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Abstract: Using modern machines like robots comes with its set of challenges when encountered with
unstructured scenarios like occlusion, shadows, poor illumination, and other environmental factors.
Hence, it is essential to consider these factors while designing harvesting robots. Fruit harvesting
robots are modern automatic machines that have the ability to improve productivity and replace labor
for repetitive and laborious harvesting tasks. Therefore, the aim of this paper is to design an improved
orange-harvesting robot for a real-time unstructured environment of orchards, mainly focusing on
improved efficiency in occlusion and varying illumination. The article distinguishes itself with not
only an efficient structural design but also the use of an enhanced convolutional neural network,
methodologically designed and fine-tuned on a dataset tailored for oranges integrated with position
visual servoing control system. Enhanced motion planning uses an improved rapidly exploring
random tree star algorithm that ensures the optimized path for every robot activity. Moreover, the
proposed machine design is rigorously tested to validate the performance of the fruit harvesting robot.
The unique aspect of this paper is the in-depth evaluation of robots to test five areas of performance
that include not only the accurate detection of the fruit, time of fruit picking, and success rate of
fruit picking, but also the damage rate of fruit picked as well as the consistency rate of the robot
picking in varying illumination and occlusion. The results are then analyzed and compared with the
performance of a previous design of fruit harvesting robot. The study ensures improved results in
most aspects of the design for performance in an unstructured environment.

Keywords: fruit-harvesting robot; rapidly exploring random forest star; convolutional neural network;
visual servoing

1. Introduction

Orchards, characterized by their diverse and irregular landscapes, pose distinctive
challenges for modern machines, especially when it comes to deploying robotic technolo-
gies. Unlike controlled and structured environments, such as greenhouses, these natural
settings are dynamic and often unpredictable [1]. When deploying advanced technology,
such as robots, in these settings, they face obstacles like occlusion, shadows, poor illumina-
tion, and various environmental factors. Therefore, it is imperative to carefully account for
these challenges during the design phase of harvesting robots.

Fruit-harvesting robots represent a significant advancement in agricultural technology
with far-reaching implications for the world. These robots offer numerous benefits that
address critical challenges facing the agricultural industry. First, they alleviate the labor
shortage issue prevalent in many regions, particularly where manual fruit picking is
physically demanding and labor-intensive. By automating the harvesting process, these
robots ensure a reliable and efficient method of fruit collection, reducing dependency
on human labor and mitigating associated costs. Additionally, fruit harvesting robots
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enhance productivity and yield consistency by operating tirelessly and with precision,
optimizing the harvesting process to maximize crop output. Moreover, they contribute to
sustainability efforts by minimizing damage to crops and reducing food waste through
gentle and selective harvesting techniques. By revolutionizing fruit harvesting practices,
these robots pave the way for increased efficiency and profitability in the agricultural sector,
ultimately benefiting both producers and consumers worldwide.

Fruit harvesting robots stand at the forefront of technological innovation, offering a
revolutionary solution to amplify productivity and mitigate the dependency on manual
labor for arduous and repetitive harvesting tasks. These automated robots are not only
capable of streamlining the harvesting process but also possess sophisticated features that
empower them to navigate and function seamlessly in intricate and ever-changing envi-
ronments, particularly in orchards. Through thorough design considerations, these robots
are equipped with advanced sensor systems, computer vision, and artificial intelligence,
enabling them to adeptly tackle challenges such as occlusion, shadows, and insufficient
lighting. Addressing these hurdles in the design phase allows these robots to optimize their
performance and reliability, ensuring they can discern fruits amidst complex vegetation,
navigate through obstructed spaces, and operate efficiently under various lighting condi-
tions. The result is a cutting-edge technology that not only enhances agricultural efficiency
but also marks a significant leap toward sustainable and autonomous agricultural practices.

This study uses a design of a lightweight fruit-harvesting robot using visual servoing
integrated with a convolutional neural network (CNN) to improve the fruit harvesting of
orange fruit. It further uses improved rapidly exploring random tree algorithm (RRT*) to
optimize the path planning of the robot. This paper separately analyzes and evaluates fruit
picking performance with occlusion and without occlusion of fruit and leaves and with
varying illumination. Hence, the novelty of this paper lies in the following aspects:

1. Developing an efficient orange harvesting robot featuring an optimized path-planning
algorithm that utilizes an enhanced RRT* model, ultimately improving the fruit pick-
up time and testing it in a real-time scenario.

2. Creating an improved fine-tuned fruit detection model employing CNN, seamlessly
integrated with position visual servoing, to enhance the precision of robots identifying
high-quality oranges.

3. Conducting a comprehensive performance evaluation of the harvesting machine
across five domains, including precise fruit detection, efficient fruit-picking time,
success rate of fruit picking, damage rate of picked fruit, and consistency of robot
performance under varying illumination and occlusion conditions.

The paper is structured as follows:
Section 1 provides an overview of the study, covering its background, motivation, and

contributions. In Section 2, a comprehensive literature analysis is conducted, focusing on
the current state of the art in fruit-harvesting robots and the foundational principles sup-
porting the study. Section 3 presents the design and methodology used in the development
of the fruit-harvesting robot. This includes a detailed examination of the design structure,
simulation model, algorithms, control system, and experimental setup. In Section 4, the
experimental results are thoroughly scrutinized following extensive testing of the robot
across various parameters such as detection accuracy, pick time, success rate, fruit damage
rate, and consistency of performance. Furthermore, a comparative analysis is conducted
between the performance of this robot and recent studies in the field of fruit-harvesting
robotics. Finally, Section 5 concludes the paper by summarizing the key findings of the
study and offering insights into potential future research directions.

2. Literature Analysis

In the ever-evolving landscape of agricultural robotics, the prospect of commercially
viable fruit harvesting robots has remained a distant prospect, awaiting a breakthrough. De-
spite strides in automation, the complexities inherent in dynamic harvesting environments
have proven to be a formidable challenge. However, the integration of state-of-the-art
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convolutional neural network (CNN) models, integrated with visual servoing, presents
a paradigm shift in redefining the capabilities of these robotic systems. This synergy,
particularly when supported by the rigorous training of custom datasets, holds the key
to substantially improving fruit detection accuracy. Additionally, the strategic deploy-
ment of optimized path-planning algorithms emerges as a cornerstone in not only refining
precision but also streamlining the overall cycle time of the robotic harvesting process.
This convergence of technological advancements signals a pivotal juncture, potentially
propelling fruit-harvesting robots from the realms of experimentation to the threshold of
commercial viability.

Many agricultural machines have been designed for improving agricultural tasks re-
placing manual operations [2]. The fruit-harvesting robot (FHR) is an important automated
machine for improving the productivity of agricultural produce. However, for it to be
commercially viable, it needs to be accurate, fast, and efficient. The pick-up time needs to
be minimal and the success rate for picking quality fruits should be maximal. The pick-up
rate depends on obstacle-free path planning and the shortest path adopted by the robot to
grasp the fruit. The successful picking of quality oranges depends on the proper detection
of the ripe fruit and the gripper being able to pick up fruit without damage. Hence, this
study aims to design an efficient fruit-harvesting robot that addresses these factors.

For the path planning of the robot, many optimization algorithms have been used.
Sadaf et al. [3] compared the most utilized path-planning algorithms for fruit-harvesting
robots, namely probabilistic roadmap (PRM), A*, rapidly exploring random tree (RRT), and
improved rapidly exploring random tree (RRT*) algorithms. After thorough simulation
testing, it was found that RRT* performed better by 21% than other common path-planning
algorithms. This was also verified by Zhang et al. [4] who harvested tomatoes using
RRT* with path length reduced by 24%. Similarly, Wang et al. [5] concluded that for a
fruit-harvesting robot, harvesting time was reduced by 40–60% by using RRT*. Moreover,
Lehnert et al. [6] picked sweet pepper using RRT* successfully avoiding most obstacles.
Furthermore, Wei et al. [7] proposed that improved RRT* avoided obstacles and was
favorable for path planning in unstructured environment.

Fruit detection is an important aspect of fruit harvesting robots. The correct detection
of ripe fruit is only possible with an accurate target fruit detection algorithm. Convolutional
neural network (CNN) has shown great advantage over other object detection methods
due to its greater adaptability, ability to learn hierarchical representations of features, and
its robust nature. Wan et al. [8] used faster R-CNN for the multiple detection of fruits by
means of an existing Fruits 360 dataset. Also, Zhang et al. [9] were able to detect apples for
picking using CNN with an accuracy of 99.4%. Gao et al. [10] was able to detect apples with
an accuracy of 91.67%. The CNN algorithm was also used for the detection of tomatoes
by Lui et al. [11]. Furthermore, Momeny et al. [12] used CNN to detect cherry fruit with
a detection accuracy of 94%. CNN was also used for the detection of kiwi fruit with an
accuracy of 89.6% [13]. Sadaf et al. [14] detected oranges using CNN with accuracy of
93.8%. Similarly, Yin et al. [15] detected grape clusters with an accuracy above 90%, whereas
Liu et al. [16] detected citrus fruit with an accuracy of 95.35%.

Visual servoing deploys visual feedback to regulate the motion of the robot. It uses
images from cameras to compute control signals for the robot’s actuators. The integration of
CNN with visual servoing influences the strengths in image processing and feature extrac-
tion to enhance the precision and adaptability of the visual control system. Park et al. [17]
used visual servoing for cucumber harvesting in a greenhouse environment with a detec-
tion speed of 16–23 fruits per second. Similarly, Li et al. [18] integrated a hybrid visual
servoing control method for fruit harvesting with an average harvesting time of 9.4 s and a
success rate of 96.25%. Shi et al. [19] also deployed visual servoing to improve the repeated
position accuracy of tomato fruit picking. A total of 93% of fruits were successfully picked.
Moreover, Liu et al. [20] used visual servoing and were able to harvest grape clusters in
6.5 s with a success rate of 83.3%.
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The main factors that affect fruit detection are occlusion, illumination, orientation, and
the overlapping of fruit. Hence, to be able to correctly predict the correct success rate and
pick-up time of fruit, testing should be conducted considering the overlapping of fruits,
illumination, and orientation of fruit. Many studies in the recent past have conducted
experimental testing in laboratories and the field to determine the success rate and pick-up
duration of the fruit harvest by the robot. Xiong et al. [21] picked strawberries from a farm
with a success rate up to 97.1% and a pick-up speed of 6.1 s. Similarly, Wang et al. [22]
tested apple harvesting in an orchard with a success rate of 70.77%. Moreover, Yin et al. [23]
harvested citrus with a successful picking rate of 87.2% and a cycle duration of 10.9 s.
Williams et al. [24] also harvested kiwi with a success rate of 86% and cycle duration of
2.78 s. Also, Lili et al. [25] harvested tomatoes in a greenhouse with a detection rate of
99%, success rate of 86%, and cycle time of 15 s. Table 1 shows the recent fruit detection
algorithms used in fruit-harvesting robots and their results.

Table 1. Fruit detection algorithm used in recent studies.

Reference Fruit Year Classification Algorithm Results

Takeshi Yoshida [26] tomatoes 2018 SVM Success rate: 95%

Tao Li [27] apples 2022 CNN Errors reduced by 59%

Hamzeh Mirhaji [28] oranges 2021 YOLO
Accuracy 90.8%

Precision: 91.23%
Recall: 92.8%

Hanwen Kang [29] apples 2020 DasNet v-1
Accuracy: 90%
Recall: 82.6%
F1 score: 0.85

Zan Wang [30] tomatoes 2022 CNN mAP: 96.14%

P.K. Sekharamantry [31] apples 2023 YOLO Precision: 87%
F1 score: 0.98

Lin Hunag [32] oranges 2023 IGA-SVM Accuracy: 98%

T. Hu [33] apples 2023 YOLO mAP: 94%
F1 score: 0.93

Bayu Alif Farisqi [34] guava 2022 CNN mAP: 88%
F1 score: 0.89

Jiaxing Xie [35] litchi 2022 YOLO Precision: 87.1%

T. Yuan [36] tomatoes 2020 SSD Precision: 98.85%

G. Coll-Ribes [37] grapes 2023 CNN mAP: 94.9%

Table 2 displays the path optimization algorithms tested by fruit-harvesting robots.
The main features of the selected algorithms are also highlighted for the relevant fruit.

Convolutional neural networks (CNNs) are a type of deep learning architecture specif-
ically designed for processing grid-like data for tasks like image classification. They utilize
mathematical operations such as convolutions and pooling to extract hierarchical features
from input images, followed by fully connected layers for classification or regression. The
convolution operation applies a filter (kernel) to an input image to produce a feature map.
Mathematically, it is represented as:

Out(x, y) = ∑imax
i−imin ∑jmax

j−jmin f (i, j)g(x − i, y − i) (1)

where f is the input image or feature map, g is the convolutional filter, and Out(x, y) is the
output feature map at position (x, y).
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Table 2. Path optimization algorithm used in fruit harvesting.

Author Year Fruit Algorithm Salient Features

Z. Qin [38] 2021 grapes RRT* Rewiring, optimized path

G. Lin [39] 2021 guava DDPG Versatile, efficient

S. Kothiyal [40] 2021 orange DDPG Sample efficiency, off-policy algorithm

W. Wencheng [41] 2021 grapes RRT Easy implementation, non-optimal

A. Zahid [42] 2020 apple RRT Random samples, suitable for real-time

C. Lehnert [6] 2020 sweet pepper RRT* Efficient, optimal path

P. Kurtser [43] 2020 sweet pepper RRT Suitable for real-time, non-optimal

P. Kurtser [43] 2020 sweet pepper GA Optimal path, flexible, adaptive

Y. Liu [23] 2019 tomato ACO Optimal path, robust

H. Sarabu [44] 2019 apple RRT Efficient, suitable for real-time

L. Wang [45] 2019 apple BSO Global optimization, robust

Magalhães [46] 2019 grapes BiT RRT Efficient, complex implementation

After the convolution operation, an activation function is typically applied element
wise to introduce nonlinearity. Common activation functions include ReLU (rectified linear
unit), sigmoid, and tanh. Pooling operations like max pooling or average pooling reduce
the spatial dimensions of the feature maps. Max pooling, for example, takes the maximum
value within localized regions as shown in Figure 1 below.
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In the final layers of a CNN, fully connected layers perform weighted sums of the
inputs followed by activation functions. Mathematically, this can be represented as:

Output = σ(Wx + b) (2)

where σ is the activation function, W is the weight matrix, x is the input vector, and b is the
bias vector. These equations form the backbone of CNNs and are used iteratively across
different layers to learn hierarchical representations of the input data.

Determining hyperparameters for a convolutional neural network (CNN) involves
a combination of empirical experimentation and domain knowledge. Initially, common
defaults are used, including typical values for learning rate, batch size, number of epochs,
activation functions, and optimizers. Experimentation with the learning rate is essential to
find a balance between convergence speed and stability. Batch size is adjusted to ensure sta-
ble training without excessive memory usage. Network architecture, including layer depth,
filter sizes, and neuron counts, is explored, with popular architectures serving as starting
points. Regularization techniques using dropout help prevent overfitting. Validation or
cross-validation is employed to assess model performance across different hyperparameter
configurations. Automated hyperparameter tuning methods using Bayesian optimization
can systematically explore the hyperparameter space for optimal configurations. By itera-
tively adjusting these parameters and evaluating their impact, the CNN is fine tuned to
achieve optimal performance for the given task and dataset.
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Visual servoing is a technique used in robotics where control commands are com-
puted based on visual feedback to guide the robot toward a desired state or trajectory.
It often involves estimating the pose of an object or scene using vision sensors and then
computing control commands to minimize the error between the desired and current poses.
Mathematically, visual servoing can be represented by the following equation:

u = λJ′ + e (3)

where u represents the control input in terms of joint velocities, λ is a gain parameter, J′ is
the pseudo-inverse of the Jacobian matrix J, and e denotes the error between desired and
current poses. The pseudo-inverse allows for the control of redundant degrees of freedom
in the system. This control law enables the robot to adjust its velocities based on visual
feedback, aiming to minimize the error between the desired and current poses. Adjusting
the gain parameter λ allows for tuning the response of the control system to achieve desired
performance characteristics.

Rapidly exploring random trees (RRT*) is a popular motion-planning algorithm used
in robotics to efficiently explore high-dimensional configuration spaces. It incrementally
builds a tree rooted at the initial configuration by randomly sampling the configuration
space and connecting the nearest tree node to the sampled point. Euclidean distance is
used for estimating the distance between the existing current node and the target node to
reach fruit.

l(n) =

√(
xn − x f ruit

)2
+

(
yn − y f ruit

)2
(4)

where (xn, yn) are the center coordinates of the point at the current position and (x fruit,
y fruit) are the center of the target fruit position.

3. Design and Methodology
3.1. Methodology of Development of Fruit Harvesting Robot

The flowchart in Figure 2 below shows the development and working process of the
orange-harvesting robot for the given research. The process of fruit harvesting begins with
the RGB-D camera capturing high-resolution images of the orchard, which are then fed
into a pre-trained CNN algorithm. The CNN algorithm detects the oranges and makes a
bounding box around them. The fine-tuned algorithm ensures the detection of ripe fruit
only. The localization of the fruit is performed using the RGB-D camera sensor, which
tells the x-, y-, and z-axis location of the nearest fruit. The inverse kinematics computes a
path from end-effector to the fruit, while the path-planning algorithm, utilizing the RRT*
algorithm, optimizes the trajectory, minimizing the path length. The continuous assessment
of the robot’s position and orientation against the desired pose facilitates error calculation,
refining the accuracy of the harvesting process. Visual servoing uses feedback control loops
to adjust the robot’s motion based on visual information obtained from its environment.
By continuously analyzing images captured by onboard cameras, the system can make
real-time adjustments to the robot’s position and orientation. This iterative process ensures
that all ripe fruits are efficiently picked within a single harvesting cycle, optimizing the
yield and enhancing overall productivity.
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3.2. Design of Fruit Harvesting Robot

The five-degree-of-freedom orange-harvesting robot is made with an aluminum frame
with a maximum length of 959.61 mm with weight of only 15.5 kg. The end effector
comprises a three-finger silicon gripper. The RGB-D Kinect camera is mounted separately
in a fixed position. The CAD model is designed on SolidWorks. The torques of each joint
are computed, and actuator selection is conducted. Static analysis is followed by simulation
to ensure the proper movement of the robot. Figure 3 below shows the CAD model and the
actual model of the fruit-harvesting robot.
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Figure 4 below shows the simulation of the five degrees of freedom on Simulink on
MATLAB. The simulation of the CAD model assists in analyzing the movement of the fruit
harvesting robot. Hence, it aids in the path planning of the robot. The Simulink diagram
for a five-degree-of-freedom (DOF) robot serves as a comprehensive virtual environment
for modeling, simulating, and analyzing the robot’s behavior and performance. It allows
for the accurate representation of the robot’s kinematics, enabling the testing of various
control algorithms for motion regulation and trajectory planning. Through simulations, the
diagram facilitates the validation of trajectories and supports the integration of the robot
model with other systems and components.
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3.3. Path Planning of Robot Using RRT*

The proper success of the applied path-planning model can be measured by its ability
to spot a path, evade obstructions and collisions, to form a path that is optimized, and have
the shortest time for path recognition, as well as minimal computational time. RRT* is an
improved option of the RRT model that is precisely considered to explore the nearest route
between two given selections in the configuration space. It is best known for discovering
the shortest route, hence shortening the route travelled by the robot. It is a highly efficient
algorithm as it discovers the vacant zones in a way that prevents the revisiting of the
discovered areas. It can deal with dynamic settings well and evade obstructions when
finding a route. Figure 5 below shows a sample demonstration of the path planning of
RRT* for fruit picking. The green line depicts the simulated path from the end effector to
the target fruit, while blue arrow shows the planned path. The total computation time and
pick-up time result in the total cycle time to pick the fruit.
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Figure 5. Path determination using RRT* algorithm.

The algorithm begins with the creation of a single node representing the initial con-
figuration as seen in Figure 6. Subsequently, it iteratively expands the tree by randomly
selecting points in the state space and extending the tree toward these points. Nodes are
added to the tree based on the closest existing node, and the new node is connected to its
nearest neighbors. The red dots show the iterative expansion of the tree by growing nodes
in space. However, due to the rewiring features, only the shortest path is computed, that is
shown in green. The steps for RRT* are shown in the Algorithm 1 below.

Algorithm 1 RRT* R = (V, E)

Set up ainit, agoal
R
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Figure 6. The node formation process of RRT* algorithm.

Path planning using the improved RRT* algorithm is performed through the given
steps. First, we create the environment map. We define the orchard environment, including
the location of the fruit trees, obstacles, and any other relevant information that the robot
needs to navigate. Then, we use this information to create a binary map. Next, we define
the beginning and goal states. This is performed by marking the starting position and the
goal location of the robot. This is where the robot starts and ends its path planning. Then,
we initialize the RRT* algorithm. This creates an initial random tree, with the start state as
the root of the tree. Now, random samples are generated in the orchard environment and
checked to ensure they are collision-free. Thereafter, the random samples are connected
to the nearest point in the tree, creating new branches. Next, it is checked if the random
sample is close to the goal state and that the path is collision-free and valid. This is followed
by the optimization of the path. If a valid path is found, the path is optimized by removing
unnecessary branches and smoothing the path to reduce the amount of turns and enhance
its efficiency. This feature is called rewiring. The rewiring attribute permits the route
to readapt itself on the basis of the shortest route. Rewiring is a method that comprises
searching for fresh edges on the map to produce new routes, along with discarding routes
that are no longer required. It allows the route to adjust to the variations in the setting. The
procedure of rewiring assists regular improvement in the route, favoring the nearest route
to be formed. Therefore, this technique aids in finding the most effective route by endlessly
upgrading the track by discovering fresh, close-by nodes. As the number of iterations
increases, the probability that a route shall be found also rises exponentially. Then, the
process of generating random samples and connecting them to the tree until a valid path
to the goal is found is repeated. Finally, we implement the optimized path on the robot,
allowing it to navigate through the orchard and reach the goal. Figure 7 below summarizes
the steps for the path planning process.
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3.4. Fruit Detection

Fruit detection is performed by the fruit-harvesting robot through the convolutional
neural network algorithm. The CNN is a model that acquires images and assigns them
weights. Weights are the importance factors or biases that are applied to differentiate
one object from another. It works by organizing their nodes into series of layers. The
outcome from each layer is fed to the succeeding layer for further output generation after
the processing of data. Training data and test data are taken as a ratio of 80:20. The data
set is a custom-designed collection of oranges of different orientation, sizes, illumination,
and fruit occlusion specifically from the fruit picking area of target orchards to increase its
detection accuracy. As the data set is trained for a neural network, it uses a loss function
that determines the inaccuracy margin of the actual output from the desired output. This
information is then deployed to update the weights of the model.

Various convolutional filters are deployed to excerpt various features of the image.
This is the filtering process that helps to improve the predictions of the results. The initial
layer learns the basic detection filters like the edges of the fruit, shape of the fruit, etc. The
middle layers learn further features for the detection of the object like the texture of the
fruit. The last layers learn to detect various orientations, the full object as a whole, and the
higher representative features of the object.

Strides inform how many pixels in the convolutional filter move every time it processes
a group of pixels of the image. Very long strides can result in the slipping of important
image features. Oftentimes, images are padded with empty pixels so that the generated
feature map holds the same dimensions as the original image. The ReLU activation function
is implemented to improve the image features and cut down the noise. Maximum pooling
chooses the maximum values of a pixel of each scanning at every instance within the filter.
The resulting image contains a maximum pooled value representation of the original image.
Table 3 below shows the hyperparameters for the model.

Table 3. Hyperparameters of the fine-tuned CNN model.

Batch Size 64

Neuron number per layer 128

Number of hidden layers 4

Method of Optimization RMSprop

Model loss function Cross-entropy

Activation function ReLU

Kernel size of filters 3 × 3

Number of filters 64

Epoch Number 100

The positive and negative predicted statistics tell us the values of true positives and
negatives along with false negatives and positives of our experimental data. The metrics
are calculated to assess the results of the given algorithm. Figure 8 below shows the
fruit detection process using Kinect RGB-D camera integrated with the CNN model. The
indicators used to assess the performance of the algorithm are accuracy, precision, recall,
and F1 score.
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3.5. Visual Servoing

Visual servoing is an effective technique used in robotics to control the motion of a
robot based on visual feedback from a camera. For our fruit harvesting, a visual servoing
system was deployed to guide the robot’s end effector to a specific location to pick a fruit.
The control system was integrated with the visual servoing system to ensure that the robot’s
motion was accurate and smooth. This involved using sensors, such as RGB-D cameras and
encoders, to provide feedback on the robot’s position and orientation, and then using this
feedback to adjust the robot’s motion in real time. The control system was also responsible
for coordinating the motion of robotic arm joints in the robot to achieve the desired motion.

The control process of position-based visual servoing is used to obtain information
from the camera sensor and compute control signals for output as shown in Figure 9
below. Once the position and orientation of fruit is determined, the control system uses this
information to generate control signals that direct the robot toward the fruit and determine
the best way to reach it by avoiding all obstacles. The encoder outputs a series of digital
signals that determine the position and speed of the robotic arm. It provides real-time
information that is used to accurately position the robotic arm at the required location.
The eye-to-hand camera analyzes the image and determines the distance of the fruit from
the gripper and camera using the triangulation method. Once the position of the object
is determined and distance of fruit to gripper is computed, signals are generated, and the
gripper moves toward the fruit and grasps it. The actuator shall need to be calibrated
to ensure that it responds properly to the control signals. The control system of the
fruit-harvesting robot utilizes visual servoing, leveraging a Raspberry Pi 4 and integrated
drivers to orchestrate the motion of five actuators for precise harvesting operations. The
Raspberry Pi 4 serves as the central processing unit, receiving real-time visual input from
onboard cameras to guide the robot’s actions. Through an image detection algorithm, the
system analyzes the position, ripeness, and accessibility of fruits within the orchard. Using
this information, the Raspberry Pi computes the optimal trajectory for the robot’s five
actuators, each strategically placed to execute harvesting maneuvers with accuracy and
efficiency. Integrated drivers enable seamless communication between the Raspberry Pi
and actuators, translating control commands into precise motor movements. This visual
servoing approach ensures that the fruit-harvesting robot can autonomously navigate
orchards, identify ripe fruits, and execute harvesting tasks with precision and also influence
the computational power of the Raspberry Pi 4 for efficient control and decision making.
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3.6. Experimental Setup and Testing in Laboratory before Real-Time Evaluation

The fruit-harvesting robot was tested with 106 fruit samples. Harvesting situations
were tested for occluded and non-occluded fruits. The test area for robot reachability
was 7 × 7 m without changing the robot base position. The test was conducted with an
illumination of 400 lumens/m2. The sensor for fruit recognition was the Kinect RGB-D
camera. Figure 10 shows the evaluation of the fruit-harvesting robot in the test environment.
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4. Results and Discussion
4.1. Fruit Detection in Real-Time Testing

Oranges are detected in the orchards of Sargodha, Pakistan. Real-time testing is
performed in the orchard of Kot Momin in Sargodha. Fruit harvesting took place in an
orchard which contained 170 orange trees in 15 rows with an inter-row spacing of 5 m. The
trees were 5–8 m high. The first evaluation is performed for orange detection, as shown in
Figure 11. Figure 12 shows the field testing of the orange-harvesting robot. The accuracy,
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precision, recall, and F1 score of the fruit detection model was computed, as shown in
Figure 13. The model shows a precision rate of 98.2%, accuracy of 94%, recall rate of 95%,
and F1 score of 96.6%. Figure 14 below shows the model loss graph for the given selected
epoch number 100.
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Evaluation parameters for fruit detection are based on accuracy, precision, recall, and
F1 score. Using the numbers of true data (true positives and true negatives) and false
data (false positives and false negatives), the accuracy, precision, recall, and F1 score are
computed using formulas below.

Accuracy = (True pos + Trueneg)/(True pos + Trueneg + Falsepos + Falseneg) (5)

Precision =
Truepos

Truepos
+ Falsepos (6)

Recall =
Truepos

Truepos
+ Falseneg (7)

F1score =
2 × precision × recall

precision + recall
(8)

4.2. Cycle Time for Fruit Picking in Real-Time Testing

The cycle time of occluded fruit verses non-occluded fruit is shown in Figure 15
below. The average cycle time for non-occluded fruits was 7.9 s. The average cycle time for
occluded fruits was 6.8 s. The overall average fruit-picking cycle time was 7.2 s. The cycle
time is calculated by the following:

Cycle Time =
(Total time taken for fruit picking)

(No. of fruits harvested)
(9)
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4.3. Success Rate in Real-Time Testing

The success rate of a fruit-harvesting robot hinges on the detection of the fruit, reaching
for the fruit, and grasping of the fruit successfully. Figure 16 below shows the percentage of
success of detection of fruit, reachability toward the fruit, grasping of the fruit, picking of
the fruit, and percentage damage rate for the testing conducted for the harvesting of sample
oranges. The figure below shows the comparison of harvesting success rates for occluded
fruit as well as for no occlusion. Furthermore, Figure 17 below shows the comparison
of harvesting success rates for varying illumination. The success rates for all cases were
tabulated and the average success rate of the fruit-harvesting robot for all cases came out to
be 90.5%, calculated using the formula below.

Sucess Rate =
total no. of fruits sucessfully harvested

total no. of fruits
× 100 (10)
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4.4. Damage Rate in Real-Time Testing

The often overlooked yet crucial parameter in evaluating the performance of a fruit-
harvesting robot is the damage rate, a factor that directly influences the quality of harvested
fruit. Beyond merely picking the fruit, the robot must ensure the integrity of the fruit’s skin
and overall quality. Assessing the damage rate is vital, and the conducted tests revealed
noteworthy insights. Specifically, occluded fruit picking exhibited a higher damage rate
of 11%, while fruit harvested without occlusion displayed a lower rate of 6%, as shown in
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Figure 18 below. Similarly, the damage rate for varying illumination shows damage rate
increases slightly with poor illumination as seen in Figure 19. The observed damages were
predominantly attributed to inaccuracies in the gripping orientation of the end effector,
leading to bruising or the inadvertent peeling of the fruit’s top skin due to pulling at
incorrect angles.

Damage Rate =
total no. of fruits damaged during harvested

total no. of fruits harvested
× 100 (11)
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4.5. Consistency of Fruit Pick-Up in Real-Time Testing

To achieve commercial success, a fruit-harvesting robot must not only successfully
pick fruit but also demonstrate consistent performance. Consistency is a key indicator
of a well-designed and reliable model, ensuring the robot’s ability to function reliably in
diverse agricultural environments. This reliability is crucial for meeting the demands of
precision agriculture, where a consistent and efficient fruit-harvesting process is essential
for long-term success. The integration of reliability with efficiency becomes a hallmark for
the sustained effectiveness of such robotic solutions in the agricultural sector. Figure 20
below shows a comparison of the consistency of the performance of the model for its fruit
pick-up time without presence of occlusion and with presence of occlusion. It can be seen
that the model overall performs consistently for both cases; however, amore consistent
performance can be seen for fruit picking without occlusion.
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4.6. Discussion

In this study, the integration of an improved convolutional neural network (CNN)
model with position visual servoing has yielded promising results for the fruit-harvesting
robot. The enhanced CNN model, trained on a curated custom dataset, demonstrated a
substantial improvement in fruit detection accuracy within dynamic harvesting environ-
ments. This breakthrough not only addressed the persistent challenges associated with
occluded conditions but also showcased the adaptability of the model, improving the
overall accuracy of the model to 94% and precision to 98.2%.

Furthermore, the synergistic utilization of an optimized path-planning algorithm
significantly contributed to the overall efficiency of the robotic harvesting process. By
strategically navigating the robot through its operational space, the algorithm markedly
reduced the cycle time of the entire harvesting operation with an average cycle time of
7.2 s. An average human picking time ranges from 8–12 s. This streamlined approach of the
robot not only bolstered the precision of fruit picking but also rendered the system more
time efficient, a crucial factor in the commercial viability of such robotic applications.

The assessment of the damage rate in a fruit-harvesting robot is a crucial aspect often
underestimated in evaluating its overall performance. Beyond the primary task of fruit
retrieval, preserving the quality and integrity of the fruit’s skin becomes imperative. The
significance lies in preventing bruising and ensuring that the fruit remains undamaged.
The conducted tests highlighted the impact of occlusion, with a higher damage rate of 11%
compared to a lower rate of 6% for fruit picked without occlusion. Notably, damages were
attributed to inaccuracies in the gripping orientation of the end effector, causing bruising
and slight peeling of the top skin due to incorrect pulling angles. This underscores the
importance of assessing the damage rate as a key metric, emphasizing the need for precise
gripping mechanisms to enhance the overall effectiveness of the fruit harvesting robot.

Similarly, this paper also emphasizes that success is not solely dependent on the
robot’s ability to successfully pick fruit; rather, a paramount factor is also its consistent
performance. Consistency is particularly vital in the realm of precision agriculture, where
the demand for a reliable and efficient fruit-harvesting process is paramount for long-
term success. The model designed for a fruit-harvesting robot shows consistent results,
particularly for non-occluded fruits.

Comparing the results with other recent field-tested fruit-harvesting robots, we find
that Yin et al. [23] tested a citrus-harvesting robot in the actual field with a success rate of
87.2% and a pick up time of 10.9 s. Furthermore, Zhang et al. [47] harvested apples in the
field using a four-degree-of-freedom robot using the CNN algorithm for fruit detection
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having a success rate of 82.4% and a pick time of 6 s. The fruit detection accuracy was 90%.
Moreover, Hu et al. [48] also tested a citrus-harvesting robot with a success rate of 90% and
a pick up time of 15 s.

As we consider the implications of our findings, it becomes evident that this integration
has the potential to significantly improve the fruit-harvesting process. The success observed
in this study paves the way for future research and advancements, ultimately propelling
the field toward widespread adoption and practical implementation. The scope of our
study is confined to testing conducted in well-illuminated environments. However, for
future investigations, we recommend expanding the study to encompass scenarios with
varying levels of illumination.

5. Conclusions

Fruit-harvesting robots are an agricultural tool designed to increase the efficiency
of production by accurately and quickly picking quality fruits. A fruit-harvesting robot
contributes to sustainability by reducing reliance on manual labor, optimizing resource
usage, and minimizing food waste through precise harvesting techniques, ultimately
promoting efficiency and environmental responsibility in the agricultural sector. With the
use of a lightweight fruit-harvesting robot having a custom-made dataset and improved
CNN features integrated with position visual servoing, the accuracy of fruit detection is
increased to 94%, with a precision rate of 98.2%, a recall rate of 95%, and an F1 score of
96.6%. The overall average cycle time of fruit picking is 7.2 s, with even less time taken for
picking fruits without occlusion. Furthermore, the average success rate of fruit harvesting
is 90.5%. The average damage rate is 8%, with damage mostly caused due to the wrong
orientation of fruit picking, causing bruising, or due to the occlusion of fruits. These
promising results underscore the viability and efficacy of integrating advanced robotic
systems into mainstream agricultural practices. For future study, damage rate can be
reduced, and grasping quality can be enhanced using improved sensors with the gripper
and on the robot frame. Improved actuators can also help improve the speed of the picking
process further.

Author Contributions: Conceptualization, S.Z. and T.A.; methodology, S.Z.; software, S.Z.; validation, S.Z.,
T.A. and F.R.; investigation, S.Z.; resources, T.A. and F.R.; writing original draft, S.Z.; writing—review and
editing, S.Z., T.A. and F.R.; visualization, S.Z.; funding acquisition, T.A. and F.R. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the grant under letter PHEC/PICRA/20168/5 by the
Punjab Higher Education Commission, Punjab, Pakistan, for this research.

Data Availability Statement: The dataset can be requested on a reasonable request by the mutual
consent of the authors and the funding agencies.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kootstra, G.; Wang, X.; Blok, P.M.; Hemming, J.; Henten, E.v. Selective Harvesting Robotics: Current Research, Trends, and Future

Directions. Curr. Robot. Rep. 2021, 2, 95–104. [CrossRef]
2. Wu, X.; Bai, J.; Hao, F.; Cheng, G.; Tang, Y.; Li, X. Field Complete Coverage Path Planning Based on Improved Genetic Algorithm

for Transplanting Robot. Machines 2023, 11, 659. [CrossRef]
3. Zeeshan, S.; Aized, T. Performance Analysis of Path Planning Algorithms for Fruit Harvesting Robot. J. Biosyst. Eng. 2023,

48, 178–197. [CrossRef]
4. Zhang, Q.; Liu, F.; Li, B. A heuristic tomato-bunch harvest manipulator path planning method based on a 3D-CNN-based position

posture map and rapidly-exploring random tree. Comput. Electron. Agric. 2023, 213, 108183. [CrossRef]
5. Wang, Y.; Liu, D.; Zhao, H.; Li, Y.; Song, W.; Liu, M.; Tian, L.; Yan, X. Rapid citrus harvesting motion planning with pre-harvesting

point and quad-tree. Comput. Electron. Agric. 2022, 202, 107348. [CrossRef]
6. Lehnert, C.; McCool, C.; Sa, I.; Perez, T. Performance improvements of a sweet pepper harvesting robot in protected cropping

environments. J. Field Robot. 2020, 37, 1197–1223. [CrossRef]
7. Wei, K.; Ren, B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an

Improved RRT Algorithm. Sensors 2018, 18, 571. [CrossRef]

https://doi.org/10.1007/s43154-020-00034-1
https://doi.org/10.3390/machines11060659
https://doi.org/10.1007/s42853-023-00184-y
https://doi.org/10.1016/j.compag.2023.108183
https://doi.org/10.1016/j.compag.2022.107348
https://doi.org/10.1002/rob.21973
https://doi.org/10.3390/s18020571


Machines 2024, 12, 151 20 of 21

8. Wan, S.; Goudos, S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput. Netw. 2020, 168, 107036.
[CrossRef]

9. Zhang, H.; Tang, C.; Sun, X.; Fu, L. A Refined Apple Binocular Positioning Method with Segmentation-Based Deep Learning for
Robotic Picking. Agronomy 2023, 13, 1469. [CrossRef]

10. Gao, M.; Ma, S.; Zhang, Y.; Xue, Y. Detection and counting of overlapped apples based on convolutional neural networks. J. Intell.
Fuzzy Syst. 2023, 44, 2019–2029. [CrossRef]

11. Liu, S.; Zhai, B.; Zhang, J.; Yang, L.; Wang, J.; Huang, K.; Liu, M. Tomato detection based on convolutional neural network for
robotic application. J. Food Process Eng. 2022, 46, e14239. [CrossRef]

12. Momeny, M.; Jahanbakhshi, A.; Jafarnezhad, K.; Zhang, Y.-D. Accurate classification of cherry fruit using deep CNN based on
hybrid pooling approach. Postharvest Biol. Technol. 2020, 166, 111204. [CrossRef]

13. Williams, H.A.; Jones, M.H.; Nejati, M.; Seabright, M.J.; Bell, J.; Penhall, N.D.; Barnett, J.J.; Duke, M.D.; Scarfe, A.J.; Ahn, H.S.; et al.
Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 2019,
181, 140–156. [CrossRef]

14. Zeeshan, S.; Aized, T.; Riaz, F. The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using
a Convolutional Neural Network. Sustainability 2023, 15, 4329. [CrossRef]

15. Yin, W.; Wen, H.; Ning, Z.; Ye, J.; Dong, Z.; Luo, L. Fruit Detection and Pose Estimation for Grape Cluster–Harvesting Robot
Using Binocular Imagery Based on Deep Neural Networks. Front. Robot. AI 2021, 8, 626989. [CrossRef] [PubMed]

16. Liu, Y.-P.; Yang, C.-H.; Ling, H.; Mabu, S.; Kuremoto, T. A Visual System of Citrus Picking Robot Using Convolutional Neural
Networks. In Proceedings of the 5th International Conference on Systems and Informatics (ICSAI), Nanjing, China, 10–12 Novem-
ber 2018.

17. Park, Y.; Seol, J.; Pak, J.; Jo, Y.; Kim, C.; Son, H.I. Human-centered approach for an efficient cucumber harvesting robot system:
Harvest ordering, visual servoing, and end-effector. Comput. Electron. Agric. 2023, 212, 108116. [CrossRef]

18. Li, Y.-R.; Lien, W.-Y.; Huang, Z.-H.; Chen, C.-T. Hybrid Visual Servo Control of a Robotic Manipulator for Cherry Tomato
Harvesting. Actuators 2023, 12, 253. [CrossRef]

19. Shi, Y.; Jin, S.; Zhao, Y.; Huo, Y.; Liu, L.; Cui, Y. Lightweight force-sensing tomato picking robotic arm with a “global-local” visual
servo. Comput. Electron. Agric. 2023, 204, 107549. [CrossRef]

20. Liu, J.; Liang, J.; Zhao, S.; Jiang, Y.; Wang, J.; Jin, Y. Design of a Virtual Multi-Interaction Operation System for Hand–Eye
Coordination of Grape Harvesting Robots. Agronomy 2023, 13, 829. [CrossRef]

21. Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and
field evaluation. J. Field Robot. 2019, 37, 202–224. [CrossRef]

22. Wang, X.; Kang, H.; Zhou, H.; Au, W.; Wang, M.Y.; Chen, C. Development and evaluation of a robust soft robotic gripper for
apple harvesting. Comput. Electron. Agric. 2023, 204, 107552. [CrossRef]

23. Yin, H.; Sun, Q.; Ren, X.; Guo, J.; Yang, Y.; Wei, Y.; Huang, B.; Chai, X.; Zhong, M. Development, integration, and field evaluation
of an autonomous citrus-harvesting robot. J. Field Robot. 2023, 40, 1363–1387. [CrossRef]

24. Williams, H.; Ting, C.; Nejati, M.; Jones, M.H.; Penhall, N.; Lim, J.; Seabright, M.; Bell, J.; Ahn, H.S.; Scarfe, A.; et al. Improvements
to and large-scale evaluation of a robotic kiwifruit harvester. J. Field Robot. 2019, 37, 187–201. [CrossRef]

25. Lili, W.; Bo, Z.; Jinwei, F.; Xiaoan, H.; Shu, W.; Yashuo, L.; Zhou, Q.; Chongfeng, W. Development of a tomato harvesting robot
used in greenhouse. Int. J. Agric. Biol. Eng. 2017, 10, 140–149. [CrossRef]

26. Yoshida, T.; Fukao, T.; Hasegawa, T. Fast Detection of Tomato Peduncle Using Point Cloud with a Harvesting Robot. J. Robot.
Mechatron. 2018, 30, 180–186. [CrossRef]

27. Li, T.; Feng, Q.; Qiu, Q.; Xie, F.; Zhao, C. Occluded Apple Fruit Detection and Localization with a Frustum-Based Point-Cloud-
Processing Approach for Robotic Harvesting. Remote Sens. 2022, 14, 482. [CrossRef]

28. Mirhaji, H.; Soleymani, M.; Asakereh, A.; Mehdizadeh, S.A. Fruit detection and load estimation of an orange orchard using
the YOLO models through simple approaches in different imaging and illumination conditions. Comput. Electron. Agric. 2021,
191, 106533. [CrossRef]

29. Kang, H.; Zhou, H.; Wang, X.; Chen, C. Real-Time Fruit Recognition and Grasping Estimation for Robotic Apple Harvesting.
Sensors 2020, 20, 5670. [CrossRef] [PubMed]

30. Wang, Z.; Ling, Y.; Wang, X.; Meng, D.; Nie, L.; An, G.; Wang, X. An improved Faster R-CNN model for multi-object tomato
maturity detection in complex scenarios. Ecol. Inform. 2022, 72, 101886. [CrossRef]

31. Sekharamantry, P.K.; Melgani, F.; Malacarne, J. Deep Learning-Based Apple Detection with Attention Module and Improved Loss
Function in YOLO. Remote Sens. 2023, 15, 1516. [CrossRef]

32. Huang, L.; Chen, Y.; Wang, J.; Cheng, Z.; Tao, L.; Zhou, H.; Xu, J.; Yao, M.; Liub, M.; Chen, T. Online identification and classification
of Gannan navel oranges with Cu contamination by LIBS with IGA-optimized SVM. Anal. Methods 2023, 15, 738–745. [CrossRef]
[PubMed]

33. Hu, T.; Wang, W.; Gu, J.; Xia, Z.; Zhang, J.; Wan, B. Research on Apple Object Detection and Localization Method Based on
Improved YOLOX and RGB-D Images. Agronomy 2023, 13, 1816. [CrossRef]

34. Farisqi, B.A.; Prahara, A. Guava Fruit Detection and Classification Using Mask Region-Based Convolutional Neural Network.
Bul. Ilm. Sarj. Tek. Elektro 2022, 4, 186–193.

https://doi.org/10.1016/j.comnet.2019.107036
https://doi.org/10.3390/agronomy13061469
https://doi.org/10.3233/JIFS-213072
https://doi.org/10.1111/jfpe.14239
https://doi.org/10.1016/j.postharvbio.2020.111204
https://doi.org/10.1016/j.biosystemseng.2019.03.007
https://doi.org/10.3390/su15054329
https://doi.org/10.3389/frobt.2021.626989
https://www.ncbi.nlm.nih.gov/pubmed/34239899
https://doi.org/10.1016/j.compag.2023.108116
https://doi.org/10.3390/act12060253
https://doi.org/10.1016/j.compag.2022.107549
https://doi.org/10.3390/agronomy13030829
https://doi.org/10.1002/rob.21889
https://doi.org/10.1016/j.compag.2022.107552
https://doi.org/10.1002/rob.22178
https://doi.org/10.1002/rob.21890
https://doi.org/10.25165/j.ijabe.20171004.3204
https://doi.org/10.20965/jrm.2018.p0180
https://doi.org/10.3390/rs14030482
https://doi.org/10.1016/j.compag.2021.106533
https://doi.org/10.3390/s20195670
https://www.ncbi.nlm.nih.gov/pubmed/33020430
https://doi.org/10.1016/j.ecoinf.2022.101886
https://doi.org/10.3390/rs15061516
https://doi.org/10.1039/D2AY01874H
https://www.ncbi.nlm.nih.gov/pubmed/36655675
https://doi.org/10.3390/agronomy13071816


Machines 2024, 12, 151 21 of 21

35. Xie, J.; Peng, J.; Wang, J.; Chen, B.; Jing, T.; Sun, D.; Gao, P.; Wang, W.; Lu, J.; Yetan, R.; et al. Litchi Detection in a Complex Natural
Environment Using the YOLOv5-Litchi Model. Agronomy 2022, 12, 3054. [CrossRef]

36. Yuan, T.; Lv, L.; Zhang, F.; Fu, J.; Gao, J.; Zhang, J.; Li, W.; Zhang, C. Robust Cherry Tomatoes Detection Algorithm in Greenhouse
Scene Based on SSD. Agriculture 2020, 10, 160. [CrossRef]

37. Coll-Ribes, G.; Torres-Rodríguez, I.J.; Grau, A.; Guerra, E.; Sanfeliu, A. Accurate detection and depth estimation of table grapes
and peduncles for robot harvesting, combining monocular depth estimation and CNN methods. Comput. Electron. Agric. 2023,
215, 108362. [CrossRef]

38. Qin, Z.; Xiaoliang, Y.; Bin, L.; Xianping, J.; Zheng, X.; Can, X.U. Motion planning of picking manipulator based CTB_RRT*
algorithm. Trans. Chin. Soc. Agric. Mach. 2021, 52, 129–136.

39. Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collison-free path planning for guava-harvesting robot based on recurrent deep
reinforcement learning. Comput. Electron. Agric. Eng. 2017, 33, 55–62.

40. Kothiyal, S. Perception Based UAV Path Planning for Fruit Harvesting; John Hopkins University: Baltimore, MD, USA, 2021.
41. Wecheng, W.; Gege, Z.; Xinlin, C.; Weixian, W. Research on path planning of orchard spraying robot based on improved

RRT algorithm. In Proceedings of the 2nd International Conference on Big Data and Artificial Intelligence, Manchester, UK,
15–17 October 2020.

42. Kurtser, P.; Edan, Y. Planning the sequence of tasks for harvesting robots. Robot. Auton. Syst. 2020, 131, 103591. [CrossRef]
43. Liu, Y.; Qingyong, Z.; Yu, L. Picking robot path planning based on improved any colony algorithm. In Proceedings of the 34th

Youth Acedemic Annual Conference of Chinese Association of Automation, Jinzhou, China, 6–8 June 2019.
44. Sarabu, H.; Ahlin, K.; Hu, A.-P. Graph-based cooperative robot path planning in agricultural environments. In Proceedings of the

International Conference on Advanced Intelligent Mechatronics, Hong Kong, China, 8–12 July 2019.
45. Wang, L.; Wu, Q.; Lin, F.; Li, S.; Chen, D. A new trajectory-planning beetle swarm optimization algorithm for trajectory planning

of robotic manipulators. IEEE Access 2019, 7, 154332–154645.
46. Magalhaes, S.A.; Santos, F.N.D.; Martins, R.; Rocha, L.; Brito, J. Path planning algorithms benchmarking for grapevines pruning

and monitoring. Prog. Artif. Intell. 2019, 11805, 295–306.
47. Zhang, K.; Lammers, K.; Chu, P.; Li, Z.; Lu, R. An automated apple harvesting robot—From system design to field evaluation.

J. Field Robot. 2023, 40, 1–17. [CrossRef]
48. Hu, X.; Yu, H.; Lv, S.; Wu, J. Design and experiment of a new citrus harvesting robot. In Proceedings of the 2021 International

Conference on Control Science and Electric Power Systems (CSEPS), Shanghai, China, 28–30 May 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/agronomy12123054
https://doi.org/10.3390/agriculture10050160
https://doi.org/10.1016/j.compag.2023.108362
https://doi.org/10.1016/j.robot.2020.103591
https://doi.org/10.1002/rob.22268

	Introduction 
	Literature Analysis 
	Design and Methodology 
	Methodology of Development of Fruit Harvesting Robot 
	Design of Fruit Harvesting Robot 
	Path Planning of Robot Using RRT* 
	Fruit Detection 
	Visual Servoing 
	Experimental Setup and Testing in Laboratory before Real-Time Evaluation 

	Results and Discussion 
	Fruit Detection in Real-Time Testing 
	Cycle Time for Fruit Picking in Real-Time Testing 
	Success Rate in Real-Time Testing 
	Damage Rate in Real-Time Testing 
	Consistency of Fruit Pick-Up in Real-Time Testing 
	Discussion 

	Conclusions 
	References

