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Abstract: We present a diverse dataset of industrial metal objects with unique characteristics such as
symmetry, texturelessness, and high reflectiveness. These features introduce challenging conditions
that are not captured in existing datasets. Our dataset comprises both real-world and synthetic
multi-view RGB images with 6D object pose labels. Real-world data were obtained by recording
multi-view images of scenes with varying object shapes, materials, carriers, compositions, and
lighting conditions. This resulted in over 30,000 real-world images. We introduce a new public tool
that enables the quick annotation of 6D object pose labels in multi-view images. This tool was used
to provide 6D object pose labels for all real-world images. Synthetic data were generated by carefully
simulating real-world conditions and varying them in a controlled and realistic way. This resulted
in over 500,000 synthetic images. The close correspondence between synthetic and real-world data
and controlled variations will facilitate sim-to-real research. Our focus on industrial conditions and
objects will facilitate research on computer vision tasks, such as 6D object pose estimation, which are
relevant for many industrial applications, such as machine tending. The dataset and accompanying
resources are available on the project website.

Keywords: dataset; 6D object pose estimation; industrial robotics; sim-to-real; reflective materials

1. Introduction

6D object pose estimation is crucial for industrial robotics [1]. As the manufacturing
industry moves towards High-Mix, Low-Volume (HMLV) production, robots must adapt
to diverse products without human intervention. In the past, robots were limited to fixed
repetitive actions, but HMLV manufacturing requires more flexibility [2]. 6D object pose
estimation enables robots to interact with diverse objects in different compositions. This
eliminates the need for costly and inflexible fixtures, resulting in more adaptable and
precise systems. Despite its significance and the extensive history of research in this area,
6D object pose estimation remains an open problem and an active area of research [3].

Datasets are fundamental to academic research, especially in fields such as computer
vision. They form the foundation for creating and validating new theories and technolo-
gies. Prominent benchmarks, like the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [4], Common Objects in Context (COCO) [5], the KITTI Vision Benchmark Suite
(KITTI) [6], and the Benchmark for 6D Object Pose Estimation (BOP) [7], have become
synonymous with progress in image recognition, object detection, and more recently, 6D
object pose estimation. These benchmarks rely on real-world datasets to evaluate the effec-
tiveness of different methods, measure progress, and compare advancements. In addition,
learning-based approaches have outperformed traditional techniques in many computer
vision tasks [8]. Datasets play a critical role in training these methods. The extent and
depth of the data used in training are crucial factors in these systems’ ability to generalize
to new, real-world scenarios.

Creating high-quality datasets for 6D object pose estimation is a difficult task. Labeling
the six degrees of freedom that define an object’s pose is a complex, time-consuming process
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that requires great attention to detail. Moreover, it is challenging to ensure the accuracy
of these labels. Synthetic data have emerged as a potential alternative to manual labeling.
Recent advances in computer graphics make it feasible to generate large amounts of labeled
data. Some 6D object pose estimation datasets adopt this strategy [9,10]. However, the re-
sulting images often fail to capture essential aspects of their real-world counterparts, like
object materials, scene compositions, lighting, and camera viewpoints. Variations between
synthetic and real-world data can significantly hamper model performance—the so-called
reality gap [11]. A proposed solution to the reality gap is domain randomization [12],
in which parts of the data generation process are randomized. With enough variability,
real-world data may appear to be another variation. However, generating enough variability
to envelope real-world data points is non-trivial. Many variations are wasteful and can
unnecessarily increase the task difficulty [13]. Matching the distribution of real-world data
through synthetic data generation is a significant challenge. Additionally, generating high-
quality synthetic data requires significant computational power and storage capabilities.
Balancing the quality and quantity of data while keeping computational and storage costs
in check requires careful planning and strategic decision-making. It is difficult to determine
which variations are valuable, as existing datasets do not provide information about the
variations used in the data generation process. Currently, no datasets exist that enable
sim-to-real research on these variations for industrial settings.

In recent years, there has been significant progress in performance in the task of 6D
object pose estimation and progress on current datasets is slowing [8]. Therefore, it is
crucial to focus on more challenging conditions to maintain the momentum of technological
progress and ensure that research remains relevant and capable of addressing complex
real-world applications. Many existing datasets for estimating the pose of 6D objects have
limitations, which make them less applicable to industrial scenarios. The Benchmark for
6D Object Pose Estimation (BOP) [7] unifies 12 datasets, of which the majority focus on
household objects, which differ significantly from industrial ones [14]. Household objects
are often non-symmetric with diverse textures, making them easier to identify and position.
However, industrial objects are often symmetrical and lack discernible textures, making
them more challenging to estimate accurately. Additionally, the reflectiveness of many
industrial objects and environmental factors like scratches, dust, or dirt can further com-
plicate this process. Other datasets incorporate textureless industrial objects [15,16] but
focus on objects with limited reflectivity. However, reflective materials are widespread.
For example, most high-precision machine components are made of shiny metals. These
objects are particularly interesting as depth sensors cannot capture them correctly [17,18].
Secondly, most current 6D pose estimation datasets rely on single-view images, leading
to appearance and depth perception issues [19]. However, in many industrial settings,
multi-view approaches can be used to circumvent these ambiguities. Images can be cap-
tured from different viewpoints using multi-camera or eye-in-hand setups, enriching the
information available.

To summarize, existing datasets present a significant sim-to-real gap, provide no
information about the variations in data generation, focus on single-view scenes, and are
irrelevant for industrial use cases. We aim to overcome these limitations by presenting the
following contributions:

• A collection of over 30,000 real-world images depicting industrial metal objects. These
images showcase objects of varying shapes, materials, composition types, carriers,
and lighting conditions. They were captured using different cameras and from multi-
ple angles;

• A collection of over 500,000 synthetic images. We provide synthetic counterparts for all
real-world images, along with additional images that were generated by varying envi-
ronmental conditions, such as lighting, object materials, object positions, and carriers
in a controlled manner.

Figure 1 shows an example of a real-world image and its synthetic counterpart.
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Figure 1. Side-by-side comparison of a real-world image (left) and its synthetic counterpart (right).

Figure 2 illustrates the challenges encountered in handling objects that are highly
reflective and lack texture. Although 3D sensors and methods that are trained on large
datasets can effectively deal with objects that have texture and are non-reflective, they face
significant difficulties when it comes to dealing with industrial parts and backgrounds that
lack texture and have high reflectivity.

Figure 2. Depth sensors and methods trained on existing datasets perform poorly for reflective
objects. RGB image (left), depth image (center), and object segmentation (right) for a scene with
textured, non-reflective objects (top), and textureless, reflective objects (bottom). Depth images were
recorded using a RealSense L515 Lidar camera. Object segmentation masks were obtained using
Segment Anything [20], without any additional fine-tuning. The query point is shown (green) in
addition to the obtained mask (blue).

In addition to our dataset, we provide an open-source tool that enables users to easily
label 6D object poses for multi-view data. Correspondences between image pixels and
object CAD points can be marked to calculate coarse object poses. The tool then overlays
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the object CAD file on the image, allowing users to fine-tune the 6D pose label using 3D
position tools. It handles multi-view images, jointly labeling all views, improving accuracy,
and reducing labeling effort.

Our dataset has significant value for various industry-relevant research problems. The
congruity between synthetic and real-world data and controlled variations will facilitate
sim-to-real research. Our dataset is conducive to researching several vital computer vision
tasks involving industrial objects. We focus our discussion on 6D object pose estimation,
but our dataset also applies to object detection, instance segmentation, novel view synthesis,
3D reconstruction, and active perception.

In addition to our dataset, we provide an open-source tool that enables users to easily
label 6D object poses for multi-view data. Many specialized tools exist for labeling computer
vision data. Prominent platforms, such as V7 [21], Labelbox [22], Scale AI Rapid [23],
SuperAnnotate [24], Dataloop [25], Supervise.ly [26], and Segments.ai [27], have established
themselves as key players in this field. Each platform offers a unique set of features
tailored to specific annotation needs, such as classification, object detection, key points,
and segmentation. However, it is noteworthy that these tools do not support labeling 6D
object poses, which involves annotating the three-dimensional position and orientation of
objects in space. This complex task requires a higher degree of precision and understanding
of spatial relationships, which is not typically addressed by standard annotation tools.
Furthermore, most of these platforms do not emphasize the consistency of labels across
different viewpoints and sensor types, except for Segments.ai. This consistency, however, is
crucial for developing robust computer vision models that can reliably interpret data from
various perspectives and sensors, which is key for many real-world robotics applications.

Only a few tools are available that enable the precise labeling of 6D object poses,
highlighting a niche but significant area in the field of data annotation for computer vision.
Table 1 gives an overview of the tools for 6D object pose estimation.

Table 1. Comparison of tools for labeling 6D object poses.

Tool Multi-View Robustness to Reflections Ease of Use 1

6D-PAT ✓ **
Labelfusion ✓ ***

DoPose ✓ *
Ours ✓ ✓ ****

1 Ease of Use is rated from * to **** where * represents the lowest ease and **** indicates the highest. For a detailed
explanation, refer to Appendix A.

6D-PAT [28] closely resembles the functionalities of our tool but does not support
labeling multi-view images with consistent labels across views. DoPose [29] has limited
capabilities and also lacks support for multi-view data. This feature is essential for creating
datasets where the same object is observed from various angles, ensuring consistent and
accurate labels in 3D, which, in turn, is crucial for robotics applications. Labelfusion [30]
relies heavily on 3D reconstruction and Iterative Closest Point (ICP) algorithms. However,
these methods are not suitable for dealing with images of reflective objects, which is a
limitation that significantly impacts the tool’s applicability in many industrial contexts
where reflective surfaces are common.

Our tool addresses these specific gaps. It is unique in its capability of labeling multi-
view-consistent 6D object poses, which is critical for achieving spatial accuracy in 3D.
Additionally, it introduces a wide range of unique features that streamline the labeling
process, making it more versatile and efficient for complex 6D pose labeling tasks. This is es-
pecially important in scenarios where multi-view consistency and precision are paramount,
such as in high-precision robotics tasks.
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2. Materials and Methods

First, we introduced a data format that is based on the BOP format [7] and is specif-
ically designed for multi-view 6D object pose data with controlled conditions. Next, we
established a system that allowed us to collect real-world data with different camera
and conditions. With this system, we gathered a significant real-world dataset of indus-
trial metal objects. To label the collected dataset, we developed a specialized tool that
is dedicated to the annotation of 6D object poses. Finally, we detailed our approach for
producing high-fidelity synthetic data that closely replicates real-world conditions, along
with controlled variants.

2.1. Data Format

We adopted and extended the BOP format [7]. The goal of BOP is to capture the state-
of-the art in 6D object pose estimation. The benchmark provides 12 datasets in a unified
format. The format incorporates camera intrinsics and extrinsics. However, for multi-view
datasets, the provided per-image object labels often do not match in a shared world frame.
In addition, no information is provided about the conditions in which scenes were captured.
We extended this format to include this information. Object labels in a joint world frame
were added, along with information about the lighting, carrier, and object composition type.
Additionally, we included drawings that can be used to construct each of the objects, so they
can be used in real-world experiments. The resulting folder structure is shown in Figure 3.
All distances are recorded in mm, coordinate systems are right-handed, and matrices and
vectors are flattened, following the BOP convention.

Figure 3. Folder structure of our dataset. Our dataset contains a sub-folder with object CAD models
and sub-folders for each camera (real and virtual). These camera folders contain sub-folders for
each scene. Each scene folder contains a sub-folder with multi-view images and json files with
accompanying information. We adopted the BOP format and extended it (marked in red).

Object CAD models are stored in PLY format in models. models_info.json con-
tains information about the size and symmetries of each object, as shown in Listing 1.
Continuous symmetries are described by axis and offset values, discrete symmetry by
transformation matrices.
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Listing 1. models_info.json contains information about the CAD models.

{
"< o b j e c t id> " : {

" diameter " : 3 0 0 . 0 ,
" min_x " : −12.5 ,
" min_y " : −12.5 ,
" min_z " : −150.0 ,
" s i z e _ x " : 2 5 . 0 ,
" s ize_y " : 2 5 . 0
" s i z e _ z " : 3 0 0 . 0 ,
" symmetries_continuous " : [

{
" a x i s " : < ( 3 , ) > ,
" o f f s e t " : < ( 3 , ) >

} , . . .
] ,
" symmetr ies_discre te " : [

< ( 4 , 4 ) > , . . .
]

} , . . .
}

Technical drawings that can be used for manufacturing the various parts are contained
in construction. Scenes are organized by camera type (both real and virtual) and identified
by a unique id. scene_camera.json contains camera intrinsics and extrinsics for each
image, as shown in Listing 2.

Listing 2. scene_camera.json contains camera intrinsics and extrinsics for each image.

{
"<image id> " : {

"cam_K " : < ( 3 , 3 ) > ,
" cam_R_c2w " : < ( 4 , 4 ) > ,
" cam_t_c2w " : < ( 3 , ) >

} , . . .
}

Object poses are recorded in scene_gt.json and scene_gt_world.json, as shown
in Listings 3 and 4. For each image, scene_gt.json contains object poses relative to the
camera reference frame. As poses are consistent between different viewpoints, we also
record object poses in a shared global reference frame (scene_gt_world.json).

scene_info.json contains information about the data generation process, as pre-
sented in Listing 5. For each image, we record which lighting conditions apply, which carrier
is used, the type of composition (heterogeneous or homogeneous), and the camera view-
point. This information allows selecting sub-sets on the data based on specific variations.
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Listing 3. scene_gt.json contains object poses (relative to the camera) for each image.

{
"<image id> " : [ {

"cam_K " : < ( 3 , 3 ) > ,
"cam_R_m2c " : < ( 4 , 4 ) > ,
" cam_t_m2c " : < ( 3 , ) > ,
" ob j_ id " : 2 ,

} , . . . ]
}

Object poses (relative to a global world reference) are contained in

Listing 4. scene_gt_world.json. These poses are valid for all images.

{ [
{

"cam_K " : < ( 3 , 3 ) > ,
"cam_R_m2w " : < ( 4 , 4 ) > ,
"cam_t_m2w " : < ( 3 , ) > ,
" ob j_ id " : 2

} , . . .
] }

Information about the data generation process for each image is contained in

Listing 5. scene_info.json.

{
"<image id> " : {

" l i g h t " : <lightmap_id> ,
" c a r r i e r " : < c a r r i e r _ i d > ,
" p a r t s " : <0 ( mix ) | ob j_ id> ,
" viewpoint " <viewpoint_id> ,

} , . . .
}

2.2. Real-World Data

We used different camera sensors (Table 2) mounted on an industrial robot to capture
multi-view images of diverse scenes. Figure 4 shows the setup for collecting real-world
data. Figure A1 shows images of each of the sensors. A custom-designed end-effector
attached all cameras to a Fanuc M20ia robot, as shown in Figure 5. With a repeatability of
0.1 mm, the robot was used to change camera viewpoints accurately. We further stabilized
camera poses by canceling backlash using the Fanuc instruction IRVBKLSH. We calibrated
all cameras using ChArUco targets, undistorted all images, and performed hand–eye cali-
bration [31]. We used high-precision aluminum-LDPE calibration targets with DICT_5x5
dictionary codes and 15mm-wide checkers. ChArUco detection and calibration were imple-
mented using OpenCV [32]. Each scene was captured with every camera from 13 different
viewpoints. Figure A2 shows images of each of the viewpoints. These viewpoints were
spread out on a hemisphere and oriented towards the center of the object carrier, as shown
in Figure 6.



Machines 2024, 12, 99 8 of 20

Table 2. The different cameras used for capturing real-world image data.

Camera Manufacturer Lens Type Resolution

GO-5000-PGE JAI (Copenhagen, Denmark) KOWA LM12HC-V RGB 2560 × 2048

mvBlueFOX3-2124rG-1112 Balluff (Neuhausen auf den
Fildern, Germany) MV-O1218-10M-KO Grayscale 4064 × 3044

RealSense L515 Intel (Santa Clara, CA, USA) RGB, LiDAR 1920 × 1080
RealSense D415 Intel (Santa Clara, CA, USA) RGB, Active IR Stereo 1920 × 1080

Figure 4. Oursetup for collecting real-world images. We captured multi-view images of diverse
scenes using different camera sensors mounted on an industrial robot.

Figure 5. Different camera sensors were attached to the end-effector of an industrial robot.
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Figure 6. Top-viewvisualization of all 13 camera viewpoints. These viewpoints were spread out in a
hemisphere, centered around and oriented towards where objects were placed.

Varying object shapes, materials, carriers, compositions, and lighting created diverse
scenes. Figure A3 shows example images with different objects, carriers, compositions, and
lighting types. The selected variations were meant to imitate realistic variations that occur
in industrial settings, specifically in metal manufacturing factories. We used six object
categories, shown in Figure 7, with different shapes and material properties. Most objects
(Figure 7a–d) were highly reflective and exhibited real-world features like scratches and
saw patterns. These objects represent raw or half-finished workpieces. We also included
less reflective (Figure 7e,f) and textured objects (Figure 7e) for comparison. These objects
represent finished workpieces. We used three object carriers, as shown in Figure 8. In
manufacturing environments, objects are usually transported in bins or on pallets, with or
without cardboard. Parts are stacked in various compositions with different levels of
occlusion. Lighting conditions were varied by controlling Nanguan Luxpad 43 lights. We
replicated both daylight and nighttime conditions, with and without factory lighting.

(a) Cylinder (b) Small block (c) Large block

(d) Shaft (e) Red block (f) Red cylinder

Figure 7. Object categories. We used objects from 6 categories with different shapes and material
properties. Most objects (a–d)were highly reflective and exhibited real-world features like scratches.
For comparison, we also included less reflective and textured objects (e,f).
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(a) (b) (c)

Figure 8. Objects were placed on three different types of carriers: (a) pallet; (b) bin; (c) cardboard.

2.3. Labeling Tool

To label the recorded real-world data and, more generally, the datasets stored in the
presented format, we developed a tool for the quick and accurate labeling of 6D object
poses that are consistent across multiple views. Labeling 6D object poses on 2D images can
be time-consuming and tedious. An object’s six degrees of freedom interact in intricate
ways, making it difficult for annotators to bridge the gap between the 2D image and the
object’s actual 3D position and orientation. In addition, labelers must understand 3D
perspectives and correctly handle object occlusions. Achieving 3D accuracy is crucial for
industrial robotics applications, where sub-millimeter precision is often required. However,
minor errors made during labeling in pixel space can lead to significant errors in 3D space.
For example, moving objects along the camera’s z-axis can lead to a big difference in their
3D position, with minimal pixel changes. We address these challenges by providing an
intuitive user interface and allowing for the joint labeling of multi-view images. Figure 9
shows the labeling tool.

Figure 9. Screenshot ofthe labeling tool. Users can reload or save the data on the left, scroll through
the available scenes, and manage object labels. Next, users can scroll through images of the selected
scene, assign the correct part type, and manually edit the pose. In the center, a visualization of the
labeled objects is shown on top of the selected image, along with the controls used to interact with
the pose of the selected object. Users can change the opacity of the objects overlaid on the image.
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2.3.1. Workflow

Figure 10 shows the workflow of our labeling tool.

Load dataset

Select scene

Label object

new

existing

Select category Mark correspondences Calculate pose

Fine-tune pose

Figure 10. Labeling tool workflow.

After loading a dataset, users can browse the available scenes and select one. To
create a new object label, users first select the object category. Then, an initial pose can be
calculated after marking at least four correspondences between image pixels and points on
the object CAD model. Figure 11 shows the interface for marking correspondences.

Figure 11. After definingcorrespondences between image pixels and points on the CAD model of the
object, the 6D pose of the object can be calculated.

Once this initial pose has been calculated, users can fine-tune it using the interactive
controls provided by the visualization. These controls allow for changing the 6D object
pose, including translation and rotation along all axes or planes. Additionally, users can
incrementally update the pose by moving fixed steps along all axes. The alpha and color of
each object can be changed to improve the visualization.

The entire dataset can be saved at any moment.
It is essential to note that object poses are configured on a per-scene level. This

means that users can adjust the pose of the same object across different views, significantly
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improving the 3D accuracy of the 6D object poses. This feature also speeds up the labeling
process for multi-view data.

2.3.2. Technical Details

The tool is a web-based application that uses Python for the back end and Angular
for the front end. The back end runs on a RESTful API and relies on OpenCV and Scipy
for all calculations regarding 6D object poses. For all 3D visualizations and interactions,
ThreeJS is used. To ensure a perfect match between the provided RGB images and the 3D
visualizations, high-quality object models and camera intrinsics and extrinsics are necessary.

2.4. Synthetic Data

Using a Unity project, we generated high-fidelity synthetic data. Real-world conditions
were carefully simulated. We adopted camera intrinsics and extrinsics and model objects
and carriers. Environment maps of the different real-world lighting conditions were
created by combining bracketed images. We used a Rico Theta S 360° camera to capture the
environment with different exposures. The resulting images were combined into a single
HDRI environment map to light the virtual scene. We mimicked real-world features like
scratches and saw patterns by synthesizing textures from real-world images of example
objects. These images were relighted and cropped to be used as albedo textures. A normal
map was created by estimating normal vectors from these textures. A texture synthesis
algorithm was then used to create new variations of the captured textures. This texture
synthesis algorithm works in two steps. First, random patches are taken from an example
image. Next, to reduce seams between copied patches, pixels search their neighborhood
for similar pixels and update their value accordingly. This step is repeated multiple times,
reducing the radius of the neighborhood with each turn until the neighborhood consists of
a single pixel. This procedure generates unique and realistic appearances for every virtual
object. Figure 12 shows a close-up of multiple generated object textures. Our synthetic data
generation setup resulted in synthetic images that resemble their real-world counterparts.

Figure 12. Close-up of a synthetic image. Our texture synthesis algorithm leads to realistic object
textures, exhibiting real-world features like scratches and saw patterns. The use of path tracing leads
to realistic reflections.

A large amount of additional data were generated by varying object material, com-
position, and lighting types. Object materials were generated using the texture synthesis
algorithm described before, using additional example images. We used Unity’s physics
engine to generate physically plausible object poses, starting from random initializations.
Lighting was varied by randomly selecting an environment map from a predefined set. As
we were in total control of the data generation process, labels were free. Generating 1 scene
took 2 min using an NVIDIA GeForce 2080 Ti.
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3. Results
3.1. Real-World Data

In total, we recorded 600 real-world scenes (Table 3), resulting in 31,200 real-world
images (Table 4). Table 3 shows an overview of the variations in object compositions.
Table 4 shows the resulting scene variations. All images were manually labeled using
the labeling tool presented before. As we carefully calibrated each camera, object labels
correspond across images from different viewpoints and for different cameras.

Table 3. Composition variations in real-world data. We used six object types. For each object type, we
recorded two compositions with a single instance and eight with multiple instances (homogeneous).
In addition, we created 40 compositions with objects of different types (heterogeneous). This resulted
in 100 different compositions.

Category # Variations

Object types 6
Single object 2
Multiple objects (same type) 8

Homogeneous 6 × (2 + 8) = 60
Heterogeneous 40

Compositions 60 + 40 = 100

Table 4. Scene variations in real-world data. All composition variants were recorded for each
carrier (3) and lighting condition (2), resulting in 600 scene variations. Using four different cameras,
each recording from 13 different viewpoints, resulted in 31,200 images.

Category # Variations

Compositions 100
Carriers 3
Lighting 2 (light or dark)

Scenes 100 × 3 × 2 = 600
Camera’s 4
Viewpoints 13

Images 600 × 4× 13 = 31,200

3.2. Labeling Tool

To assess the accuracy of our labeling pipeline, we manually labeled ten synthetic
scenes for which exact groundtruth poses were available with both multi-view and single-
view 6D object poses. We measured pose errors using the Maximum Symmetry-Aware
Surface Distance (MSSD):

eMSSD = minS∈SO maxx∈VO∥P̂ x − P̄Sx∥2,

with P̂ denoting the estimated pose, P̄ the ground truth pose, SO a set of symmetry trans-
formations, and VO a set of vertices of the object CAD model. Table 5 shows the results.
Labeling multi-view images resulted in labels with significantly lower MSSD error scores.
In addition, the speed of labeling increased as multi-view images were labeled together.
Using our dataset, with 13 images per scene, led to a 13-fold reduction in labeling time.

Table 5. Labeling accuracy. Labeling multi-view data significantly reduced the MSSD error.

Category eMSSD

Single-view 4.53
Multi-view 0.267
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3.3. Synthetic Data

In total, 42,600 synthetic scenes were generated, resulting in 553,800 synthetic images
(Table 4). Table 6 shows the synthetic variations for each real-world scene. Figure 13 shows
an example of a real-world image and synthetic variants with different lighting conditions.

Table 6. Synthetic variations of a real-world scene. First, each real-world scene was replicated by
mimicking object poses and lighting conditions. Next, lighting conditions were varied while retaining
object poses. Next, object poses were varied, while using the original lighting conditions. Finally,
both lighting conditions and object poses were jointly varied. Object textures were regenerated for
each recording. This resulted in 71 synthetic variations for each real-world scene.

Pose Lighting # Variations

Original Original 1
Original Randomized 15
Randomized Original 15
Randomized Randomized 40

71

Figure 13. Real-world image (top-left) and corresponding synthetic images with varying
lighting conditions.

3.4. Usage

The high fidelity of our synthetic images, their close correspondence with their real-
world counterparts, and the controlled variations in the data generation process will be
valuable for sim-to-real research. Recently, our dataset was used to train object detection
models with synthetic data [33]. The authors trained a model on various sub-sets of our
synthetic data to determine which variations improved model performance. They learned
that modeling real-world lighting conditions and realistic object poses enhanced model
performance significantly.
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Moreover, our dataset is highly useful for various computer vision tasks, including
6D pose estimation, object detection, instance segmentation, novel view synthesis, 3D
reconstruction, and active perception. In a recent study, our dataset was used for 6D
object pose estimation [34]. The authors first trained PVNet [35], a popular 6D object pose
estimation method, on our dataset. Although this model works well on many existing pose
estimation datasets, it did not perform well on our dataset. The authors then trained a
different model that was designed to deal with reflections and to use information from
multiple viewpoints. This significantly increased performance. However, there is still room
for improvement.

4. Conclusions

We present a diverse dataset of industrial, reflective objects with real-world and
synthetic data. Real-world data were obtained by recording multi-view images of scenes
with varying object shapes, materials, carriers, compositions, and lighting conditions. This
resulted in over 31,200 accurately labeled images using a new public tool that reduces the
time and effort needed to label 6D object poses for multi-view data. Synthetic data were
obtained by carefully simulating real-world and varying environmental conditions in a
controlled and realistic way. This results in over 553,800 synthetic images.

The close resemblance of our synthetic images to their real-world counterparts, along
with the controlled variations in the data generation process, make our dataset valuable for
sim-to-real research.

Our dataset is also useful for several computer vision tasks, including 6D pose esti-
mation, object detection, instance segmentation, novel view synthesis, 3D reconstruction,
and active perception. These tasks are crucial for various industrial applications such
as automated assembly, bin picking, quality control, welding, painting, (de-)palletizing,
and machine tending.

In future work, we aim to broaden the adoption of our dataset within key academic
benchmarks like BOP. This will enhance its visibility and utility for comparative studies.
Additionally, we plan to explore methodologies that utilize multi-view data, a relatively
under-explored area in current research. Given the complexities in many industrial settings,
this multi-view approach holds significant promise for developing more robust and capable
solutions. By focusing on these two strategic areas, we intend not only to elevate the
dataset’s academic prominence but also unlock new potential in practical applications.
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Appendix A. Usability Evaluation

The rubric in Table A1 was used to evaluate the ease of use of the labeling tools
described in Table 1.

Table A1. Rubric for evaluating the ease of use of 6D object pose labeling tools.

Criteria Poor
*

Adequate
**

Good
***

Excellent
****

Initial Pose Labeling
Only a default value is
used for the initial
pose.

A default value or an
estimated initial pose
based on image-CAD
correspondences is
available.

Adds the option to
snap to CAD vertices
for precise key point
identification.

Includes duplicating
pose labels for
previously labeled
objects to efficiently
label similar objects in
the same plane.

Pose Fine-Tuning The pose can be
changed manually.

Step-wise pose
adjustments are
available for more
refined control.

Incorporates a gizmo
control for
manipulating an
overlay of the CAD file
on the image.

Pose fine-tuning is
automated (e.g., using
ICP).

Visualization
An overlay of the CAD
model is shown on the
image.

Adds zoom and pan
functionalities for the
image and the overlay.

Enables changing the
opacity level of the
overlay for better
discernment.

Introduces color
overlays for
distinguishing between
different objects.

UX

Navigation is
challenging and
confusing with an
unattractive or
cluttered design.
The app experiences
noticeable lags and
lacks accessibility
features.

Navigation is
functional with some
intuitive elements and
an average design.
Acceptable response
times with limited
accessibility features.

Navigation is
straightforward with a
pleasing design.
The app responds well
with minor delays and
includes basic
accessibility features.

Navigation is effortless
with immediate access
to features and a
visually striking, fully
responsive design.
Comprehensive
accessibility features
are integrated,
including keyboard
shortcuts for
important actions.

Table A2. Comparison of ease of use 1 of tools for labeling 6D object poses.

Criteria 6D-PAT Labelfusion DoPose Ours

Initial Pose
Labeling ** *** * ****

Pose
Fine-Tuning *** **** ** ***

Visualization *** *** * ****
UX ** ** * ****
Overall ** *** * ****

1 Ease of Use is rated from * to **** where * represents the lowest ease and **** indicates the highest. For a detailed
explanation, refer to Table A1.
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Appendix B. Examples

(a)

(b)

(c)

(d)

Figure A1. Images from real-world cameras scaled to reflect their differing resolutions. The images
present challenges due to occlusions and reflections. (a) RealSense D415; (b) RealSense L515; (c) JAI
GO-5000-PGE; (d) mvBlueFOX3-2124rG-1112.
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Figure A2. Real-world multi-view images of a scene captured with the JAI GO-5000-PGE camera.
The images present challenges due to occlusions and reflections.

Figure A3. Real-world images captured with the JAI GO-5000-PGE camera. A diverse set of objects
was captured in a diverse set of conditions (carrier, lighting, and composition).
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