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Abstract: With the rapid growth of the photovoltaic industry, fire incidents in photovoltaic systems
are becoming increasingly concerning as they pose a serious threat to their normal operation. Research
findings indicate that direct current (DC) fault arcs are the primary cause of these fires. DC arcs are
characterized by high temperature, intense heat, and short duration, and they lack zero crossing or
periodicity features. Detecting DC fault arcs in intricate photovoltaic systems is challenging. Hence,
researching DC fault arcs in photovoltaic systems is of crucial significance. This paper discusses the
application of mathematical morphology for detecting DC fault arcs. The system utilizes a multi-stage
mathematical morphology filter, and experimental results have shown its effective extraction of fault
arc features. Subsequently, we propose a method for detecting DC fault arcs in photovoltaic systems
using a cyclic neural network, which is well-suited for time series processing tasks. By combining
multiple features extracted from experiments, we trained the neural network and achieved high
accuracy. This experiment demonstrates that our recurrent neural network (RNN) based scheme for
DC fault arc recognition has significant reference value and implications for future research. The
ROC curve on the test set approaches 1 from the initial state, and the accuracy on the test set remains
at 98.24%, indicating the strong robustness of the proposed model.

Keywords: DC fault arc; feature extraction; mathematical morphology; recurrent neural network

1. Introduction

Photovoltaic (PV) systems have gained significant popularity as a renewable energy
source due to their environmental benefits and potential for reducing reliance on fossil
fuels. However, the issue of DC arc faults in PV systems has worsened due to equipment
aging and external factors. Large-scale photovoltaic power plants can generate DC output
voltages of several kilovolts. Gaps or spaces between cables or connecting devices under
high voltage conditions lead to strong electric field emissions. This causes emitted electrons
from the cathode surface to accelerate towards the anode, resulting in collisions and
ionizations within the gap. Consequently, there is a sharp increase in charged particles
and temperature, leading to the breakdown of the gap and the formation of an electrical
arc [1]. The stable combustion of the arc generates temperatures exceeding thousands of
degrees Celsius. Failure to promptly detect these arc faults may potentially result in severe
fire incidents [2]. Statistical data shows that over 40% of fire accidents in photovoltaic
power plants are caused by DC arcs. To address this issue, the National Electrical Code
(NEC) in the United States, specifically in Article 690.11, requires photovoltaic systems
with DC voltages exceeding 80V to be equipped with fault arc detection devices and circuit
breakers [3].
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Arc faults frequently occur in PV systems, and the sustained arc can generate high-
temperature plasma that poses a significant risk of severe damage to system compo-
nents [4–6]. PV DC arc damages can occur due to various reasons, including but not limited
to faulty equipment, installation errors, or natural disasters. PV DC arc damages can occur
due to various reasons, including but not limited to faulty equipment, installation errors,
or natural disasters. In 2009, a fire incident in California, United States, caused damage
to 1826 solar photovoltaic panels with a combined generating capacity of 383 kW [7].
The Netherlands reported 15 fire accidents associated with solar photovoltaic panels in
2009 [8]. Because hybrid energy systems, including PV power stations, are widely adopted
in rural areas for independent power supply, and the PV DC arc can easily cause losses
for residents [9]. In 2012, a warehouse in Goch, Germany, experienced a significant fire
outbreak attributed to solar panels, resulting in an approximate burning area of 4000 square
meters [10]. Therefore, the development of effective arc detection methods and standards
is crucial for ensuring the safe and reliable operation of PV systems [11,12].

The photovoltaic DC detection method utilizes the characteristics of arc light, arc
sound, and electromagnetic radiation to monitor fault arcs in photovoltaic systems [13–15].
This specialized approach employs dedicated sensors for detecting arc light, sound, and elec-
tromagnetic radiation generated by the arc. Photoelectric sensors detect arc light, sound
sensors capture arc sound, and electromagnetic sensors receive electromagnetic radiation.
By analyzing and processing these signals, fault arcs can be accurately detected and iden-
tified. Zhao et al. [16] proposed a method for detecting series arc faults in DC power
systems. This method involves steady-state analysis in the frequency domain to identify
series arc faults. Parameters such as the structure similarity index and 6 dB bandwidth
box are calculated to extract the similarity of the steady-burning arc spectrum. This al-
lows for the effective identification of arc faults and differentiation from normal operation.
Xiong et al. [17] presented a method for detecting DC arc faults based on electromagnetic
radiation signals, utilizing a designed DC arc generating device and a fourth-order Hilbert
curve fractal antenna to analyze the amplitude and spectra of electromagnetic radiation
signals. The test results demonstrate that the characteristic frequency of electromagnetic
radiation signals can be utilized as a detection parameter for DC arc faults in PV systems,
which have higher frequencies and longer pulse intervals compared to switch operations.
In [18], a noninvasive arc fault detector based on magnetic-field sensing and autocorrelation
algorithm is developed for DC microgrids. A multicharacteristics arc model is established
based on the volt-ampere, current sag, and power spectral characteristics of arc faults.
According to the frequency domain features of arc faults and interaction effects between
different branches, the arc-detection-point selection principle is formed. Ke et al. [19]
presented a novel method for detecting arc faults by leveraging the characteristics of elec-
tromagnetic radiation. Through the reception of electromagnetic radiation signals with
comparable characteristic frequencies, this method enables accurate differentiation between
operational arcs and fault arcs. It effectively mitigates the influence caused by non-linear
loads and switch operations in the circuit, thus ensuring the prevention of false alarms
and omissions. Li et al. [20] proposed a planar localization method that only requires
two detection points to address the challenge of detecting and isolating arc faults in DC
microgrids or photovoltaic systems. By forming a horizontal triangle with an antenna array
and the fault source, DC arc faults can be effectively located. Signal pulses are distinguished
and extracted using cross-correlation techniques, and a neural network along with the
received signal strength indicator is employed to estimate the distance of the arc.

The method based on electromagnetic radiation primarily concentrates on investigat-
ing the radiation properties of arcs and conducting fault detection using spectral features.
Nevertheless, this approach is heavily influenced by complex environmental factors and is
also constrained by sensor limitations, which significantly restricts its effectiveness. The de-
tection method based on the time-frequency domain characteristics of fault arc current
and voltage is currently a more mainstream approach in direct current arc fault detection
methods [21–24]. A large number of domestic and international scholars have conducted
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extensive research in this field. Lu et al. [25] conducted an analysis of the variations in line
current and power supply voltage resulting from DC fault arcs, considering the volt-ampere
characteristics associated with these faults. They proposed a comprehensive method for
detecting DC series fault arcs by utilizing information from the line current and power
supply voltage. This approach involves examining the rate of decrease in detection current,
average rate of current change, and standard deviation of the AC components present in
the line current and power supply voltage, enabling the detection of fault arcs. In [26,27],
a fault arc detection algorithm is developed by comparing the relative changes in current
in the frequency spectrum and time series. Furthermore, studying the impedance of fault
arcs through a small-signal model enables the determination of resonance frequencies in
the low-frequency range under fault arc conditions. This impedance model can be utilized
to design a frequency analysis range that effectively excludes inverter switching noise.
Ahmadi et al. [28] applied the high-frequency component of normalized DC voltage to
extract arc fault features, which effectively removes interference caused by inverter switch
characteristics through lagged subtraction, and detects arc faults by comparing the power
ratio (or signal-to-noise ratio) between the low-frequency component and the arc signal
power. Chen et al. [29] presented a robust algorithm for identifying photovoltaic (PV) series
arc faults amidst complex interferences, comprehensively understanding their features
through various experiments, and using loop current signatures and quantificational evalu-
ations to establish optimal detection variables. The algorithm achieves arc fault discovery
through fusion coefficients and dynamically adjusts threshold values, demonstrating its
effectiveness through experimental results on a simulated platform.

The drawbacks of arc fault detection methods based on time-frequency characteristics
are shown in the following aspects: risks of false alarms and omissions, susceptibility
to non-linear loads and switch operations, requiring additional hardware equipment,
and parameter adjustments. In recent years, with the rapid advancement of pattern
recognition, an increasing number of scholars have started to employ machine learning
and deep learning techniques to assist in the detection of direct current arc faults [30–34].
Chen et al. [35] proposed a method using a multi-input CNN model with squeeze-and-
excitation and inception networks to detect series arc faults in PV systems, achieving
a high detection accuracy of 97.48%. The method effectively mitigates the influence of
switching frequency, can detect faults in different locations, and withstands disturbances
from dynamic shading, maximum power point tracking, and strong wind, providing
a solution for rapid arc fault detection. Georgijevic et al. [36] introduced a quantum
probability model-based arc-fault detection algorithm for PV systems that utilizes the
modified Tsallis entropy of the PV panel current to differentiate between arc and no-arc
states. The algorithm operates on a plug-and-play principle, requiring no prior knowledge
of the PV system, and has been successfully tested in both simulated and real-world PV
systems, demonstrating high sensitivity and robustness in detecting various types of series
arcs without false detections. Qian et al. [37] introduced a practical adaptive method
for detecting series DC arc faults in PV systems, utilizing the adjacent multi-segment
spectral similarity (AMSSS) characteristic and principal component analysis (PCA) to
establish an adaptive threshold model. The method is validated through tests conducted
on a 20-module photovoltaic plant platform under various conditions, demonstrating
strong arc detection capability and environmental adaptability, making it suitable for
real-world PV systems. Wang et al. [38] explored the limitations of current-based series
arc fault detection methods and introduced a new approach utilizing the reflection of
fault information in the characteristic frequency band of arc voltage at the monitoring
point, leading to the development of a comprehensive detection strategy based on voltage
characteristic energy amplitude and phase mapping distribution distance for different load
types. The experimental results demonstrate its effectiveness with varying line parameters
and load types.

A method combining Gramian angular summation field (GASF) and squeeze and
excitation-deep convolution generative adversarial network (SE-DCGAN) is proposed
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for series arc fault (SAF) detection in PV arrays by accurately extracting transient current
data, converting it into amplified GASF images, augmenting SAF samples, training a CNN
for identification, and improving generalization through fusion training, achieving high
recognition accuracy without misjudgments for interference events and demonstrating
improved universality [39]. Et-taleby et al. [40] proposed a new model combining the
convolutional neural network (CNN) for feature extraction and support vector machine
(SVM) for classification to detect and classify faults in electroluminescence images of PV
panels, achieving high classification performance.

Mathematical morphology is a mathematical analysis method that is based on the
morphological changes of signals [41,42]. It is commonly used in various fields such as
image processing, signal processing, and pattern recognition. This method involves defin-
ing structuring elements and applying morphological operations such as erosion, dilation,
opening, and closing to extract features from signals and analyze them. Compared with
the aforementioned method, the mathematical morphology-based photovoltaic DC arc
fault detection method has higher accuracy and robustness. Its advantages lie in its ability
to accurately extract fault features, suppress noise interference, and exhibit strong adapt-
ability, reduced interference, and minimal training data requirements. Culjak et al. [43]
proposed a fast fault detection method for radial DC microgrids, which is achieved through
mathematical morphology denoising filters and local measurements. The method can
withstand communication delays and faults, differentiate between different types of faults,
and ensure the reliability of protective relays. It is cost-effective and applicable to digital
signal processing hardware with real-time operating systems.

Compared to traditional methods, it offers advantages such as low sampling frequency,
high fault tolerance, and robustness against noise. Gao et al. [44] investigated the time-
frequency characteristics of photovoltaic arrays under normal and arc fault conditions,
and proposed a novel diagnostic method for photovoltaic arc faults. The method utilizes
the mathematical morphology-modified empirical wavelet transform algorithm to obtain
the time-frequency domain matrix of the signal. Additionally, the fault features are char-
acterized using composite multiscale permutation entropy, and binary classification is
achieved through a twin support vector machine. The spectra obtained from twin support
vector machine decomposition are smoothed using mathematical morphological closing
operations to address the problem of densely packed frequency divisions in DC arc signal
spectra. Gautam et al. [45] presented a method for detecting high impedance faults using
mathematical morphology (MM) that can run in parallel with existing protection schemes.
The proposed method is fast, reliable, and safe, and suitable for real-time applications. It
utilizes voltage waveforms sampled at a substation for fault detection and has been suc-
cessfully validated on different standard test feeders under various load and interference
conditions. Furthermore, the low computational overhead inherent in MM-based tools
provides an advantage for real-time applications. The detailed comparison of different
operational strategies of photovoltaic DC detection is exhibited in Table 1.

This paper adopts a method based on multi-level mathematical morphology filters
to investigate the application of mathematical morphology in the detection of direct cur-
rent (DC) arc faults. This method can effectively extract the characteristics of fault arcs.
In addition, we propose a PV system DC arc fault recognition scheme based on recurrent
neural networks (RNNs). RNNs are suitable for handling tasks related to time series and
are trained with multiple features extracted from experiments, achieving high accuracy
in recognition.

The remainder of this paper is organized as follows. Section 2 outlines mathematical
morphology theory. Section 3 illustrates the application of mathematical morphology on
fault arc. Section 4 describes the experimental results for DC fault arc recognition based on
deep learning. Section 5 concludes the contributions of this research and discusses possible
future work.
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Table 1. Literature reviews of operational strategies of photovoltaic DC detection.

Detection Method Key Techniques Reference

Arc light, arc sound, and
electromagnetic radiation

Similarity of the steady burning arc spectrum [16]
Fourth-order Hilbert curve fractal antenna [17]
Volt-ampere, current sag, and power spectral of arc faults [18]
Reception of electromagnetic radiation signals with comparable
characteristic frequencies [19]

Planar localization method requiring two detection points [20]

Time frequency domain
characteristics of arc
current and voltage

Examination of current decrease rate, current change average rate, and standard
deviation of the AC line current and voltage [25]

Impedance of fault arcs through a small-signal model to determine
resonance frequencies [26]

High-frequency component of normalized DC voltage to extract arc fault features [28]
Using loop current signatures and quantificational evaluations to establish optimal
detection variables [29]

Learning based pattern
recognition algorithm

A multi-input CNN model with squeeze-and-excitation and inception networks [35]
A quantum probability model with Tsallis entropy [36]
Adaptive threshold model with AMSSS and PCA [37]
A comprehensive detection strategy based on voltage characteristic energy amplitude
and phase mapping distribution distance [38]

GASF-GAN-CNN based transient current identification [39]
CNN-SVM based feature extraction and classification [40]

Mathematical morphology
Mathematical morphology denoising filters and local measurements [43]
Mathematical morphology modified empirical wavelet transform algorithm [44]
Detecting high impedance faults using mathematical morphology (MM) [45]

Ours RNN-based mathematical morphology with higher accuracy in recognition —

2. Mathematical Morphology Theory

Mathematical Morphology (MM) was co-founded by French scientists Georges Math-
eron and Jean Serra in 1964, and it is based on set theory [46]. The fundamental idea
of mathematical morphology is to use a “probe” called a structuring element to gather
information from the signal being processed. By moving the probe through the signal, rela-
tionships between different parts of the signal can be examined, allowing for the extraction
of useful global or local features. Mathematical morphology offers clear geometric inter-
pretations, simple and fast operation processes, and ease of implementation in hardware,
making it increasingly applied in the field of industrial information.

In the domain of fault arc studies, the application of mathematical morphology has
been relatively limited. In this paper, the characteristics of mathematical morphology are
combined with a brief introduction of its basic theory, aiming to explore its feasibility in the
field of fault arcs.

2.1. Basic Operations of Mathematical Morphology

Mathematical morphology performs matching and modification operations on signal
waveforms through the operations between the structural elements and the signal, such
as erosion, dilation, opening, closing, etc. [47]. Mathematical morphology consists of two
fundamental operations: erosion and dilation [26,28]. It is assumed that the original signal
f (n) and structural element g(n) are discrete functions defined on sets F = {0, 1, . . ., N − 1}
and G = {0, 1, . . ., M − 1}, N ≥ M, respectively.

The dilation and erosion operations of f (n) with respect to g(n) can be defined
as follows:

( f ⊕ g)(n) = max{ f (n − m) + g(m)} (1)

where m = {0, 1, . . ., M − 1}.

( f ⊖ g)(n) = max{ f (n + m)− g(m)} (2)
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where ⊕ and ⊖ represents expansion symbol and corrosion symbol, respectively.
Dilation and erosion are the fundamental operators in mathematical morphology,

and their operations have an irreversible nature. Dilation and erosion operations can
remove smaller details from the original signal based on the size of the structuring element
while preserving the fundamental characteristics of the signal, resulting in a simplified
structural representation of the signal. Erosion operation can be used to eliminate small
and insignificant points, while dilation operation can be used to fill in gaps in waveforms.

2.2. Mathematical Morphological Operators and Their Combinations

The expansion and corrosion operations based on mathematical morphology can
obtain other operators, and morphological algorithms with different characteristics and
functions can be constructed based on basic operators [48,49]. Table 2 lists some widely
used morphological operators and applications of multi-scalar morphology theory. f (x)
represents the signal to be processed and g(x) represents the structuring element.

Table 2. Widely used mathematical morphology operators and methods.

Name Operational Formula Remark

Open operation f ◦ g = ( f ⊖ g)⊕ g Filter the peak noise above the signal

Closed operation f • g = ( f ⊕ g)⊖ g Suppress the trough noise below the signal

Open-close operation Oc( f ) = ( f ◦ g • g) The output amplitude is small

Closed-open operation Oc( f ) = ( f • g ◦ g) The output range is too large

Top-hat operator T = f − f ◦ g Detection crest

Bottom-hat operator B = f − f • g Detection trough

Peak-valley
probe operator D = 2 f − f ◦ g Detect peak points and peak and valley points

Adaptive
morphological filtering y(x) = a1Oc( f ) + a2Oc( f ) Open-close and closed-open weighting coefficient

adaptive and structural element adaptive

Morphological gradient
calculation (MG) G3 = ( f ⊕ g)− ( f ⊖ g) Highlight the edge information

Multi-resolution
Morphological Gradient

Computing(MMG)

ρa
g+ =

(
ρa−1

g ⊖ g+
)
−

(
ρa−1

g ⊕ g+
)

ρa
g− =

(
ρa−1

g ⊖ g−
)
−

(
ρa−1

g ⊕ g−
)

ρa
g =

(
ρa

g+ + ρa
g−

)
More detailed transformations are made for rising
and falling edges to show more subtle changes in

the signal

Cascade
Multi-resolution

Morphological Gradient
Computing (SMMG)

F(x) −→ MF1 −→ MFn −→ SMMG( f )

The transient characteristics of the signal which are
not obvious can be enhanced, and the generalized

multiresolution gradient transform can be derived by
increasing the width of structural elements

Multiscale morphology
morphological

spectrum

The multi-scale corrosion operation, expansion
operation, open operation, and close operation

are derived from the shape quantity
distribution curve

Time domain transformation method based on
multi-scale morphological analysis

3. Application of Mathematical Morphology on Fault Arc

As a powerful tool for extracting information from signals, mathematical morphology
can be used to detect small changes in the waveform of DC fault arc signals. The following
content in this article will detect DC fault arc signals by constructing different morphological
operators and conducting relevant result analysis.
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3.1. Description of Experimental Environment and Equipment
3.1.1. Experimental Environment

As shown in Figure 1, this experiment site is a small photovoltaic grid-connected
system built on the top floor of an enterprise in Wenzhou, Zhejiang Province, which is con-
nected to the local power grid through a grid-connected inverter. The photovoltaic power
generation system consists of 18 photovoltaic panels in series into one road, a total of three
parallel into a bus box, and finally through the bus box into the inverter. The parameters
of a single photovoltaic panel are the peak power of 260 W, the best voltage under the
maximum power Um = 31.03 V [50], the best working current Im = 8.38 A, the open circuit
voltage Uoc = 38.66 V, and the short circuit current Isc = 8.82 A. The maximum output
current of the photovoltaic array Iom = 8.82 ∗ 3 = 26.46 A.

6
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Figure 1. Photovoltaic array at the experimental site in Wenzhou, Zhejiang Province.

In this experiment, only one series circuit photovoltaic panel is selected as the power
supply. Considering that a single photovoltaic panel is connected to other panels through
connectors, the series fault arc mainly occurs between connectors, so this paper chooses
to disassemble the connector between two photovoltaic panels and connect it to the arc-
generating device for test.

3.1.2. Arc Generator

The arc generation device used in the experiment is designed with reference to the
UL1699B standard. However, considering that in this standard is a sleeve between the two
poles, we put a metal wire to help combustion, as shown in Figure 2. This device uses
two electrodes of different shapes and materials, one is a cone and the other is a cylinder,
and the material is a carbon rod and a metal rod. When the device is connected to the circuit
and the current is turned on, the knob is adjusted so that the two electrodes, which were
originally in contact, are slowly separated. When the electrodes are completely separated,
an electric field is generated between the two poles due to the PV photovoltaic voltage,
which breaks through the air to form an electric arc. The temperature rises between the
arc gaps, thermal ionization continues to occur, the conductivity increases with it, the arc
voltage decreases, and the arc burns steadily [19,25]. This method avoids randomness due
to wire combustion and avoids blockage of the arc channel due to casing.

In the experiment, the current data is collected by the mangano-copper shunt con-
nected in series in the photovoltaic circuit, the voltage at both ends of the shunt is measured,
and the waveform data is converted by A/D after the signal conditioning circuit is trans-
formed. This is shown in Figure 3.
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In this section, two types of current waveforms with current transients under normal conditions, represented as

Figure 4 (a) and (c), were selected for MFD transformation, resulting in the obtained results shown in Figure 4 (b) and

(d). To make a more intuitive comparison, a segment of the output signal after MFD transformation for a fault arc was
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3.2. Analysis of Fault Arc Using Multi-Level Mathematical Morphological Filters

By cascading mathematical morphological operators, signals can undergo various
processing effects. In order to filter out noise in photovoltaic systems and extract the
signal characteristics of fault arcs, this section designs a multi-level mathematical morpho-
logical filter, called Mathematical Morphological Fault Arc Detector (MFD), as shown in
Figure 3 [29], through different combinations of mathematical morphological operators.

The structure consists of two main parts. The first part is composed of median
filters in mathematical morphology (referred to as MMF), and the second part consists of
alternating hybrid filters based on opening and closing operations (referred to as ASF).
Four different structuring elements are used in this structure, denoted as A1, A2, B1, B2.
Through experimental parameter adjustments, these four structuring elements are finally
set as follows:

A1 = B1 = [0.995, 1, 0.995], A2 = B2 = [0.957, 1, 0.957] (3)

In this section, two types of current waveforms with current transients under normal
conditions, represented as Figure 4a,c, were selected for MFD transformation, resulting in
the obtained results shown in Figure 4b,d. To make a more intuitive comparison, a segment
of the output signal after MFD transformation for a fault arc was selected and compared
with the signals from Figures 4d and 5, as shown in Figure 6.

Comparing the output signals after the MFD transformation of the normal and fault
arc current signals, as shown in Figure 4, it can be observed that the majority of the output
signal after the MFD transformation for the normal condition is overshadowed by the
output signal of the fault arc. The output values for the normal condition are mostly
below 0.01, whereas for the fault arc condition, the outputs are generally between 0.01 and
0.05. Furthermore, most of the amplitudes are small, and the overall fluctuations are also
relatively small. Statistical analysis can be utilized in the future to further differentiate
between the two conditions.
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Figure 4. Output signals of the current waveform after MFD transformation:

(a) Original fault arc current signal; (b) Output signal after MFD transformation of the current signal in (a);

(c) Original normal current signal; (d) Output signal after MFD transformation of the current signal in (c).
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Figure 4. Output signals of the current waveform after MFD transformation: (a) Original fault arc
current signal; (b) Output signal after MFD transformation of the current signal in (a); (c) Original
normal current signal; (d) Output signal after MFD transformation of the current signal in (c).
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Figure 5. Comparison of the output signals after MFD transformation for the normal and fault arc
current signals.

To perform a quantitative analysis of the output results, ten random samples were
selected for both normal current and fault arc conditions. Using a period of 240 sampling
points, the average amplitude and variance of the output signals were calculated. The re-
sults are shown in Tables 3 and 4. The output signals obtained after the operation of the
multi-level mathematical morphological filter structure reflect the differences between fault
arcs and normal currents when considering the average amplitude and variance. However,
it should be noted that in practical photovoltaic systems, there may be more interference
present. Therefore, the signals extracted by the multi-level mathematical morphological
filters designed in this study cannot be solely relied upon to determine the presence of a
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fault arc. However, these signals can serve as a characteristic feature of fault arcs, which
can be used in conjunction with other features for fault detection and analysis.

10

Fig. 6 Waveforms of current under normal conditions and current when fault arcing occurs
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Figure 6. Waveforms of current under normal conditions and current when fault arcing occurs.

Table 3. Widely used mathematical morphology operators and methods.

Group 1 2 3 4 5

Normal 0.0013 0.0010 0.0015 0.0013 0.0014
Arc Fault 0.0086 0.0062 0.0072 0.0097 0.0066

Group 6 7 8 9 10

Normal 0.0014 0.0017 0.0032 0.0024 0.0035
Arc Fault 0.0072 0.0059 0.0098 0.0069 0.0078

Table 4. Widely used mathematical morphology operators and methods.

Group 1 2 3 4 5 6 7 8 9 10

Normal
(
10−6) 4.08 9.06 5.27 1.75 2.04 2.78 8.01 1.39 9.05 8.23

Arc Fault
(
10−6) 46.8 63.0 91.8 13.5 48.1 75.0 151 70.5 78.4 66.3

4. Experimental Results for DC Fault Arc Recognition Based on Deep Learning
Analysis of Fault Arc Using Multi-Level Mathematical Morphological Filters

Figure 7 illustrates the experimental design for current fault diagnosis and prediction
tasks, encompassing multiple key modules. Firstly, the SRNN module utilizes a recurrent
neural network (RNN) for the automatic feature extraction of current data, and captures
temporal information in current data, such as the changing trend of current over time,
extracting features related to faults. Additionally, the Hand-crafted Feature module serves
as a data module for manually extracting features [10,13]. These manually designed fea-
tures can include frequency-domain features, amplitude features, waveform features, etc.,
accurately expressing crucial information in the current data. In comparison to automatic
feature extraction, manually extracted features are more interpretable and enhance the
model’s expressive capabilities and performance.
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Both manually extracted features and automatically extracted features through the
SRNN module, with the aim of enhancing the performance and robustness of the model.
Firstly, although deep learning models, particularly recurrent neural networks (RNNs),
are powerful in automatically extracting temporal data features, they often require a
large amount of data to capture all relevant patterns and dependencies. In the analysis
of current signals, certain important features may not be easily identified automatically,
especially when there are subtle but critical patterns present in the signals. Therefore,
by incorporating manual feature extraction, we ensure that these important pieces of
information are not overlooked and are considered early in the model training process.
Secondly, manually extracted features can serve as prior knowledge introduced into the
model, helping guide the learning process, especially in scenarios with limited datasets
or less obvious features. This fusion of manual and automatic feature extraction methods
can accelerate the convergence speed of the model while improving its generalization
ability when dealing with unseen data. Lastly, our experimental results demonstrate
that the hybrid model combining manual features outperforms the model using only
automatic feature extraction in multiple performance metrics. This indicates that manual
feature extraction remains valuable within the current framework. Although this may
introduce some dependence on the manual features, this strategy is effective in achieving
higher prediction accuracy. Of course, we acknowledge that reducing reliance on manual
feature extraction is a long-term goal, and we will continue exploring data-driven feature
extraction methods to enhance the automation level of the model and reduce dependence
on domain expertise.

Hand-crafted

Future

SRNN

Fully connected layer

Conv

Batch 

Normalization

Weight layer

Weight layer

⊕

Conv

Batch 

Normalization

Weight layer

Weight layer

⊕

Fully connected layer

Output layer

Softmax

x

y

ResFC ResFC

Figure 7. Overall architecture of the experimental design for current fault diagnosis and predic-
tion tasks.

Furthermore, the Contact module plays a role in concatenating automatically and
manually extracted features throughout the entire model. Since automatically and manually
extracted features have different information expression and representation capabilities,
by concatenating them, we can obtain a more comprehensive, integrated feature vector.
This fusion method fully leverages the advantages of different feature extraction methods,
further enhancing the model generalization capabilities and performance. In the final stage
of the entire model, we employ a Fully Connected layer (FC) to map the feature vector to
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the ultimate output. The FC layer, through linear and non-linear transformations, converts
abstract features into concrete judgments or predictions.

Additionally, the ResFC module is shown in Figure 8, which introduces a design with
residual connections into the model. Deep models often learn more complex, abstract
feature representations but are susceptible to the issues of vanishing or exploding gradients.
To address this problem, the ResFC module, through the introduction of skip connections,
allows information to pass directly through the network without excessive interference
from multiple layers. This design of residual connections effectively alleviates gradient
issues, improving the model training effectiveness and convergence speed. Furthermore,
to further prevent the occurrence of overfitting, the ResFC module also employs Dropout
technology to randomly discard the output of some neurons.

The experimental design scheme illustrated in Figure 7 is a comprehensive framework
that integrates various methods, including automatic feature extraction, manual feature
extraction, feature fusion, and deep enhancement. It can extract rich and accurate features
from current data, providing robust support for current fault diagnosis and prediction tasks.
In the future, combining more domain knowledge and algorithmic techniques can further
optimize this framework to enhance the accuracy and robustness of current fault diagnosis
and prediction. For example, consider the use of multimodal fusion methods (such as joint
processing of image and voice data) to improve the expressive power and discriminability
of current data. Additionally, exploring more efficient and interpretable feature extraction
and selection methods can achieve better results in current fault diagnosis and prediction.

Fully connected layer

Fully connected layer

⊕

Output layer

Intput layer

FC1

FC2

Dropout1 Dropout2

x

y

ReLU

Figure 8. The implementation of the ResFC module includes the incorporation of Dropout for
preventing overfitting.

The input to the RNN model consists of current data from 240 sampling points and
manually extracted 6 feature vectors. To better express the crucial information of the
current data, we extracted variance and peak-to-peak features in the time domain, as well
as harmonic energy features in four frequency bands in the frequency domain. By manually
extracting these feature vectors, we can accurately capture key information in the current
data, laying the foundation for subsequent fault diagnosis and prediction tasks. During the
iterative process, we utilize these inputs to update various hyperparameters until the
network converges or reaches the maximum iteration count. By continuously adjusting
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hyperparameters, we can optimize the model performance and accuracy. This process is
iterative, with each iteration making the model more accurately learn the patterns and
trends in the current data. After completing the design of the entire model, we label the
dataset accordingly and split it into a training set and a test set in a 4:1 ratio. Dataset
division is performed to assess the model generalization ability on unseen data. Then,
we use the data from the training set to train the model and the data from the test set for
classification and performance evaluation.

The model performance is shown in Table 5. It is noteworthy that the model performs
slightly better on the test set compared to the training set. This could be attributed to the
relatively smaller size of the test set. This phenomenon is caused by the limited sample
size that may introduce chance variations. To provide a more detailed illustration, the ROC
curve is introduced to demonstrate the model classification capability on the test set in
Figure 9. It is evident that even when the false positive rate (FPR) is equal to 0, the model
true positive rate (TPR) remains high. This indicates that the model maintains a high
recognition accuracy while minimizing false positives. Furthermore, the area under the
ROC curve approaches 1, further affirming the model’s outstanding robustness and stability.
The training and test results are tabulated in Table 5. The model performs slightly better
on the test set than on the training set. Additionally, the ROC curve in Figure 9 confirms
the excellent robustness of the model, as the TPR remains high even at the lowest false
positive rate. These findings provide crucial reference points for our assessment of the
model performance.

Figure 9. ROC curve of the model on the test set.

Table 5. Results of training set and test set.

Loss Accuracy

Training set 0.0531 0.9822
Test set 0.0527 0.9824

Combining the results of the above experiments, we integrated manually extracted
features with those obtained through RNNs. Both sets of combined features were input
into the model simultaneously for training, leading to higher accuracy on the final test set.
Manual feature extraction enables us to actively select the most discriminative features
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for the problem, thereby improving the model’s performance. On the other hand, RNNs
excel in capturing long-term dependencies in sequential data, enabling the model to better
understand context and contextual information. The combination of these two features
fully maximizes their respective strengths, thereby improving the overall performance and
accuracy of the model.

5. Discussion

In our paper, we have provided detailed descriptions of the key data and the resulting
values obtained from our experiments. This encompasses performance indicators of the
direct current fault arc detection algorithm, including accuracy, recall rate, and the area
under the ROC curve. In particular, we have emphasized achieving 98.24% accuracy on
the test set and the performance of the ROC curve approaching 1, which demonstrates the
efficiency and reliability of our proposed method in detecting direct current fault arcs.

To prevent arc faults, we recommend a series of guidelines for the design, installation,
and operation of photovoltaic systems to minimize the occurrence of arc faults. These
suggestions will include, but are not limited to:

(1). Enhancing Monitoring and Preventive Measures: We recommend regular inspec-
tion and maintenance of photovoltaic systems, with a focus on cable connections and
insulation, to minimize the risk of faults.

(2). Using High-Quality Components: We recommend using high-quality and interna-
tionally standardized photovoltaic components to enhance the safety and reliability of the
entire system.

(3). Installing Advanced Fault Detection Systems: We recommend integrating ad-
vanced fault detection technologies, such as our proposed detection scheme based on
recurrent neural networks, into photovoltaic systems to identify and address potential arc
faults promptly.

6. Conclusions

With the growing frequency of fire incidents caused by DC arc faults in PV systems,
safety is seriously threatened. Therefore, detecting and identifying DC arc faults in PV
systems holds significant practical importance. In this study, an experimental PV system
established a data collection platform for DC arc faults. The mathematical morphology
method was used to extract features from DC arc faults, and various morphological opera-
tors were combined to develop a classifier based on RNN. Experimental results demonstrate
that this method achieves greater accuracy in classifying DC arc faults for detection pur-
poses. Three main contributions have been made. Firstly, the mathematical morphology
methods for detecting DC arcs in PV systems are adopted. Secondly, deep learning methods
are employed to identify DC arcs. This approach has made significant progress in feature
extraction and has achieved high accuracy. Thirdly, RNN is used for DC arc recognition.
The RNN structure performs well in handling time-series tasks and achieves high-accuracy
recognition by training on multiple features. The ROC curve on the test set approaches
1 from the initial state, and the accuracy on the test set remains at 98.24%, indicating the
strong robustness of the proposed model. In the future, integrating other data sources,
such as meteorological data and temperature sensor data, with the identification of DC
arcs in photovoltaic systems will be considered to enhance the detection and prediction
capabilities for abnormal situations. By exploring this prospect, valuable references for
research and practice in related fields might be provided.
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