
significantly influence structural reliability. Incorporating multiple correlation features into the
solution of structural reliability yields safer results that align with engineering practice.

Keywords: correlation; multiple failure mechanisms; structural reliability; time-varying hybrid
copula; VASSA

1. Introduction

Correlation failure is a common issue in mechanical structures [1]. Traditional reliabil-
ity modeling and analysis methods often assume independence, disregarding the impact
of correlation on reliability [2]. To ensure accurate reliability calculations, it is essential
to consider the correlation pattern (such as positive or negative correlation, homotopy,
functional relationship, etc.) and the degree of correlation between variables [3]. Ignoring
the correlation between stress and strength can cause the reliability calculation results to de-
viate significantly from the actual values. This deviation is unfavorable for the performance
evaluation and condition prediction of mechanical structures. It is necessary to address the
correlation between multiple failure mechanisms (such as corrosion failure, static strength
failure, and fatigue failure) and multiple components [4]. If this is the case, the reliability
calculation results based on the independence assumption theory may be overly cautious,
which does not meet the requirements for reliability design and allocation optimization.

In structural reliability engineering, correlation features primarily arise from stress and
strength components, stress–strength [5,6], multiple failure mechanisms [7–9], and multiple
parts [2,10]. Accurately quantifying and characterizing these correlation features is crucial
for constructing a reliable structural analysis and calculation model. The Ditlevsen relia-
bility bounds theory was frequently used to characterize correlation features in the early
period because it is simple to compute and meets general engineering requirements [11,12].
Although the bounds theory and its extension methods can initially solve the correlation
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problem in structural reliability assessment, they are limited by the computational scale
of correlation variables. Therefore, complex and high-precision correlation characteriza-
tion calculations may not be possible. The probability-interval hybrid model effectively
addresses the challenges posed by the increase in correlation variables, such as large calcu-
lation scales and cumbersome computation [13,14]. However, its fundamental approach
remains the conversion of the reliability-solving problem from considering correlation
to one based on independent assumptions. This conversion process may be challenging
to comprehend.

It is assumed that the impact of the early sudden failure is not considered. In this
case, the variable’s correlation can be calculated using the first-pass probability of the
Gaussian process. The correlation between different variables can be considered sep-
arately to determine the system’s reliability. The above methods all rely on extensive
calculations based on correlation coefficients, which have limitations, namely the need
for a more comprehensive representation of the relevant associated characteristics. There-
fore, some scholars have studied the problem of correlation failure reliability solutions
from other perspectives, such as failure form decomposition [15] and correlation sampling
methods [16–18]. Although these methods can improve the accuracy of correlation assess-
ment, they also increase the calculation amount in a specific part of reliability calculation.

The Copula function is a widely used method for portraying and characterizing
correlation features [2,5,6,19]. It is preferred over other methods because it does not re-
quire edge distribution and can quantify correlation with higher accuracy. The function
is respected by many scholars in reliability analysis and assessment, as well as in the
studies of reliability assignment [20], failure mechanism, effects and criticality analysis
(FMECA) [21,22], and performance prediction [23,24]. In practical engineering problems,
the composition of mechanical structures is complex and subject to random service envi-
ronments and the coupling effect of uncertainty factors. Therefore, the correlation char-
acteristics are complex and variable. It is important to note that a single Copula function
can only characterize the correlation or symmetric structure between a specific nonlinear
variable. To overcome this limitation, some scholars combine multiple Copula functions
using weight coefficients to construct a hybrid Copula function [25–27]. The hybrid Copula
function can be adapted to the correlation characteristics of different variables by adjusting
the correlation degree parameter and weight coefficients. This approach is more widely
and flexibly applied than using a single Copula function. The study of correlation charac-
teristics based on the Copula function has significantly expanded the theoretical basis of
reliability analysis of correlation failure. However, most studies are limited to the reliability
of individual correlation characteristics and do not consider the impact of the coupling of
multiple correlation characteristics on the reliability of the structure.

This paper presents a new method for analyzing structural reliability that takes into
account the correlation between stress strength, failure mechanism, and multi-components.
The implementation process is shown in Figure 1. Firstly, a time-varying Copula [28] is
established for a failure mechanism by considering the strength decay and the change
in stress–strength correlation with time. This is used to calculate the reliability under
a single failure mechanism. A time-varying hybrid Copula is established based on the
relevant features of the failure mechanism to calculate the reliability under multiple failure
mechanisms. Finally, a time-varying hybrid Copula is constructed to obtain structural
reliability for the multi-components.

The method proposed in this paper has the following innovations: (1) to improve the
establishment of the reliability model, multiple correlation features are incorporated into
the solution process of structural reliability. (2) A time-varying hybrid Copula is established
by portraying the time-varying correlation parameter, which accurately characterizes the
correlation change law over time and obtains a more accurate analysis of the structural
reliability results. (3) To facilitate more efficient and accurate solving for the unknown
parameter in the time-varying hybrid Copula model, the variational adaptive sparrow
search algorithm (VASSA) is proposed.
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The work is structured as follows: Section 2 details the characteristics of stress–strength
correlation, failure mechanism correlation, and component correlation. Section 3 explains
the construction process of VASSA and how it was built. In Section 4, the performance of
VASSA is validated and the reliability-solving method proposed in this paper is demon-
strated to be correct and practical through two examples. Finally, the paper concludes with
a summary in Section 5.

2. Reliability Modeling of Mechanical Structures Considering Multiple Correlation
Characteristics

Mechanical structures can be affected by random loads and various uncertainty factors,
resulting in multiple variables, failure mechanisms, and couplings. The correlation between
stress and strength is influenced by factors such as part size, loaded condition, and stress
concentration [29,30]. Structural fatigue, corrosion, wear, and other failure mechanisms are
strongly correlated. For instance, corrosion is more likely to cause cracks in the structure,
which in turn can increase the degree of corrosion. To create a more accurate model of
structural reliability, correlations of mechanical structures are divided into stress–strength
correlation, mechanism correlation, and component correlation.

2.1. Reliability Analysis Considering Stress–Strength Correlation

Over time, the reliability of a mechanical part decreases as it is used. The dynamic
stress–strength interference model, illustrated in Figure 2, takes into account the impact of
time on reliability [29]. Thus, the model is supposed to result from a cross-interference be-
tween the strength–decay process {δ(t),t ≥ 0} and the random stress process {S(t),t ≥ 0}.
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Figure 2. Interference modeling of dynamic stress–strength correlations.

2.1.1. Dynamic Stress–Strength Interference Model

Let δ0 be the initial strength of the part and the strength decay process is a stochastic
process with a continuous set of states E and a continuous set of parameters T. The strength
satisfies the following conditions:

(1) E
[
|δ(t)|2

]
< +∞;

(2) dmδ(t)/dt < 0, that is, mδ(t) = E(δ(t)) is a monotonically decreasing function of
time t;

(3) Suppose ∀t1 < · · · < tn < t ∈ T, δ(t1) = x1, · · · , δ(tn) = xn, then the conditional
distribution function of δ is

F( δ, t|xn, · · · , x1; tn, · · · , t1) = F( δ, t|xn, tn) (1)

Typically, the strength decay process of a part can be characterized using a Gamma
stochastic process or set to δ(t) = δ0 + at + ε(t) [31]. a < 0 is the decay coefficient. γ(t) is
the residual and E(ε(t)) = 0. Finite element analysis and experimental or sampling data
can fit the parameters that characterize the strength decay process.

Stochastic stress processes are generally considered to be smooth processes in which
the statistical characteristics of the stress values do not vary with time [31]. Let the initial
stress be S0, then ∀ti ∈ T. The distribution characteristics of Sti is the same as St0 .

(1) E
[
|S(t)|2

]
< +∞;

(2) dmS(t)/dt = 0, that is, mS(t) = E(S(t)) is a constant;
(3) Autocorrelation coefficient RS(t1, t2) = RS(t2 − t1).

2.1.2. Reliability Model Based on Time-Varying Copula

Stochastic stress processes cause structural strength to decay, which in turn reduces the
structure’s ability to withstand random stresses. Therefore, there is a positive correlation
between stress and strength. As explained in Section 2.1.1, strength properties vary over
time. Similarly, the correlation parameter between stress and strength also varies over time.
Let the correlation structure be

F(δ(t), S(t)) = Cθ(t)(u, v; θ(t)) (2)
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where F(·) denotes the joint cumulative distribution function. u = Ft(δ) and v = Ft(S) are
the marginal distribution functions. θ(t) = bt + θt0 denotes the parameter of the degree of
correlation between stress and strength, b is the variation parameter, and θt0 is the initial
correlation parameter.

At the moment t, the dynamic correlation interference reliability of the part is modeled
as follows:

R(t)δ_S = P(δ(t) > S(t)) =
∫ +∞

−∞
ft(s)·

[∫ +∞

s

∂2Cθ(t)(u, v)
∂u∂v

· ft(δ)dδ

]
ds (3)

where ft(s) is the density function of S(t) and ft(δ) is the density function of δ(t). If
δ(t) > S(t), the system is in the safe stage. If δ(t) < S(t), the system fails. When δ(t) = S(t),
the system is in the limit state.

2.2. Reliability Analysis Considering Correlation of Failure Mechanisms
2.2.1. Failure Mechanism Correlation

Multiple failure mechanisms can significantly impact the reliability of mechanical
structures due to the relevance of failure mechanisms. Correlation characteristics between
multiple failure mechanisms are apparent due to the same load, working environment,
material properties, and structural characteristics [32]. For instance, a structure in good
condition with no signs of wear on the surface will be less affected by corrosion. In the
structure of severe wear, corrosion is likely to increase and vice versa. It is important to
analyze the failure mechanisms and construct a corresponding mechanism model. Assum-
ing that the failure behavior of a structure can be characterized by multiple performance
functions with one or more identical components between them or that different failure
mechanisms act together to cause the failure, it can be determined that the reliability is
affected by the correlation of failure mechanisms (as shown in Figure 3).
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2.2.2. Reliability Model Based on Time-Varying Hybrid Copula

If a mechanical part has n failure mechanisms, according to the change in part strength
decay with working time, the distribution of each mode failure life Yi is obtained from
the strength decay model. If the correlation structure of Yi is CY(v1, v2, · · · , vn), then the
reliability of the part at the moment t is

R(t)p = P(Y1 > t, Y2 > t, · · · , Yn > t) = ∆1
F1(t)

· · ·∆1
Fn(t)CY(v1, v2, · · · , vn) (4)

where Yi is the corresponding ith failure mechanism. Fi(t) is the probability that the part
will have the ith failure mechanism before the moment t. The “∆” symbol denotes the
differential operation.

To construct failure mechanism correlations, Copula was chosen for its objectivity
and to avoid singularity. The characterization scope of Copula was expanded on the
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relevant structures, resulting in a hybrid Copula. The Gumbel Copula effectively describes
upper tail correlation features without affecting lower tail correlation features. The Clayton
Copula demonstrates robust lower tail correlation features without affecting overall upper
tail correlations [26,33]. The Frank Copula can balance the imbalance in the upper and
lower tails of the aforementioned Copulas while providing an accurate representation
of correlation features in the intermediate portion [34]. It is important to note that the
three Copulas differ in their emphasis on the representation of correlation structures. A
time-varying hybrid Copula is constructed using these three Copulas as a foundation.
Initially, this study considers the time-varying parameters of the correlation structures.
Three types of time-varying Copulas are established based on the description in Section 2.1.
Subsequently, a time-varying hybrid Copula is constructed to ensure a complete and
rational description of the correlation in the failure mechanism. The time-varying hybrid
Copula can be expressed as

Cm(u, v; a(t), θ(t)) = aG(t)CG(u, v; θG(t)) + aC(t)CC(u, v; θC(t)) + aF(t)CF(u, v; θF(t)) (5)

where aG(t), aC(t), and aF(t) are the weight coefficients of the three Copula of Gumbel, Clay-
ton, and Frank, respectively, all of which are time-varying and aG(t) + aC(t) + aF(t) = 1.
θG(t), θC(t), and θF(t) are the time-varying correlation parameters of the three Copula.
Using Equation (5) instead of the correlation structure in Equation (4) for calculation, the
reliability of the part under the correlation of failure mechanism can be obtained.

Equation (5) reveals that the time-varying hybrid Copula has six unknown parameters.
The structure of the time-varying hybrid Copula, the edge distribution of each failure mech-
anism, and the correlation degree parameter between the failure mechanisms are all time-
varying. This presents a significant challenge for evaluating and solving the time-varying
hybrid Copula. In this complex computational environment, accurately determining the
parameters of the time-varying hybrid Copula is crucial. The auto-regressive moving aver-
age model (ARMA) is an essential method for time series analysis, which can obtain the
time-varying parameters of the hybrid Copula [35]. Constructing the time-varying hybrid
Copula model requires calculating the correlation structure and performance function at
each moment, making it computationally intensive to solve using ARMA. To address this
issue, this paper proposes using the variational adaptive sparrow search algorithm (VASSA)
to obtain the values of unknown parameters in the hybrid model.

2.3. Reliability Analysis under Multi-Component Correlation

Mechanical systems typically consist of multiple components that work together
to achieve the system’s function. As a result, the components are positively correlated.
However, since each component has a distinct function, there is no deterministic correlation
structure between them, making it difficult to quantify the correlation. Section 2.2 uses
a time-varying hybrid Copula to characterize the correlation structure between multiple
components effectively. The failure data of each component were analyzed to assess the
degree of correlation between them. Subsequently, a structural reliability model was
established, taking into account the multi-component correlation characteristics, as per
Equation (5). Finally, the reliability of the mechanical mechanism R(t) was determined,
considering the triple correlation characteristics.

2.4. Reliability-Solving Process under Multiple Correlation Characteristics

Step 1: The structural strength’s stochastic degradation is calculated using the Gamma
stochastic process, based on its changing characteristics over time. This can be expressed as

E(Q(t)) =
at
u

, Var(Q(t)) =
at
u2 (6)
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where Q(t) is the Gamma stochastic process. E(·) and Var(·) are the expectation and
variance, respectively. The a and u are the shape function and size parameter coefficients,
respectively.

Step 2: Obtain the structural stress dataset and calculate the distributional
characteristics.

Step 3: Determine the relevance of the stress–strength dataset using the rank
correlation coefficient as a consistency measure. Let the random variable be (δ, S), if(
δi − δj

)(
Si − Sj

)
> 0, (δi, Si) and

(
δj, Sj

)
are said to be positively correlated. Conversely,

(δi, Si) and
(
δj, Sj

)
are negatively correlated. The commonly used Kendall rank correlation

coefficient is

τ =
2

n(n − 1)

n−1

∑
i=1

n

∑
j=j+1

G
((

δi − δj
)(

Si − Sj
))

(7)

Step 4: The objective of this task is to determine the appropriate Copula choice,
construct the corresponding time-varying Copula and test its goodness of fit using the
statistical squared difference method.

Step 5: Calculate the reliability data under each failure mechanism according to
Equation (3).

Step 6: Analyze the correlation structure between the failure mechanisms and construct
the time-varying hybrid Copula based on the reliability data of each failure mechanism
and Equation (5).

Step 7: To complete the reliability model in multiple failure mechanisms, solve the
unknown parameters of the time-varying hybrid Copula using VASSA and assess the
goodness-of-fit using the Akaike information criterion.

Step 8: Analyze the correlation structure between components and calculate the time-
varying hybrid Copula between multiple components. Then, follow the steps in the sixth
and seventh sections to determine the reliability of the mechanical structure.

3. Variational Adaptive Sparrow Search Algorithm-VASSA

The sparrow search algorithm (SSA) is a novel population intelligence optimization
algorithm based on sparrow foraging and anti-predator behaviors [36]. The bionic principle
of the SSA is to divide the foraging sparrows into explorers and joiners and introduce
an early warning mechanism. SSA has the advantages of easy expansion, good self-
organization, and robustness. The explorer searches a wide range and guides the population
search, while the joiners follow the explorer in searching for better adaptation. Joiners may
monitor the explorer to search for food or compete for it, seeking better adaptation. If the
entire population is at risk, an early warning agent will signal danger and the colony will
engage in anti-predatory behavior, abandoning the current food source and moving to a
safe location. As the population intelligence optimization algorithm approaches the global
optimum, population diversity decreases, making it easier to fall into a local optimum. To
enhance search accuracy and convergence speed, this paper proposes improvements to the
SSA due to the issues mentioned above.

3.1. Initializing Populations Based on Logistic Chaos Mapping

Chaotic motion is a type of random dynamic motion that offers the benefits of ran-
domness and traversal. When computing the optimal solution problem of a function, the
advantages of chaotic motion can make the algorithm more likely to escape local optimal
solutions and improve the exploration ability while ensuring population diversity. The
use of logistic chaos mapping results in a population that is more dispersed and uniform
compared to a randomly generated population, which in turn accelerates the convergence
speed of the algorithm [37]. The mathematical expression for logistic chaos mapping is{

xi
d = lbi + (ubi − lbi)wi

d
wi

d+1 = 4wi
d
(
1 − wi

d
) (8)
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where xi
j is the position of the ith individual in the dth dimensional space. ubi is the upper

limit in the dth dimensional space. lbi is the lower limit in the dth dimensional space. wi
d is

the chaos parameter of the ith sparrow in the dth dimensional space.

3.2. Adaptive Number of Individual Explorers and Improved Explorer Position Update Formulae

The original algorithmic mechanism may cause some joiners to search following the
explorer but this search capability is limited. To enable the algorithm to transition from
global to local search as quickly as possible in later stages, we propose using the adaptive
explorer number model instead of the original explorer model. The expression for the
adaptive explorer number model is

Nexplorer =

{
N
2 , t < T

2
N−1

2 cos t
T π + N+1

2 , t ≥ T
2

(9)

where N is the number of populations and Nexplorer is the number of explorers. t is the
number of current iterations and T is the maximum number of iterations. In the early stage
of the algorithm, the number of explorers is kept at N/2, aiming to keep the algorithm
efficient in global exploration and make the search region more traversable. When the
number of optimization iterations is halfway through, the number of explorers is gradually
reduced to speed up the algorithm’s convergence to perform local search as soon as possible.

In addition, the original algorithm’s formula for updating explorer positions was
changed to [18]

xt+1
i,d =

{
xt

i,d·
2

exp(4i/αT)m , R2 < ST
xt

i,d + QL , R2 ≥ ST
(10)

where α is a uniform random number between (0, 1]. Q is a random number obeying
a standard normal distribution and L denotes a matrix of size 1 × d with elements
all 1. R2 ∈ [0, 1] and ST ∈ [0.5, 1] denote the warning value and the safety value, re-
spectively, with R2 < ST denoting safety and R2 ≥ ST denoting the presence of a predator.
m is a random number between [1, 4].

3.3. Differential Variant Populations

The study randomly selects two individuals from the sparrow population and calcu-
lates the distance between them. The to-be-mutated individual of the joiner undergoes a
vector summation operation using the scale factor and the position of the current optimal
solution. In this paper, we choose the mutation method of DE/rand-to-best/1/bin and the
expression of the position update of the individual to be mutated is

Vi = Mi + λ(Mbest − Xi) + F(Mr1 − Mr2) (11)

where λ is a random number between 0 and 1, this paper takes 0.35. r1 and r2 are both
random numbers between 0 and 1. Mbest denotes the current global optimal solution. F de-
notes the variation scale factor, balancing the global search and local development. When
F is large, the global search for optimality is carried out but the convergence efficiency of
the algorithm will be sacrificed. However, when F is minor, although the convergence
efficiency can be guaranteed, it takes work to jump out of the local optimality search region.
To balance the above problems, this paper introduces a linearly varying variational scale
factor, whose expression is

F = Fmax − (Fmax − Fmin)×
t
T

(12)

where Fmax is the upper limit of the scale factor and Fmin is the lower limit of the scale factor.



Machines 2024, 12, 210 9 of 19

3.4. Optimal Solutions for Cauchy’s Variational Perturbations

If the algorithm converges too fast, the results converge to the local optimal solution.
This paper introduces Cauchy variation for the stochastic optimal solution to jump out of
the local optimal solution [38]. The expression of the Cauchy variation is

f (X) = 1
π × 1

1+M2 , M ∈ R
Mnewbest = Mbest + MbestCauchy(0, 1)

(13)

where Mnewbest is the optimal solution after mutation perturbation and f (X) is Cauchy’s
coefficient of variation.

In summary, the flow of solving the unknown parameters of the hybrid Copula model
using the variational adaptive sparrow search algorithm is shown in Figure 4.
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4. Case Study and Validation
4.1. Performance Validation of VASSA

The performance of VASSA was evaluated using the Sphere and Griewank functions.
The algorithm’s population size was set to 30 and the number of iterations was set to 100.
The convergence curve is shown in Figure 5.

Figure 5 shows that VASSA outperforms the original SSA in terms of convergence
speed and computational accuracy for the two test functions. To provide a quantitative
description of the advantages of the improved algorithms, both algorithms were used to
compute the two functions 50 times. Table 1 displays the optimal solution, worst solution,
standard deviation, and mean value of the computed results.

Table 1 shows that VASSA achieves significantly higher solution accuracies for the
Sphere function compared to SSA. The optimal solution, worst solution, and mean value
of VASSA are improved by 40, 10, and 12 orders of magnitude, respectively. Additionally,
VASSA exhibits better robustness as evidenced by the 10 orders of magnitude improvement
in standard deviation solution accuracy. The Griewank function analysis shows that VASSA
achieves the true optimal solution. Additionally, the solution accuracy and robustness of
VASSA are superior to the original SSA. Therefore, VASSA is a better option for solving the
unknown parameters of the time-varying hybrid Copula function.
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Table 1. Comparison of algorithm calculation results.

Function Name Evaluation Metrics SSA VASSA

Sphere

Optimal solution 4.98 × 102 3.35 × 10−38

Worst solution 2.12 × 103 3.02 × 10−7

Mean value 1.45 × 103 6.95 × 10−9

Standard deviation 4.37 × 102 4.21 × 10−8

Griewank

Optimal solution 2.01 × 10−2 0.00
Worst solution 6.43 × 10−1 1.02 × 10−12

Mean value 2.08 × 10−1 2.38 × 10−14

Standard deviation 1.54 × 10−1 1.77 × 10−13

4.2. Verification of Structural Reliability Calculation Methods under Multiple Correlation Features
4.2.1. Case 1: Connecting Rod Mechanism

Following the logic flow in Figure 1, the stress and strength correlations are first
analyzed, then the failure mechanism correlations are calculated and finally, the correlation
characteristics between multiple components are calculated. In Case 1, there are two failure
components: connecting rod CE and joint D. Among them, connecting rod CE has two
failure mechanisms. In Case 2, there are three failure components: gear, bearing inner
ring, and bearing outer ring. The gear has two modes of failure, while the inner and outer
rings of the bearing are only involved in the analysis and calculation of stress–strength
correlation and multi-component correlation characteristics.

Figure 6 shows a simplified version of the kinematic mechanism of the connecting rod.
The reliability of this mechanism’s motion is mainly affected by the torsional deformation
of the rods and the wear of the rotating joints. The main failures are torsional and fatigue
strength failures of the connecting rod CE and wear failures of the joint D. Table 2 presents
the stress and strength data for each failure.

It is assumed that both strength and stress obey normal distribution and the coefficient
of variation is taken as 0.001. In this case, the strength conforms to the linear decay
model with a degradation rate of 0.02. The reliabilities of the kinematic structure of the
connecting rod in each failure mechanism are calculated separately, as shown in Figure 7.
In Figure 7, RD denotes the reliability of the rotating joint D under wear failure mechanism
and RCE_F and RCE_T are the reliabilities of the rod CE under fatigue failure and torsion
failure, respectively.
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Table 2. Parameters of the connecting rod mechanism.

Parts and
Components

Failure
Mechanism

Mean
Unit

δ S

connecting rod
(CE)

torsional 1.05 × 10−2 0.96 × 10−2 N·m/deg
fatigue 235.00 217.00 Mpa

revolute joint (D) wear 2.00 1.65 mm
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Figure 7. Reliability in each failure mechanism.

The reliability curves show a faster-decreasing trend when considering the stress–
strength correlation feature. For the wear failure mechanism of the rotating joint D and
the torsional failure mechanism of the bar CE, the reliabilities RD and RCE_T are more
significant when considering the stress–strength correlation at the early stage. At a later
stage, reliabilities that take into account stress–strength correlation are smaller than those
without correlation. In terms of the fatigue failure mechanism of bar CE, reliability RCE_F is
always smaller when considering the stress–strength correlation than when not considering
it. During the pre-service period, the correlation parameter undergoes minimal change,
resulting in a small decay degree of strength for each mode. Therefore, reliability is
more significant when considering the stress–strength correlation feature than when not
considering it. However, over time, the correlation degree parameter becomes increasingly
prominent. Therefore, the reliability of considering the stress–strength correlation feature
decreases more than that of not considering the correlation feature. In conclusion, the
stress–strength correlation cannot be ignored in the structural reliability analysis.
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The two failure mechanisms of rod CE are in the same service environment and there
is a complex relationship between them in which they interact and compete. Three Copula
of Frank, Gumbel, and Clayton are selected to construct the time-varying hybrid Copula.
Firstly, the influence of the correlation parameters in the three Copula on the reliability of
the bar CE needs to be explored and the results are shown in Figure 8.
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Figure 8 shows that the parameter for the correlation degree of the Frank Copula
has the greatest impact on the structural reliability described by the time-varying hybrid
Copula, followed by the Clayton Copula correlation degree parameter. The Gumbel
Copula correlation degree parameter has the least impact. Meanwhile, it is important
to note that when the correlation degree parameter reaches a certain size, the reliability
decreases significantly. This suggests that the deviation of the time-varying hybrid Copula
in calculating structural reliability increases. Therefore, it is recommended to limit the
selection of the three Copula within a specific range. VASSA is used to estimate the
parameters of the time-varying hybrid Copula, which characterizes the correlation between
the two failure mechanisms of the bar CE. The reliability of the bar CE is then determined.

CM = 0.2214CFrank(uB1, uB2; θFrank(t)) + 0.3524CClay

(
uB1, uB2; θClay(t)

)
+ 0.4262CGum(uB1, uB2; θGum(t)) (14)

where θFrank(t) ∈ [0.05, 0.6], θClay(t) ∈ (0, 0.8], and θGum(t) ∈ (0, 0.95].
The reliabilities of the bar CE considering the failure mechanism correlation and a

single failure mechanism are given in Figure 9. It can be seen that the reliability of the bar CE
considering the stress–strength correlation and the failure mechanism correlation is lower
than that in either of the independent failure mechanisms. This result proves that the effect
of multilevel correlation on the time-varying reliability cannot be neglected. Otherwise,
the reliability will be overestimated, which will cause safety hazards. The phase of service
in the independent failure mechanism is difficult to define, especially in the middle of
service, where reliability does not level off but declines rapidly. After considering the
correlation of failure mechanisms, three stages are evident from the reliability curves: infant
mortality stage, random failure stage, and wear-out stage. The results show that when a
component has multiple failure mechanisms, it is necessary to consider the correlation of
failure mechanisms and the reliability calculated from this is more scientific and relevant
to reality.

Based on single-part reliability analysis, the reliability of the linkage mechanism
calculated by considering the correlation between multiple parts is shown in Figure 10. The
traditional method primarily calculates the reliability range of a complex system in series.
It considers that the system reliability should be in the interval with the product of the
minimum reliability of parts and the reliability of all parts as the endpoint, that is, the upper
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and lower limits of the reliability interval. As can be seen from Figure 10, the reliability
of the connecting rod mechanism is always within the range of the reliability calculated
by the traditional method, which proves the correctness and robustness of this paper’s
method. The reliability of the mechanical structure can be calculated very accurately by
considering the stress–strength correlation, the failure mechanism correlation, and the
component correlation.
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4.2.2. Case 2: Gear Transmission System

The gear train equipment is shown in Figure 11. Gear failure forms are mainly tooth
surface wear and root cracks. Bearing failure is mainly fatigue failure of the inner ring
and outer ring. The gear wear and crack data are tested in the gear transmission test rig
and then the faulty bearing is disassembled and put into the bearing test rig to detect the
vibration signal. The vibration signal is used as the bearing failure data. The gear and
bearing test results are obtained, as shown in Figure 12.
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Tooth wear test data are given in Figure 12a, root crack test data are given in
Figure 12b,c shows the frequency domain diagram of vibration signals of the inner and
outer rings of the bearing. In the same service environment, pinion gears are more prone
to wear than larger gears. Therefore, only the pinion gear is measured for wear. The
calculation and distribution of gear wear are shown in Figure 12a. The mean and stan-
dard deviation of the maximum wear amount of different gear teeth are counted and the
wear failure threshold is reasonably assumed according to the literature. Calculate the
mean value and standard deviation of the crack expansion rate. Based on engineering
experience, it can be determined that the crack expansion rate is generally in the range of
1 × 10−9~1 × 10−5 and this paper selects 1 × 10−5 as the crack expansion failure threshold.
In addition, when the crack expands to the gear tooth axis, the gear is judged to fail. The
expansion rates of the three tooth root cracks are shown in Figure 12b. Bearing failure
is usually diagnosed on the basis of vibration frequency as established in this paper as
well as the bearing vibration signals collected from experimental tests to assess whether
the bearings are failing or not. The vibration frequencies of the inner and outer rings of
the bearing are shown in Figure 12c. The final statistics obtained the data distribution
characteristics in Table 3.

Table 3. Data characterization of the gear train.

Name Judging Indicators
δ S

Mean Standard Mean Standard

Gear
wear loss/µm 1.50 0.55 1.02 0.11

crack growth rate/(da/dN) 1.00 × 10−5 0.25 × 10−6 4.64 × 10−6 3.70 × 10−6

Bearing the eigenfrequency of the inner ring/Hz 158.46 3.50 152.07 1.28
the eigenfrequency of the outer ring/Hz 129.05 2.20 133.71 1.53

Based on the test data, the reliability analysis of the gear transmission system under
the action of multiple relevant features is carried out. Figure 13 shows the reliability of gears
and bearings in each failure mechanism under the stress–strength correlation structure,
Figure 14 shows the reliability of gears under the correlation of failure mechanism and the
reliability of bearings under the correlation of components, and Figure 15 shows the results
of the reliability of the gear transmission system.



Machines 2024, 12, 210 15 of 19

Machines 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 11. Troubleshooting test bed for gear transmission systems. 

(a) 

 

(b) 

 

Machines 2024, 12, x FOR PEER REVIEW 16 of 20 
 

 

(c) 

 

Figure 12. Test data for each failure mechanism of the gear train: (a) wear of tooth surface; (b) tooth 
root crack; and (c) frequency domain diagram of bearing vibration. 

Tooth wear test data are given in Figure 12a, root crack test data are given in Figure 
12b, and Figure 12c shows the frequency domain diagram of vibration signals of the inner 
and outer rings of the bearing. In the same service environment, pinion gears are more 
prone to wear than larger gears. Therefore, only the pinion gear is measured for wear. 
The calculation and distribution of gear wear are shown in Figure 12a. The mean and 
standard deviation of the maximum wear amount of different gear teeth are counted and 
the wear failure threshold is reasonably assumed according to the literature. Calculate the 
mean value and standard deviation of the crack expansion rate. Based on engineering ex-
perience, it can be determined that the crack expansion rate is generally in the range of 1 
× 10−9~1 × 10−5 and this paper selects 1 × 10−5 as the crack expansion failure threshold. In 
addition, when the crack expands to the gear tooth axis, the gear is judged to fail. The 
expansion rates of the three tooth root cracks are shown in Figure 12b. Bearing failure is 
usually diagnosed on the basis of vibration frequency as established in this paper as well 
as the bearing vibration signals collected from experimental tests to assess whether the 
bearings are failing or not. The vibration frequencies of the inner and outer rings of the 
bearing are shown in Figure 12c. The final statistics obtained the data distribution charac-
teristics in Table 3. 

Table 3. Data characterization of the gear train. 

Name Judging Indicators 
δ  S  

Mean Standard Mean Standard 

Gear 
wear loss/µm 1.50 0.55 1.02 0.11 

crack growth rate/(da/dN) 1.00 × 10−5 0.25 × 10−6 4.64 × 10−6 3.70 × 10−6 

Bearing the eigenfrequency of the inner ring/Hz 158.46 3.50 152.07 1.28 
the eigenfrequency of the outer ring/Hz 129.05 2.20 133.71 1.53 

Based on the test data, the reliability analysis of the gear transmission system under 
the action of multiple relevant features is carried out. Figure 13 shows the reliability of 
gears and bearings in each failure mechanism under the stress–strength correlation struc-
ture, Figure 14 shows the reliability of gears under the correlation of failure mechanism 
and the reliability of bearings under the correlation of components, and Figure 15 shows 
the results of the reliability of the gear transmission system. 

Figure 12. Test data for each failure mechanism of the gear train: (a) wear of tooth surface; (b) tooth
root crack; and (c) frequency domain diagram of bearing vibration.



Machines 2024, 12, 210 16 of 19
Machines 2024, 12, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) (b) 

Figure 13. Reliability of gear and bearing under stress–strength correlation: (a) reliability of the 
gear and (b) reliability of the bearing. 

  
(a) (b) 

Figure 14. Reliability of gears and bearings in different relevant configurations: (a) reliability of 
gears and bearings in different relevant configurations and (b) reliability of bearing under multi-
component correlation. 

 
Figure 15. Reliability of gear transmission system. 

Figure 13. Reliability of gear and bearing under stress–strength correlation: (a) reliability of the gear
and (b) reliability of the bearing.

Machines 2024, 12, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) (b) 

Figure 13. Reliability of gear and bearing under stress–strength correlation: (a) reliability of the 
gear and (b) reliability of the bearing. 

  
(a) (b) 

Figure 14. Reliability of gears and bearings in different relevant configurations: (a) reliability of 
gears and bearings in different relevant configurations and (b) reliability of bearing under multi-
component correlation. 

 
Figure 15. Reliability of gear transmission system. 

Figure 14. Reliability of gears and bearings in different relevant configurations: (a) reliability of
gears and bearings in different relevant configurations and (b) reliability of bearing under multi-
component correlation.

As shown in Figure 13, the reliability of both gears and bearings decreases after
considering the stress–strength correlation feature. The decreasing trend of reliability
after considering stress–strength correlation is greater than the decreasing trend before
considering it. From Figure 13a, it can be seen that tooth face wear has a more significant
effect on the time-varying reliability of gears compared to root cracks. Tooth flank wear is
unavoidable during meshing and gradually increases with the increase in meshing cycles.
The emergence and expansion of cracks have a strong chance and randomness. Although
this paper prefabricated the initial crack of 0.27 mm in the specimen, the relationship
between the crack expansion rate and the meshing cycle has a strong randomness. In
Figure 13b, the reliabilities of the inner and outer rings of the bearings under the stress–
strength correlation feature are overall lower than those without considering the stress–
strength correlation and this result again proves that the stress–strength correlation has an
enormous influence on the reliability.
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Figure 14 shows a positive correlation between tooth surface wear and root crack, as
well as between the bearing inner ring and outer ring. This means that a failure mecha-
nism or component failure can worsen the failure process of another mode or component.
Figure 14a illustrates that tooth surface wear and tooth root crack interact, exacerbating the
gear failure process. Reliability under a single failure mechanism is overly optimistic and
does not accurately reflect the actual reliability of the gear during operation. Figure 14b
demonstrates the impact of multi-component correlation features on reliability, which is
similar to the influence of failure mechanism correlation. The reliability of a bearing repre-
sented by either the inner or outer ring alone is higher than the reliability of the bearing
when considering the correlation of components. Failure mechanisms and correlation
characteristics between multiple components must be considered to avoid overestimat-
ing the reliability of the gear train. This is important for maintenance optimization and
feedback design.

The reliability of the gear transmission system is determined by considering the
relevant failure characteristics between gears and bearings, as shown in Figure 15. The
upper limit of reliability is the minimum value of reliability of gears and bearings at
the same moment and the lower limit is the reliability of gears and bearings in series
connection. The reliability of the gearing system calculated by the method presented in
this paper consistently falls within the range of reliability calculated by the reliability limit
theory. This result demonstrates the accuracy and stability of the method. Compared
to reliability calculation results based on the assumption of independence, the reliability
results calculated using the method proposed in this paper, which considers various related
features, are more realistic and aligned with engineering reality.

5. Conclusions

This paper proposes a new method for structural reliability analysis that considers
the stress–strength correlation, failure mechanism correlation, and multi-component cor-
relation. The method has been proven to be reliable and the calculation results are more
in line with engineering reality, as demonstrated through example analysis. In reliability
analysis of mechanical mechanisms, failure to consider correlation characteristics or only
considering a single correlation can lead to overestimation of structural reliability, which
can result in safety hazards.

(1) Compared to the reliability calculation results based on the independence assump-
tion, the reliability results obtained by considering various related features clearly
demonstrate the different service stages. This proves that the method’s calculation re-
sults align with the pre-estimation of the bathtub curves, avoiding the pitfalls caused
by overestimating reliability. Consequently, it is beneficial for the operation and
optimization of the design;
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(2) After exploring various correlation structures, this study proposes the time-varying
hybrid Copula by combining three different Copula models: Gumbel, Frank, and
Clayton. The results of the example validation demonstrate that the time-varying
hybrid Copula effectively characterizes the variation of time-varying parameters of
the correlation structures. Frank Copula has the most significant influence on the
characterization ability of the time-varying hybrid Copula, while Gumbel Copula has
the most negligible influence;

(3) The time-varying characteristics of relevant parameters and uncertain parameters of
the hybrid Copula, along with the intensity decay process, make it computationally
intensive and challenging to compute the optimal values of the unknown parameters
of the time-varying hybrid Copula. Therefore, this paper proposes VASSA, which
is verified using the Sphere and Griewank functions. The results demonstrate that
VASSA achieves significantly higher accuracy in solving optimal, worst, and mean
value solutions compared to SSA, by more than 10 orders of magnitude. VASSA
exhibits good stability, solution accuracy, and speed.
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