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Abstract: During machining, the surface of the machined materials is damaged and tool wear occurs,
sometimes even to complete failure. Machining of thin-walled parts is generally cumbersome due
to their low structural rigidity. The study deals with the effect of the feed rate and the thickness
of the thin-walled part on the dynamic behavior and stability of the turning process during the
roughing and finishing of thin-walled tubular workpieces made of steel alloy 42CrMo4. At the same
time, the cutting forces and deformations of the workpiece were also evaluated via numerical and
experimental approaches. The numerical study is based on a three-dimensional (3D) finite element
model (FEM) developed using the ABAQUS/Explicit frame. In the model, the workpiece material
is governed by the behavior law of Johnson–Cook. Numerical and experimental results show that
the cutting forces and the quality of the machined surface depend not only on the choice of cutting
parameters but also on the dynamic behavior of thin-walled parts due to their low rigidity and low
structural damping during the machining operation. Cutting forces are proportional to the feed rate
and inversely proportional to the thickness of the part. Their variations around the average values
are low for roughing tests where the wall-part thickness is higher or equal to 3.5 mm. However, these
variations intensify for finishing tests where the wall thickness is less or equal to 1.5 mm. Indeed,
the recorded FFT spectra for a finishing operation show several harmonics that occurred at around
550 Hz, and the amplitude of the peaks, which describes the level of power contained in the signals,
shows an increase similar to that of the amplitudes of the temporal signal. The flexibility of the part
generates instability in the cutting process, but the frequencies of the vibrations are higher than the
frequency of rotation of the part.

Keywords: machining; turning; thin-walled tubular workpieces; stability; 3DFEM; cutting forces;
vibrations; lobes diagrams; simulation

1. Introduction

In the machining field using cutting tools, the cutting process investigations and
their optimization are still very delicate and financially costly. This is mainly due to the
complexity of the multi-physical phenomena governing the tool–matter interaction [1].
Thus, recourse to the use of mathematical modeling tools for the prediction of cutting
tool/matter behavior becomes essential [2,3]. These prediction tools are closely linked to
the material properties of the machined parts as well as to the phenomena that accompany
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the cutting tool and the workpiece interaction. The modeling tools are only relevant if they
are rigorously constructed and fed with reliable experimental data reflecting the reality of
this cutting process [4,5]. The models generally developed in the literature have as objective
functions the cutting phenomena (vibrations, chatter, temperature, forces, wear, etc.) where
the characteristics of the machined part are linked to its integrity and its resistance to
fatigue (roughness, residual stresses, topography, hardness, microstructure, etc.) [6–10].
Given the diversity of the results offered by these simulation models as well as the low
implementation costs compared to those relating to experimental studies, many researchers
have been interested in the development of finite element models (FEM) in order to study
the effect of cutting parameters on the machining process and predict chip formation and
its morphology [11]. Likewise, other models have been developed to predict cutting forces
and heat transfers during machining [12–15] and study the influence of these parameters on
the chip morphology [16–18]. Pantale [19] performed numerical simulations of continuous
and discontinuous chip formation during the cutting process of the 42CrMo4 material in
2D and 3D based on the orthogonal cutting model using ABAQUS/Explicit dynamics.
The model is based on the combined formulation ALE (arbitrary Lagrangian–Eulerian)
for quadrilateral elements with four nodes for the model in 2D and brick elements with
eight nodes for the model in 3D. The Johnson–Cook law is adopted, taking into account
the effects of the strain rate and cutting temperature. The classical contact Coulomb law is
adopted with a friction coefficient value µ equal to 0.32. In the simulation model, the cutting
tool is considered a rigid body, and the workpiece is a deformable part. The results of the
simulation described the distribution of von Mises stress during chip formation as well
as the variation in cutting force. Chip formation during the turning process of aluminum
alloy A2024-T351 was studied numerically by Mabrouki [20] using a FEM. In this study,
an innovation was introduced in the model, which consists of the coupling between the
Johnson–Cook damage model and the fracture energy of the material of the workpiece. The
numerical results showed the presence of small radii of curvature on the formed chip, and
the fragmentation is the result of the bending forces caused both by the effect of the tool feed
rate and the surface contact between the chip and the workpiece. Yue [21] simulated the
cutting of hard steel GCr15 to predict the variation of the cutting forces and the morphology
of the chip by developing a 3D FEM using the ABAQUS/Explicit in which the Johnson–
Cook law has been employed to model the behavior of the machined material. To minimize
the computation time, a local refinement was introduced in the surface contact between the
tool and the workpiece. Cutting forces and chip morphology during the turning process
were also studied numerically by Schermann et al. [22] using ABAQUS/Explicit. It was
shown that it is important to choose a fine mesh for the contact area of the tool cutting
edge and the workpiece. Bagheri et al. [23] numerically and experimentally studied the
effect of friction stir processing parameters and vibration on the machining behavior of the
AZ91 magnesium alloy during a drilling operation. In this study, a 3D FEM modeling was
applied to simulate the small-hole drilling process. The large deformation of work and
the chip formation in the drilling process is realized by incorporating the Johnson–Cook
material constitutive model and material failure criterion.

Moreover, with regard to the study of the dynamic behavior of thin-walled workpieces
during the machining process, several approaches were investigated during the last decades.
Mehdi et al. [24,25] proposed a dynamic cutting-force model for the turning process of a
thin-walled workpiece in which dynamic deformations are different from those of massive
ones. Due to the diversity of thin-walled workpieces in the manufacturing industry and the
need for a global model of the dynamic behavior of various workpieces, the study has been
oriented to characterizing the dynamic behavior of thin-walled tubular parts. The model
takes into account the damping due to interference between the tool flank and the machined
workpiece surface. The different tests carried out clearly show the effect of cutting damping
on cutting forces and the stability of the cutting process. Lorong et al. [26], Gerasimenko
et al. [27], and Luo et al. [28] have presented an experimental investigation completed
with a numerical model of a straight-turning operation on a thin-walled structure. Their
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works reveal the instabilities of the quasi-steady cutting under variable conditions due
to the structure’s mass and compliance variation. Sahraoui et al. [29] have presented an
analysis of turning process stability using an analytical model supported and validated with
experimental test results of roughing and finishing operations conducted on AU4G1 thin-
walled tubular workpieces with different thickness values. They showed the important
effects of the dynamic behavior of the thin-walled workpieces on the stability criteria,
which cannot be ignored in machining process planning and cutting parameters selection.
They justified the influence of additional structural damping on chatter suppression in
the machining of thin-walled workpieces. Del Sol et al. [30] present a review work of
thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall
parts, exposing the causes of both instability and deformation through analytical models,
summarizing the computational techniques used, and presenting the solutions proposed by
different authors from an industrial point of view. Amigo et al. [31] present an experimental
investigation of the cutting forces and their prediction in high-feed turning of nickel-chrome-
based superalloys. The effects of using an oil emulsion and a CO2 cryogenic coolant were
also studied. The results indicated a good agreement between model predictions and
experimental results for three tested aerospace materials (Inconel 718, Haynes 263, and
AISI 1055) using comparable cutting conditions. It was shown that while oil emulsion was
the best option for Inconel 718, cryogenic cooling with CO2 can open the path towards a
more efficient and cleaner turning in the case of Haynes 263.

The aim of this study is to analyze the dynamic behavior of thin-wall tubes during the
roughing and finishing turning process. A numerical study is proposed, supported, and
validated with experimental test results to better understand the different damage observed
during turning. The numerical study is based on a 3D FEM using ABAQUS/Explicit
dynamics, supported by experimental tests, in order to predict the cutting forces in radial,
tangential, and axial directions. In the model, the workpiece material is governed by the
behavior law of Johnson–Cook.

Although the turning of 42CrMo4 steel has been experimentally studied extensively
in the literature, only a few studies have dealt with the dynamic behavior of the machined
thin-walled parts characterized by their low rigidity and low structural damping. It can
also be stated that the numerical study of the behavior of thin-walled parts made of this
material still presents an important field to be investigated. So, the novelty of this study
lies in investigating the turning process stability at the machining of thin-walled tubes
made of a 42CrMo4 steel alloy with the numerical approach validated experimentally. Once
the numerical model is experimentally verified, it can be the basis for further studies, in
which the influence of various cutting and geometrical parameters (such as cutting speed,
depth of cut, feed rate, tool insert cutting angles, tubular workpiece thickness, diameter to
length ratio, etc.) on the cutting forces and the stability of the machining process can be
investigated without the necessity to resort to an experimental study again.

2. Materials and Methods
2.1. Numerical Process
2.1.1. Behavior Law

The turning process is accompanied by the presence of dynamic behavior not only of
the cutting tool but also of the machined material, along with chip formation accompanied
by high rates of deformation. For thin-walled parts, which are much less rigid, it is,
therefore, very important to pay attention to the stability of the machining process, as this
significantly affects tool wear and its lifetime, the quality of the machined surface, and
finally, the effectiveness of the whole production process.

The simulation model within the presented research was developed on the explicit
version of the ABAQUS (v. 6.3) finite element analysis software, which supports the
resolution of dynamic non-linear problems with this type of condition. In this study, the
workpieces are made of 42CrMo4 steel materials, which are characterized, in the case of a
traction load, by an elastic behavior, a plastic behavior, and a phase of damage. During this
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last phase, the mechanical properties of the material deteriorate. Analyses of experimental
tests made by researchers have shown the formation of micro-cracks and micro-cavities,
which lead to rupture. Therefore, the study of cutting processes requires characterizing the
actual material behavior through laws describing its damage. The mechanical behavior
at the deformation of the machined workpiece can be described by a thermo-viscoplastic
model, which takes into account high deformation rates, inelastic deformations, and the
effects linked to the variation in temperature. The behavioral law of Johnson–Cook has
been implemented for the flow stress of the workpiece (Equation (1)). This law is based on
the value of the equivalent plastic deformation of an element. The damage occurs when
the damage parameter reaches the value 1.

σ =
[

A + B
(

εpl
)n][

1 + C ln

(
ε′

pl

ε′0

)]
(1 − θm) (1)

where σ is the equivalent plastic stress, εpl is the equivalent plastic strain, ε′
pl

is the
equivalent plastic strain rate, ε′0 is the reference equivalent plastic strain rate, A is the
limit of elasticity of the material, B and n are the coefficients related to the work hardening,
C is the sensitivity coefficient to deformation rate, and m is the temperature sensitivity
coefficient. The constants A, B, n, C, and m are given in Table 1. Their values are determined
based on the flow stress data obtained from the literature according to mechanical tests [32]
and θm is the temperature ratio given by Equation (2):

θm =
T − Troom

Tm − Troom
(2)

where T is the workpiece temperature, Troom is the room temperature, and Tm is the melting
temperature. In our study, θm is assumed to be zero because only the mechanical behavior
of the process has been considered in the model.

Table 1. 42CrMo4 material parameters for the Johnson–Cook model [32].

Parameter Value

Young’s modulus E (GPa) 211
Poisson’s ratio υ 0.29

Density ρ (kg/m3) 7850
A (MPa) 598
B (MPa) 768

C 0.0137
n 0.2092
m 0.807

ε′0 (s−1) 0.001

2.1.2. Friction Law Model

The interactions between the chip and the cutting tool result in friction between two
surfaces. With ABAQUS, there is a “master” surface and a slave surface (geometry or
mesh). The essential criterion in this contact is that the nodes relating to the slave surface
do not penetrate into the “master” surface. In addition, normal vectors are calculated for
each node. In the case of digital cutting simulations, the tool is defined as the master, and
the workpiece is the slave.

Coulomb and Tresca friction laws are often the most used in a numerical simulation
model. In the case of Coulomb’s law, the two tangential and normal stresses (τt, σn) exerted
on the surfaces of contact are linked by the following relation (Equation (3)) in the case of a
rigid tool and the deformable part:

τt ≤ µ σn (3)

where µ represents the friction coefficient.
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The Tresca model imposes a constant friction threshold, and the slip limit is indepen-
dent of the normal stress. In this case, the friction law is given by Equation (4):

τt < m
σe√

3
(4)

where m is the Tresca coefficient (0 ≤ m ≤ 1) and σe is the elastic limit of the workpiece
material. In our simulation, the Coulomb model has been adopted with a friction coefficient
value of 0.8 [33].

2.1.3. Damage Law Model

The contact zone between the cutting edge and the machined part is characterized by
significant plastic deformations where the laws of the mechanics of the media contained
are not applicable. For a more realistic simulation, it is necessary to use a damage model. In
the damage zone (Figure 1), the stress tensor can be translated using the following relation
describing the law of elasticity [20]:

σ =
(
1 − D

)∼
σ =

(
1 − D

)∼
E
(
ε − εp

)
(5)

where
∼
σ represents the tensor of effective stress,

∼
E represents the tensor of elasticity, ε is

the total strain, and εp the viscoplastic strain. The term D represents the damage variable,
which can vary according to a linear or exponential law.
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The damage process is described by three phases: initiation of the damage at a defor-
mation level and evolution of the damage accompanied by increased loading and rupture.
The initiation phase of the damage ω can be characterized by the following relationship
(Equation (6)):

ω = ∑
(

∆εp

εi

)
(6)

where ∆εp is the increment of the equivalent plastic deformation and εi is the deformation
equivalent to the rupture of the material. The damage is initiated if ω takes the value 1.
This term is calculated at each increment and for each mesh element.

A linear evolution of the damage Dlin is described by the following expression
(Equation (7)):

Dlin =
u
u f

=
u

2
(G f

σy

) (7)
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An exponential evolution of the damage Dexp is described by the following expression
(Equation (8)):

Dexp = 1 − exp(−
u∫

0

σ

G f
du) (8)

where u represents the equivalent plastic displacement, u f is the fracture displacement, σy
is the flow stress, and G f is the rate of energy restitution of the material.

(
G f

)
i
=

(
1 − ν2

E

)
(KC,i)

2 with i = I, II (9)

where ν is the Poisson coefficient of the material, E is its Young’s modulus, and KC,i is the
factor describing the breaking strength (in mode I “crack” or II “shear”) [16].

The models of damage are varied, and they essentially describe the plastic deformation
equivalent to rupture. These models are generally based on constants relating to each type
of material, which can be identified from experimental tests or numerical simulations. The
ductile damage and the shear damage criteria were chosen within the simulation presented
in the research, which describes the equivalent deformation of the material at break. The
shear criterion is suitable for breaks due to the location of the shear band. The model
supposes that the plastic strain equivalent at the beginning of the damage is the function of
the report of shear stress and the speed of deformation. The ductile criterion of the rupture
is suitable for the ruptures due to the growth and propagation of the cracks. The model
supposes that the plastic strain equivalent at the beginning of the damage is a function of
the three axial stresses and the rate of strain.

2.1.4. Dynamic Model of Cutting Forces

For a single cutting-point operation, the oblique cutting model presented in Figure 2
is used to represent the cutting force components. In this model, the tool geometry and the
chip formation parameters are taken into consideration.
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The resulting force acting on the structure comprises a tangential force along the
cutting speed direction, a radial force along the cutting edge, and an axial force perpen-
dicular to the cutting edge. Using geometrical parameters (chip flow angle, approach
angle, . . .) these components are expressed in x, y, and z coordinate system by Fx, Fy, and
Fz as the results of the combination between two forces: the metal-cutting force and the
process-damping force.
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The first type of force responsible for the metal-removal process is the metal-cutting
force Fc. The three components of this force are proportional to the chip load and process
vibrations. Equation (10) gives the expressions of these components:

Fcx = KR · sin(ψr + υc) · Achip = Kcx · Achip.
Fcy = KT · Achip = Kcy · Achip.
Fcz = KR · cos(ψr + υc) · Achip = Kcz · Achip.

(10)

where KR and KT are the cutting forces coefficients calculated according to their analytical
expressions described in [24]. Note that x, y, and z directions are equivalent, respectively,
to the depth of cut, the cutting velocity, and the feed directions.

According to previous studies, during the cutting process, a waved surface is the result
of the tool and workpiece contact mechanism caused by the regenerative effect. The cutting
tool interacts with the workpiece along the clearance surface and may follow a sinusoidal
path. It adds damping effects to the process, and this will also affect the vibrations. The
second type of force is the dynamic damping force that is generated proportionally to the
vibration velocity [24,34–39].

The components of the cutting damping force along x, y, and z directions can be
calculated according to expressions of Equation (11) [24]:

The components of the cutting damping force along x, y, and z directions can be
calculated according to expressions of Equation (10) [24]:

Fdx = −CR · sin(ψr + υc) · Vx(t) = −Cdx · Vx(t).
Fdy = −CT · Vy(t) = −Cdy · Vy(t).
Fdz = −CR · cos(ψr + υc) · Vz(t) = −Cdz · Vz(t).

(11)

where Vx(t), Vy(t), and Vz(t) represent the three components of the vibration velocity of
the workpiece cutting points in x, y, and z directions. CR and CT represent, respectively, the
repulsive and the thrust process damping coefficients. Their expressions can be calculated
using Equations (12) and (13) [24]:

CR =
b · r · B · σe

Vc · α2
e

. (12)

CT = µ · CR = µ · b · r · B · σe

Vc · α2
e

. (13)

where r is the cutting edge radius, B is a materiel characteristic parameter, σe is the yield
strength of the workpiece material, αe is the effective clearance angle (rad), and µ is the
friction factor between the workpiece material and the tool rake face.

The effective (instantaneous) rake and clearance angle variation is opposite: when the
effective rake angle γe value increases, the effective clearance angle αe value decreases. The
angles (instantaneous) are described by the following expressions:

γe = γ0 +
f

π · D
. (14)

αe = α0 −
f

π · D
(15)

where γ0 is the initial rake angle, α0 is the initial clearance angle, and D is the workpiece diameter.

2.1.5. Numerical Model

The finite element simulation is based on the mesh of the regions studied into elements.
The distribution, the density of the mesh, and the dimensions of the elements are specified
according to the problem studied. In the case of the cutting process, the mesh can never
maintain its initial state. Changes are always present, and the mesh risks the problem
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of distortion, leading to errors and stopping the calculation. The choice of the type of
elements, the automatic correction of the mesh (adaptive mesh), and the increase in the
density of the localized mesh (dimensions of the elements) are presented as techniques that
help to eliminate this problem. Our simulation model is developed via the exploitation of
the “Dynamic ABAQUS/Explicit” module, which makes it possible to support non-linear
effects and large deformations. However, thermal effects are not taken into account due
to the fact that our study mainly focuses on the cutting forces as a function of the wall
thickness of the part and the variation of the feed rate.

A cantilever mounting system has been opted for in the simulation model (Figure 3).
This choice is justified by the fact that the ratio of the length of the workpiece to its outer
diameter is less than 2. The three jaws are modeled as a rigid body with a reference point
that controls the imposed boundary conditions. The elements of mesh chosen are specific
to the rigid type, and they are also of triangular type R3D3 (linear) for Explicit resolution.
The density of the mesh at the surface contact respects that adopted for the part. The
boundary conditions are imposed on the tool and the three jaws through their reference
points. The tool has a constant feed rate along the z-axis. The jaws turn at a constant angular
speed around the feed rate axis. The rotational movement is transmitted to the workpiece
through the jaws’ surface contact. For the contact properties, the part is considered the
“slave”, and the jaws and the cutting tool are considered the “master”. The type of contact
chosen is “General contact” with two types of properties: The tool and workpiece contact
is with friction translated by the introduction of a friction coefficient µ. The jaws and
workpiece contact are non-slip to transmit the rotational movement of the jaws toward
the workpiece. The material properties taken into account in the simulation are shown
in Table 1. The cutting parameters for marching 42CrMo4 steel parts considered in the
numerical simulation and experimental tests are shown in Table 2.
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Figure 3. Model of the cutting system.

Table 2. Considered input parameters in numerical and experimental tests for 42CrMo4 steel alloy.

Machining Operation

Roughing Finishing
Test Ref. R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-8 R-9 F-1 F-2 F-3

Wall thickness ep (mm) 6 6 6 4.5 4.5 4.5 3 3 3 1.5 1.5 1.5
Depth of cut ap (mm) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5
Feed rate f (mm/rev) 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.1 0.125 0.16

Cutting speed vc (m/min) 160 160 160 160 160 160 160 160 160 200 200 200

The tool is considered a non-deformable (rigid) body. The chosen elements are specific
to the rigid type (discrete rigid element) and are of quadratic type R3D4 (linear) for explicit
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resolution. The density of the mesh is important at the level of the cutting spout of the
tool in order to respect the tool and workpiece contact (Figure 3). Numerical simulation
concerns only the steel alloy 42CrMo4 governed by the law of Johnson–Cook; the details of
the geometry of the tool are presented in Table 3. Tool references are CNMG- 120408-QMGC-
415 and CNMG-120404-QFGC-425, respectively, for roughing and finishing operations.

Table 3. Geometric characteristics of cutting tools (roughing and finishing of 42CrMo4 steel parts).

Parameters
Machining Operation

Roughing Finishing

Tool insert reference (ISO) CNMG 120408 QMGC 415 CNMG 120404 QFGC 425
Tools noise radius: R (mm) 0.8 0.4
Acuity radius of the cutting

edge: r (mm) 0.04 0.03

Rake angle: γ (◦) 7 2
Clearance angle: α (◦) 6 6

Cutting edge angle: χr (◦) 95 95
Complementary angle of the
cutting edge direction: ψr (◦) −5 −5

The workpieces are modeled with thin tubes with a length “L” equal to 200 mm and an
internal diameter “D” equal to 100 mm. The wall thicknesses “ep” depends on the machin-
ing operation: For a roughing operation, the considered thicknesses are 3, 4.5, and 6 mm.
And for a finishing operation, the wall thickness is 1.5 mm. The workpieces are considered
to be deformable and meshed with linear tetrahedral elements C3D4. The highest mesh
density is located in the zone contact between the workpiece and the cutting tool zone,
where the mesh size is between 0.1 mm and 0.01 mm. In the remaining zones, a coarse
mesh is applied with a size of around 5 mm in order to reduce the element number and,
therefore, time computation. The default ALE-adaptive mesh parameters were adopted in
this simulation. The smoothing algorithm is determined using an analysis product with
a meshing predictor set to the current deformed position because it is recommended for
problems with very large distortions. The advection parameter is set to second order to
use a second-order algorithm to remap solution variables after adaptive meshing has been
implemented. The time step adopted in the simulation is 0.5 ms. The time step is small
enough to collect the data in different valuable steps.

2.2. Experimental Procedure

The experimental tests were conducted with roughing and finishing operations using
tubular parts with a 200 mm length and an internal diameter of 100 mm. As a workpiece
material, the steel alloy 42CrMo4, which is used in mechanics for parts of different sizes
(shafts, racks, crankshafts, gears, etc.) due to its good mechanical characteristics, was
selected In total, twelve experimental tests were performed: nine tests for the roughing
operation and three tests for the finishing operation. Only one test was carried out per
piece and per tool insert in order to minimize the effect of tool wear on the variation of
cutting forces. In fact, wear is a consequence of the interaction between the cutting tool,
the material of the workpiece, and the cutting conditions of machining, in which the wear
mechanism is characterized by the abrasion of elementary particles of the interface contact
layers and their removal in the form of wear products from the cutting zone (most often
in the form of chips). Overall wear of the cutting edge is usually the result of abrasion,
plastic deformation, and brittle failure. This is, therefore, an unwanted phenomenon, the
manifestation of which can be secondary vibrations, and this was not the aim of the research
(just as the research was not focused on the origin and formation of chips, as this will be
part of the research carried out later). Therefore, a new cutting tip was always used for
individual machining operations, and in such a way that signs of wear did not have time
to affect the measurements.
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The experiments consisted in measuring firstly the cutting force components Fx, Fy, and
Fz along radial, tangential, and axial directions, respectively, and secondly, the tangential
workpiece vibrations along the y direction. The experimental setup is illustrated in Figure 4.
The measurement of the cutting forces components along the three directions x, y, and z,
is conducted using a three-axial force piezoelectric dynamometer, which can measure the
cutting force components signals in three directions during the active cutting process. The
workpiece vibration along the y direction is measured using a capacitive sensor without
contact fixed at a distance of 0.5 mm to the free end of the workpiece. The engine lathe
is equipped with a 20 kW DC motor. The rotation speed is controlled using an electronic
regulator. The signals received from the dynamometer and the sensor are acquired using a
data acquisition system and analyzed using Matlab software (V 7.0.1.24704 R14).
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3. Results and Discussions
3.1. Analysis of the Cutting Force and Radial Vibration of the Workpiece Wall

The experimental results of the twelve performed tests (with the parameters described
in Table 2) are summarized in Table 4. The observation and analysis of the different traces
marked by the cutting tool on the machined part surface of the workpiece (Figure 5) show
that in the case of the vibrated process, two types of weary surfaces and two zones can
be observed on the lateral surface. The first type of weary surface (Type 1) is complex.
It presents multiple shock effects on the surface. This first type corresponds to a heavy
chattering phenomenon for which the cutting tool does not work in continuous conditions,
and the contact appears to loosen intermittently. This surface is located in a first zone
(zone 1) from 0 to 60 mm along the revolution z-axis. This zone constitutes the most distant
from the chuck.

Table 4. Average values of experimental cutting forces and radial displacements of workpiece wall.

Test Ref. f (mm) Fx (N) Fy (N) Fz (N) dep (µm) Observed Surface

R-1 0.2 260 791 391 −61 N. V.
R-2 0.3 360 1091 491 −95 N. V.
R-3 0.4 482 1465 574 −132 N. V.
R-4 0.2 255 780 392 −63 N. V.
R-5 0.3 319 1040 455 −81 N. V.
R-6 0.4 530 1408 684 −119 N. V.
R-7 0.2 256 790 387 −69 N. V.
R-8 0.3 359 1076 505 −119 N. V
R-9 0.4 492 1462 662 −135 L. V.
F-1 0.1 91 249 141 −39 V.
F-2 0.125 98 250 100 −34 V.
F-3 0.16 156 307 168 −49 V.

N. V. = no vibrations; L. V. = light vibrations; V. = vibrations.
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The second type (Type 2) corresponds to regular waves, for which the cutting tool is
considered to work with a varying chip cross-section but with continuous contact. This
type of surface is located in a second zone (zone 2), which is close to the chuck.

Table 5 summarizes the average values of the radial, tangential, and axial cutting forces
Fx, Fy, and Fz obtained experimentally and numerically based on the feed rate during the
roughing and finishing operations. The experimental values of Fx, Fy, and Fz are denoted,
respectively, Fx_ exp, Fy_ exp, and Fz_ exp. Those obtained using the analytical model, are
denoted, respectively, Fx_sim, Fy_sim, and Fz_sim. Finally, those obtained using the FEM are
denoted, respectively, Fx_ f em, Fy_ f em, and Fz_ f em. The values given in brackets indicate the
percentage error calculated between the cutting forces obtained numerically and those
measured experimentally. In the case of roughing operations, the values of the experimental
tests and those obtained using the analytical model show agreement in the results of the
three components of the total cutting force. The recorded values of errors do not exceed
18% in the case of the axial component Fz relating to the roughing test R-5 and 26% in
the case of the radial component Fx relating to the roughing test R-6. During finishing
operations, it was noted that there was an agreement between the cutting forces measured
experimentally and those simulated analytically. In the case of test F-2, a difference of
11% was recorded between the axial force measured experimentally and that simulated
analytically. However, it can be stated that the average values of the radial, tangential, and
axial cutting forces simulated using the FEM are lower than those measured experimentally.
These can be explained using the results discussed by Bargue [40] and Arrazola et al. [41].
Thus, according to Barge [40], the size of the mesh elements has an influence on the
cutting forces and the radius of curvature of the chips, where extreme refinement can cause
localization problems. Depending on the size of the mesh, the simulation results can sweep
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different morphologies of chips obtained experimentally. A decrease in the mesh size
causes an uncontrollable increase in the values of the thrust-cutting force and the cutting
energy [41].

Table 5. Average values of experimental and numerical cutting forces Fx, Fy, and Fz during roughing
and finishing operations.

Fx_exp
Fx_sim
(err%)

Fx_fem
(err%) Fy_exp

Fy_sim
(err%)

Fy_fem
(err%) Fz_exp

Fz_sim
(err%)

Fz_fem
(err%)

R-1 260 277 (6) 53 (80) 791 787 (1) 774 (2) 391 381 (3) 239 (39)
R-2 360 359 (0) 63 (82) 1091 1088 (0) 1034 (5) 491 495 (1) 263 (47)
R-3 482 435 (10) 94 (81) 1465 1445 (1) 1271 (13) 574 599 (4) 312 (46)
R-4 255 211 (17) 23 (91) 780 779 (0) 800 (3) 392 406 (4) 244 (38)
R-5 319 280 (12) 46 (86) 1040 1044 (0) 900 (13) 455 537 (18) 260 (43)
R-6 530 390 (26) 77 (85) 1408 1393 (1) 1225 (13) 684 748 (9) 304 (55)
R-7 256 217 (15) 30 (88) 790 790 (0) 705 (11) 387 416 (8) 231 (40)
R-8 359 292 (19) 35 (90) 1076 1079 (0) 1005 (7) 505 559 (11) 241 (52)
R-9 492 406 (18) 96 (81) 1462 1416 (3) 1350 (8) 662 777 (17) 310 (53)
F-1 91 89 (2) 17 (81) 249 248 (0) 176 (29) 141 148 (5) 93 (34)
F-2 98 96 (3) 22 (78) 250 246 (2) 190 (24) 100 110 (11) 93 (7)
F-3 156 157 (0) 23 (85) 307 306 (1) 216 (30) 168 181 (8) 99 (41)

The experimental results show that:

1. The average values of the cutting forces and the radial displacement of the workpiece
wall are proportional to the chip cross-section ap × f (mm2). These average values are
slightly influenced by the wall thickness of the machined parts. For the finishing tests
(small chip cross-section), the average values are lower than those for the roughing
tests (large chip cross-section). Indeed, an increase in the feed rate f from 0.2 mm/rev
to 0.4 mm/rev is accompanied by a significant increase in the average values of Fx, Fy,
and Fz: for the workpiece of 3 mm thick, Fx, Fy, and Fz increase by 102%, 80%, and
79%, respectively. For the workpiece of 4.5 mm thick, the increase in Fx, Fy, and Fz
is, respectively, 104%, 78%, and 75%. Finally, for the workpiece of 6 mm thick, Fx, Fy,
and Fz increased by 102%, 79%, and 78%, respectively;

2. The variation of the radial, tangential, and axial components Fx, Fy, and Fz of the
cutting force, as well as the radial displacement of the workpiece wall around their
average value, is low for the roughing tests where the wall thickness ep ≥ 3.5 mm.
However, this variation intensifies for the finishing tests where the wall thickness
ep = 1.5 mm. These variations have a significant effect on the quality of the surface
finish of the workpiece wall;

3. For the roughing operations, no vibrated surfaces were observed except for test “R-9”.
In this case, the flexibility of the workpiece limits the chip cross-section value without
vibrations. For the other tests, variations of the dynamic cutting forces were measured.
The variations are situated from ±10% to ±23% of the average value.

From these results, it can be concluded that the cutting forces and the quality of the
machined surface depend not only on the choice of cutting parameters but also on the
dynamic behavior of thin-walled parts due to their low rigidity and low structural damping
during the machining operation. Figure 6 shows the variation of the tangential cutting
force and of the radial displacement of the wall of the part, respectively, for the roughing
test “R-3” (Figure 6a) and for the finishing test “F-2” (Figure 6b). In roughing, the cutting
process is accompanied by low amplitude vibrations, while in finishing, the vibrations
are intense.
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3.2. Stability Analysis

Chatter is a harmful phenomenon in the cutting process, which can cause bad ma-
chining quality for the work part and accelerate the wear and damage of the cutting tool.
In essence, the chatter is attributed to the self-excited vibration in the machining system.
The chatter could be stimulated due to the regeneration effect of chip thickness or mode
coupling in different directions, and so on. However, the regenerative chatter appears ear-
lier than other chatters in most cutting processes [42]. Therefore, the regenerative effect is
considered to be the main type of chatter in metal cutting, which is due to phase differences
between the vibration waves left on both sides of the chip [43].

The stability zones within this research were analyzed using the stability lobe diagrams.
These diagrams are based on a theoretical model capable of determining the stability zones
of the cutting process in order to choose the appropriate cutting depth of a cut for a given
spindle frequency. This cutting depth is located between a minimum theoretical value
(zero) and a critical limit value. Beyond this limit value, the process becomes unstable.
Figure 7 presents stability lobe diagrams relative to the considered input parameters in
numerical and experimental tests for the 42CrMo4 steel alloy (Table 2). These diagrams
were constructed using the equation of the critical depth of cut at a stability boundary limit
and the spindle speed (N): (Equation (16) [29])

aplim =
−1

2 · [GmRx · KRx · tan(ψr) + GmRz · KRz ]
. (16)

where aplim is the critical depth of cut at the stability boundary limit, ψr is the tool approach
angle, KRx and KRz are the repulsive cutting forces coefficients in x and z directions, and
GmRx and GmRx are the repulsive normalized dynamic compliance of the cutting structure
in x and z directions. The reader can find more details on the solution methodology used to
generate the stability lobes model in our previous work [29].
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The stable zone is located below the curve, while the unstable zone is above (Figure 7).
For neighboring curves, we may have two different zones of intersection, stable and
unstable, in the same plan. The total stability boundary is defined as the continuity of the
successive branches of the adjacent curves limited by their intersection points.

From Figure 7 and for a workpiece 6 mm thick, corresponding to roughing tests R-1,
R-2, and R-3 (Figure 7a), it can be noted that for a depth of cut of 1.5 mm and for the two
feed rates of 0.2 and 0.3 mm/rev, the cutting process is stable for a spindle speed of 625 rpm.
For the three values of the feed rate 0.2, 0.3, and 0.4 mm/rev, a zone of stability is located
for a depth of cut equal to 1.3 mm and a spindle speed equal to 630 rpm. It is noted that for
the roughing experimental tests, the values retained for the spindle speed (450.7 rpm) and
the depth of cut (1.5 mm) are located in unstable zones.

In the case of the roughing operation of the workpiece, 4.5 mm thick (Figure 7b)
corresponding to the three roughing tests R-4, R-5, and R-6, the cutting depth allowing a
stable zone is limited to 1.4 mm with a spindle speed of 500 rpm and a feed rate equal to
0.2 mm/rev. The choice of a cutting depth equal to 1 mm is possible for the two feed rates
of 0.2 and 0.3 mm/rev and a spindle speed of 500 rpm. For the three values of the feed rate
0.2, 0.3, and 0.4 mm/rev, a depth of cut equal to 0.8 mm is located in the stable zone with a
spindle speed equal to 500 rpm.

In the case of the roughing operation of the workpiece 3 mm thick (Figure 7c) corre-
sponding to the three roughing tests, R-7, R-8, and R-9, in order to migrate to the stable
zones, it is necessary to increase the spindle speed and reduce the depth of cut. To maintain
low spindle speeds, the depth of cut should be less than 1 mm. This value is reached for
the feed 0.2 mm/rev and a spindle speed between 410 and 415 rpm.

In the case of the finishing operation of the workpiece 1.5 mm thick (Figure 7d)
corresponding to the three finishing tests F-1, F-2, and F-3, in order to migrate to stable
zones, it is necessary to increase the spindle speed and decrease the depth of cut. For a
depth of cut equal to 0.5 mm, the stable zones are located for a spindle speed greater than
1000 rpm.
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3.3. FFT Spectra Analysis

Figure 8 represents the FFT spectra of the experimental radial vibrations (Uy) of the
workpiece wall during roughing and finishing operations. In the FFT spectrum, there is a
difference in scales between the different tests according to their vibratory state discussed
in Section 3.1 and their stability (or instability) degree discussed in Section 3.2. In fact, in
the roughing cases (less unstable process), the amplitudes are much lower at the peak of
the dominant frequencies than those obtained in the finishing case (more unstable process).
These amplitudes are considered parameters to categorize stable and unstable processes.
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In summary, for these two operations, the vibrations of the workpiece wall in the
tangential direction at the free end are proportional to the feed rate. In roughing, the wall
of the machined part vibrates at low frequencies, which do not exceed 15 Hz in the vicinity
of the spindle rotation frequency. While finishing, the vibration frequencies are high in the
vicinity of 550 Hz, which is considered high compared to the spindle frequency of 10.3 Hz
(618 rpm). In fact, in the finishing case, chatter occurred due to workpiece flexibility, and
the recorded spectra are made up of several harmonics that occurred at around 550 Hz. In
addition, the amplitude of the peaks, which describes the level of power contained in the
signals, shows an increase similar to that of the amplitudes of the temporal signal.

Indeed, the experimental results indicate that an increase in the feed rate is accom-
panied by a considerable amplification of the vibrations of the machined workpiece wall.
Thus, the response of the cutting system depends on the choice of feed rate and the
thickness of the workpiece wall. This result shows the importance of the choice of cut-
ting parameters (low feed rate) and the rigidity of the workpiece on the stability of the
cutting process.

To identify the resonant frequencies and potential instability of the tube itself, modal
analyses were performed in the ANSYS 2023R2 software (Figure 9), while the following
data were used for the material characterization [44]: Rp0.2 = 750 MPa; Rm = 1100 MPa;
Poisson’s ratio 0.3; and density ρ = 7.72 kg/dm3. One end of the tube was fully constrained
to simulate clamping.
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Figure 9. Modal analysis of the workpiece 1.5 mm thick; (a) sensitive analysis of the element size;
and (b) first natural frequency and first mode shape results.

The lowest natural frequency, f 1 = 830.49 Hz, was identified for the least stiff workpiece
where the considered wall thickness was 1.5 mm; therefore, the analysis results of this
workpiece were selected for presentation in this manuscript. A cubic element of size 5 mm
was used for the numerical solution because the sensitive analysis (Figure 9a) showed
a convergent behavior of the dependence of frequency—element size, and this element
size was sufficiently accurate for the solution. Within the network, 7303 elements with
50,854 nodes were created for analysis.

The results of the modal analysis showed that the natural frequencies are much higher
than those achieved experimentally, which confirmed that the instability of the cutting
process under the given conditions is not caused by the resonance of the workpiece but is
influenced by the parameters of the technological process.
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3.4. Von Mises Stress Field Distribution

Figure 10 describes the von Mises stress field distribution relating to the numeri-
cal roughing and finishing tests. From this figure, the most important stress values are
recorded at the cutting-edge contact of the tool and workpiece. This causes the progressive
degradation of the properties of the material (rigidity) and, therefore, the elimination of the
elements. The other areas of the part (which will form the future chip) are also subjected
to significant stresses, but they reach the maximum value only in the event of contact
with the tool. However, the authors’ interest has been focused on the prediction of cutting
forces. Thus, a reduction in the value of the maximum degradation parameter of the
mesh elements was chosen. As a result, the chip morphology was not observed in the
simulation. According to Figure 10, primary shear zones (at the level of the shear plane)
where the material undergoes permanent and secondary plastic deformation (at the level of
the cutting surface) between the tool and the chip were distinguished. Their distributions
around the contact zone are variable due to variations in the contact surfaces in movements
between the tool and the part.
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From Figure 10, it can be seen that, in the roughing operation of parts that are 3 mm
thick, the stress increases when the feed rate increases. And for workpieces of 4.5 and 6 mm



Machines 2024, 12, 120 18 of 20

thickness, the stress is not too much influenced by the feed rate. For the finishing operation,
the stresses reach their maximum values at the cutting-edge contact of the tool and the
workpiece. Also, the primary and secondary shear zones can be distinguished.

4. Conclusions

This work focuses on the dynamic behavior of thin-walled workpieces made of a
42CrMo4 steel alloy during the turning process. The impact of feed rate and the thickness
of the wall part on the cutting forces and workpiece displacements has been investigated
numerically and experimentally during roughing and finishing operations. The simulated
cutting forces and the wall-workpiece displacements are validated according to a series
of experiments performed in the same cutting conditions. In the FEM, the cutting tool
is considered to be a rigid body (to simplify the model and reduce calculation time) and
animated with a forward movement at a constant speed. However, the workpiece, animated
with rotational movement, was considered a deformable body to simulate its rotation and
dynamic behavior.

From this investigation, the following conclusions can be drawn.

1. Cutting forces and the quality of the machined surface depend not only on the choice
of the feed rate but also on the dynamic behavior of thin-walled parts due to their low
rigidity and low structural damping during the machining operation;

2. The average values of the cutting forces and the radial displacement of the workpiece
wall are proportional to the feed rate. These average values are slightly influenced by
the wall thickness of the machined parts;

3. The results of the modal analysis confirmed that the instability of the cutting process
under the given conditions is not caused by the resonance of the workpiece but is
influenced by the parameters of the technological process;

4. The variation of the radial, tangential, and axial components of the cutting force, as
well as the radial displacement of the workpiece wall around their average value,
is low for the roughing tests where the wall thickness is considered large. How-
ever, this variation intensifies for the finishing tests where the wall thickness is thin.
These variations have a significant effect on the quality of the surface finish of the
workpiece wall;

5. The stress distribution is concentrated in the cutting zone. It reaches its maximum
value at the cutting-edge contact of the tool and workpiece. Analysis of results allowed
deducing the existence of shear zones at the edge of the tool throughout the cut.

All these results show the important effects of the dynamic behavior of the thin-walled
workpieces on the stability criteria, which cannot be ignored in machining process planning
and cutting parameters selection. Our main future work concerns improving the numerical
model results by integrating the effect of temperature, tool wear, and the variation of the
specific cutting energy during the turning operation.
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