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Abstract: In recent years, applications exploiting the advantages of tilt-rotors and other vectored
thrust propulsion systems have become widespread, particularly in many novel Vertical Takeoff and
Landing (VTOL) configurations. These propulsion systems can provide additional control authority,
enabling more complex flight modes, but the resulting control systems can be challenging to design
due to the mismatch between the vehicle degrees of freedom and physical input variables. These
propulsion systems present both advantages and difficulties because they can exert the same overall
forces and moments in many different propulsive configurations. This leads to the traditional non-
uniqueness problem when using the inverse dynamics control allocation approach, which is the basis
of many popular VTOL control algorithms. In this article, a modified Planar VTOL (PVTOL) test
bench configuration, which considers an arbitrary number of co-linear tilting rotors, is introduced
as a benchmark for the study of the control allocation problem. The resulting propulsion system is
then modeled and linearized in a closed and compact form. This allows a simple and systematic
derivation of many of the currently used control allocation approaches. According to the proposed
PVTOL configuration, a two-rotor test bench is implemented experimentally and a decoupling
control allocation strategy based on Singular Value Decomposition (SVD) analysis is developed. The
proposed approach is compared with a traditional input mixer algorithm based on physical intuition.
The results show that the SVD-based solution achieves better cross-coupling reduction and preserves
the main properties of the physically derived approach. Finally, it is shown that the proposed PVTOL
configuration is effective for studying the control allocation problem experimentally in a controlled
environment and could serve as a benchmark for comparing different approaches.

Keywords: PVTOL; test bench; VTOL; control allocation; cross-coupling

1. Introduction

Recently, Vertical Takeoff and Landing (VTOL) aircraft configurations have attracted a
high degree of interest from the research community and the aeronautics industry. The
novelty of these vehicles introduces a set of challenging issues because many of the well-
established design methodologies, used for conventional aircraft configurations, do not
apply directly. This has also attracted the attention of the authorities, which have proposed
several novel specifications to address many of these challenges (see, for example, [1,2]).

The majority of the reports found in the literature deal with a specific VTOL configu-
ration. For instance, in [3,4], the authors study a commonly used arrangement, in which
the tilt-rotors are used to generate either lift force in hover or thrust force in horizontal
flight (i.e., as the one used in the V-22 Osprey). In this case, the authors propose a nonlinear
observer and control approach to stabilize the vehicle with good results. Many other aspects
of this configuration have been researched, for instance, in [5], the dynamic properties of
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the vehicle are studied by calculating the linear stability and control derivatives of the
vehicle. This study shows that it is possible to evaluate the well-known flight modes of a
traditional airplane such as phugoid, short period, Dutch roll, and spiral subsidence. Using
a similar approach. In [6], it is shown that a linear control approach can be used to stabilize
the full nonlinear dynamics of the vehicle. In this case, the authors noticed a serious degree
of cross-coupling when the vehicle operated in helicopter mode. A similar configuration,
which considers that the aircraft remains in hover with a vertical fuselage orientation, is
studied in [7]. In this report, the authors used a scheduled linear control approach to
stabilize the vehicle. These reports show that, although this VTOL configuration results in
a highly coupled and nonlinear system, the use of linear control approaches is preferred
in some instances due to its simplicity and the possibility of evaluating the closed loop
dynamics in terms of classical flight dynamics modes.

Although the configuration mentioned in the previous paragraph is common, it is far
from being the only one used in VTOL applications. In particular, tilt-rotors can be found
in several configurations, ranging from all the rotors being tilt-rotors to a single rotor used
as a tilt-rotor. For instance, in [8], a fixed-wing aircraft with one fixed and two tilting rotors
is presented. In this case, a set of nested control loops with linear controllers is used to
stabilize the vehicle. Several reviews dealing with VTOL configurations can be found in
the literature [9–11]. From these reports, the following insights can be obtained:

• There is a high degree of heterogeneity in the propulsion system configurations,
including number, distribution, and operating conditions.

• There is an increasing use of distributed tilting rotors (or similar thrust vectoring
elements).

• The multiplicity of propulsors and control surfaces results in a high number of control
inputs, introducing an over-actuation problem, which is normally denoted as the
control allocation problem in the literature (although under-actuation problems have
also been treated as allocation problems by some authors).

• The control allocation problem is commonly dealt with by separating the vehicle into
two parts: (1) a rigid body, which is driven by virtual control inputs (i.e., force and
moment vectors), and (2) the propulsion subsystem, which is driven in such a way
that the desired force and moment vectors are obtained. In practice, it is difficult
to pair specific physical inputs to a particular force or moment component without
introducing cross-coupling in the rigid body control loop.

• Although many control approaches have been proposed, linear Proportional Integral
Derivative (PID) controllers are still used in many practical setups due to their simplicity
and low computational overhead.

The control allocation problem is one of the main issues found in novel vehicle config-
urations with many tilting propulsors. The simplest approach for the allocation problem
consists of pairing specific physical inputs with the desired outputs in a fully decentral-
ized control manner. In other cases, physical insight allows proposing a simple allocation
strategy [8]. Although these approaches have been used for traditional configurations (i.e.,
classical pairings, such as elevator surface and pitch angle), many novel VTOL configura-
tions cannot be operated using this scheme due to excessive cross-coupling.

In cases where the cross-coupling introduced by a simple control allocation algorithm
is excessive, a preferred approach consists of establishing virtual (decoupled) inputs and
attempting to solve the inverse actuator dynamics to determine the necessary physical
inputs [9]. This approach is easy and effective if the propulsion subsystem inverse dynam-
ics exist and are unique. A well-known example of this is the typical quad-rotor control
allocation algorithm, where a vector of four virtual inputs is related to the angular velocities
of the four propellers through a fixed and invertible 4x4 matrix [12]. It is also interesting
to note that this approach has proven to be highly successful even though the propulsion
model used to derive it is arguably over-simplified, as it neglects several important aero-
dynamic factors [13]. This proves that it is possible to obtain effective allocation solutions
using simplified propulsion models.
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In more recent years, VTOL configurations have become more complex so that inverse
propulsion dynamics either do not exist or are not unique. In particular, over-actuated
systems are more common due to the increased number of actuators. In these cases, a
simple solution consists of using physical insights to add additional constraints to reduce
the dimension of the control input vector. For example, in [14], the control allocation for a
spacecraft using two kinds of actuators was solved by a proportional distribution of the
desired control torque considering the characteristics of each actuator. Physical insight
has also been used to refine Cascade-Generalized Inversion (CGI) approaches, such as in [15],
where a test bench for a vehicle with multiple tilting rotors was controlled by grouping
several physical actuators in a hierarchical manner. There are also several mathematical
tools which can aid in solving the allocation problem, such as the Moore–Penrose pseudo-
inverse matrix and the Karush–Kuhn–Tucker (KKT) optimality conditions [16]. Many of
these approaches rely on a linear approximation approach, whose range can be expanded
by the use of scheduling techniques [16]. Non-linear approaches have been also proposed;
however, the resulting solutions can be too taxing for the computational systems on board
small vehicles. Therefore, fast linear or scheduling approaches are still preferred in many
applications [16,17].

More recently, in [17], a review article dealing with the taxonomy of vehicles with
multiple rotors showed that there are still many challenges in the study of these propulsion
systems. Among these, the heterogeneity of the propulsion configurations, the aerody-
namic interaction of the various actuators (also noted in [13]), and the actuator limitations
(including actuator saturation and response times) are the most relevant. One of the tools
observed in [17] which has been used to overcome some of these problems is the use of
co-linear or co-planar propulsor arrangements.

The previous paragraphs illustrate how the popularization of VTOL vehicles with a
wide range of configurations, particularly those that contain an arbitrary number of tilting
rotors, has motivated the study of the control allocation problem, from both theoretical and
practical points of view. In this context, it is appropriate to recall that during the emergence
of the modern quad-copter drone, in the early 2000s and later, several novel technical and
theoretical developments were made. One of the tools that proved to be very valuable
for researchers was the so called Planar Vertical Takeoff and Landing (PVTOL) configuration,
which was widely adopted by researchers in a simplified two degrees of freedom (DoF) test
bench version. This simplified model allowed both researchers and prospective control
engineers to study novel control strategies and to perform preliminary experimental tests in
a safe environment before performing actual flight tests. The sheer number of contributions
to control, sensor, and modelling theory that still rely on the PVTOL configuration is a
testament to its usefulness. From neural network backstepping control [18] to the study of
robust feedback linearization [19] and noise-rejecting active disturbance controllers [20], the
PVTOL model is still widely used by researchers. In many ways, the PVTOL has become a
de facto benchmark platform.

While the PVTOL is a good approximation of simple vehicles such as the quad-copter,
this simplification fails to capture the main difficulties of many current VTOL vehicles. In
particular, many of these vehicles include some form of tilt-rotor or other similar thrust
vectoring propulsion system. There have been some attempts to propose a more general
PVTOL configuration, which also include the complications of tilting rotors. For example,
in [21], a tilting rotor PVTOL was introduced with good results; however, in this report,
only simulations are presented and the allocation problem is reduced by neglecting the
reactive torque of the propellers.

Finally, a summary of the main elements found in the literature review is as follows:

• There is a high level of heterogeneity in the propulsion configuration of recent VTOL
vehicles with a movement towards a higher number of actuators.

• The resulting control allocation problems are highly dependent on the propulsion
configuration. Therefore, the study of this issue can yield vehicle-specific results.
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• The use of simplified test benches (such as the PVTOL) can aid in the study of prospec-
tive control strategies while preserving many of the dynamic and experimental com-
plexities, allowing a more rapid development of novel/better solutions.

• The typical PVTOL test bench configuration is unable to represent many of the diffi-
culties found in recent VTOL vehicles.

• Although non-linear control and allocation approaches can deliver improved perfor-
mance for wider operating ranges, in many Unmanned Aerial Vehicle (UAV) applica-
tions, linear controllers and allocation approaches are still being used and researched
due to their simplicity and efficiency.

Considering the previous context, in this article, the control allocation problem is
studied both theoretically and experimentally. In particular, the following elements are
presented:

• A novel PVTOL test bench configuration containing an arbitrary number of co-linear
tilting rotors is proposed as a progression of the traditional PVTOL test bench config-
uration. This configuration can reproduce several of the interesting issues found in
novel VTOL vehicles, mainly the control allocation and cross-coupling problems. In
addition, this configuration can be easily extended to include an arbitrary number of
co-planar tilting propulsors, so that a wider range of vehicles can be mimicked.

• A general method for obtaining a closed form of the linearization of the propulsion
model for the modified PVTOL configuration is presented. This can be useful because,
as mentioned before, many control allocation strategies depend on it.

• A simple test bench, based on the modified PVTOL configuration, is implemented
experimentally. This simple test bench allows testing control allocation and cross-
coupling problems.

• A simple decoupling control allocation scheme for the test bench, based on a linear
approximation derived through Singular Value Decomposition (SVD), is presented.
This approach allows defining an optimal solution for the allocation problem of
the modified PVTOL configuration. The resulting optimization can solve the over-
actuation problem by introducing a wide range of considerations. In this case, low-
error and practical physical considerations are used.

• The proposed SVD control allocation approach is compared with a more traditional
input mixer algorithm, derived from physical insight, both through simulations and
using the experimental test bench. The results show that the proposed control allo-
cation scheme allows decreasing the cross-coupling with a simple static decoupling
matrix.

The authors also want to emphasize that the test bench presented here (as well as the
proposed allocation algorithm) should be considered an initial step towards a generalized
study of the control allocation problem through the use of a prospective standardized test
bench configuration based on the modified PVTOL configuration. The authors believe that
the proposed test bench could be used by the scientific community for this purpose; how-
ever, those seeking additional complexity may consider adding more co-linear propulsors
(or even co-planar propulsors in an arbitrary matrix configuration). This would result in an
even more complex over-actuation problem. The authors hope that the use of such a family
of test benches could potentially become a widely used benchmark as an aid in the study
and development of novel propulsion systems for VTOL vehicles.

2. Materials and Methods
2.1. A PVTOL with an Arbitrary Number of Co-Linear Tilting Rotors

This section introduces a PVTOL test bench with an arbitrary number of co-linear
tilting rotors and derives the linearization of the resulting propulsion system model in
a compact and closed form. This propulsion configuration was chosen because it can
replicate many of the control allocation problems found in a wide range of vehicles and
can be easily extended to a more complex arbitrary co-planar propulsion system by simple
aggregation. In comparison with the typical PVTOL experimental test bench configuration,
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which is restricted to a single DoF (pitch angle), the proposed configuration adds yaw angle
as an additional DoF. This enables the introduction of a multivariable control problem
(i.e., two outputs instead of one), which facilitates a better study of the control allocation
problem.

It must be noted that adding further DoFs to the test bench (for example, roll angle)
could increase its research potential at the cost of increased mechanical complexity. In this
regard, it is important to recognize that a successful test bench benchmark must balance
the trade-off between its mechanical/manufacturing complexity and its research value
potential. To support this claim, consider the classical PVTOL test bench, which is normally
restricted to pitch angle movement. Although this restriction is clearly not completely
representative of vehicles such as the quad-copter, as mentioned in the introduction, this
has not precluded the classical PVTOL test bench from being used for a wide range of
studies related to quad-rotor applications. In this case, the proposed configuration remains
simple enough to be cost- and mechanically accessible, but complex enough for the control
allocation and multivariable cross-coupling problems to appear. Therefore, we believe that
the proposed configuration (in particular, the two-rotor version presented in an upcoming
section) represents a similar sweet spot for these problems, as the classical PVTOL test
bench is for the typical quad-rotor.

Figure 1 shows the propulsion system with an arbitrary number (n) of tilting rotors,
where the distance of each rotor from the center of gravity is denoted by li and the tilt
angle of each rotor is denoted by δi, with i = 1, 2, 3, ...n. The figure also depicts the angular
positions and rates of the PVTOL in a typical inertial North-East-Down (NED) reference
frame, where θ and ψ denote the pitch and yaw angles, respectively, and q and r denote the
pitch and yaw rates, respectively.

AFT

Motor 1

Motor 2

Motor -1n

Motor n
q

θ

δi

lir ψ
FWD

CCW

CW

N E

D

Figure 1. Modified PVTOL configuration with n tilting propulsors.

Each motor/propeller induces a thrust force Ti and a moment Ri aligned with its tilt
angle, as shown in Figure 2. Because Ri is produced by rotational drag, its direction is
opposite to the propeller rotation. According to simplified propeller modelling, typically
used for multi-rotor vehicles, force Ti and moment Ri can be modelled as [13]:

Ti =
1
2 ρSCTωi

2

Ri =
1
2 ρSCQωi

2 (1)

where S is the disc area of the propeller, CT is the thrust coefficient, CQ is the reactive
moment coefficient, ρ is the air density, and ωi is the angular speed of propeller i. Accord-
ingly, Ri can be rewritten as Ri = kiTi with ki = CQ/CT , which is convenient to reduce the
number of independent input variables.
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T
i

R
i

δ
i

EN

D

Figure 2. Thrust force (Ti) and reactive moment (Ri) produced by a single propeller.

This article studies the control allocation problem for the pitching and yawing mo-
ments, denoted as M and N, respectively, since these are the two natural degrees of
freedom for a test bench with the modified PVTOL configuration of Figure 1. Following
this configuration, the resulting pitching and yawing moments are:

M =
n
∑

i=1
Tili cos δi(−1)αi −

n
∑

i=1
Tiki sin δi(−1)βi

N =
n
∑

i=1
Tiki cos δi(−1)βi +

n
∑

i=1
Tili sin δi(−1)αi

(2)

with:

αi =

{
0, if position FWD
1, if position aft

(3)

βi =

{
0, if rotation CCW
1, if rotation CW

(4)

where CW, CCW, and FWD denote clockwise, counterclockwise, and forward respectively.
For instance, considering a simple two-rotor arrangement, with a FWD propeller

(i = 1) rotating CCW and an aft propeller (i = 2) rotating CW, the resulting moment
equations yield:

M = T1l1 cos δ1 − T2l2 cos δ2 − T1k1 sin δ1 + T2k2 sin δ2
N = T1k1 cos δ1 − T2k2 cos δ2 + T1l1 sin δ1 − T2l2 sin δ2

(5)

Although the non-linear propulsion model given by Equations (2) and (5), is useful
for many applications, such as simulation, evaluation, and non-linear control design, many
control allocation methods are based on a linear representation of the propulsion subsystem.
As follows, the linear approximation of the two-propeller case will be derived and then
extended for the general case.

The linear approximation of (5) is given by the Jacobian matrix P of the moment vector
[M N]T , that is:

[
∆M
∆N

]
= P


∆T1
∆δ1
∆T2
∆δ2

 (6)

with

P =

[
∂M
∂T1

∂M
∂δ1

∂M
∂T2

∂M
δ2

∂N
∂T1

∂N
∂δ1

∂N
∂T2

∂N
δ2

]
0

(7)

where [∆M ∆N]T and [∆T1 ∆δ1 ∆T2 ∆δ2]
T are the resulting linear output and input vectors,

and the sub-index 0 denotes evaluation in the equilibrium point.
Matrix P is also called the propulsion matrix in the literature and its properties (e.g., range)

are a determining factor when calculating the physical control inputs (i.e., [T1 δ1 T2 δ2]
T)
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necessary to reach a desired combination of input moments (i.e., [M N]T). In this case, since
the control inputs vector ∈ R4, while the moment vector ∈ R2, this PVTOL configuration
yields an over-actuation problem, which will be studied in more detail later in the article.

From (6), it follows that:

P =

[
l1 cos δ1 − k1 sin δ1 −T1l1 sin δ1 − k1T1 cos δ1 −l2 cos δ2 + k2 sin δ2 T2l2 sin δ2 + k2T2 cos δ2
l1 sin δ1 + k1 cos δ1 T1l1 cos δ1 − k1T1 sin δ1 −l2 sin δ2 − k2 cos δ2 −T2l2 cos δ2 + k2T2 sin δ2

]
0

(8)

Matrix P can be further decomposed as:

P = AP1 =

[
l1 −k1 −l2 k2
k1 l1 −k2 −l2

]
cos δ1 −T1 sin δ1 0 0
sin δ1 T1 cos δ1 0 0

0 0 cos δ2 −T2 sin δ2
0 0 sin δ2 T2 cos δ2


0

(9)

Furthermore , matrix P1 can also be decomposed as:

P1 = BC =


cos δ1 − sin δ1 0 0
sin δ1 cos δ1 0 0

0 0 cos δ2 − sin δ2
0 0 sin δ2 cos δ2


0


1 0 0 0
0 T1 0 0
0 0 1 0
0 0 0 T2


0

(10)

Therefore, matrix P can be rewritten as:

P = ABC =

[
l1 −k1 −l2 k2
k1 l1 −k2 −l2

]
cos δ1 − sin δ1 0 0
sin δ1 cos δ1 0 0

0 0 cos δ2 − sin δ2
0 0 sin δ2 cos δ2


0


1 0 0 0
0 T1 0 0
0 0 1 0
0 0 0 T2


0

(11)

Following the structure of (11), a generalization for the system with n propulsors can
be derived. In particular, following a similar analysis, the linearization of the full non-linear
propulsion subsystem (2) is given by:

[
∆M
∆N

]
= P


∆T1
∆δ1

...
∆Tn
∆δn

 (12)

where P = ABC and A ∈ R2×2n, B ∈ R2n×2n, and C ∈ R2n×2n.
As follows, each of the elements which comprise (12) will be derived in a closed and

compact form. First, matrix A, which contains information regarding the location and
orientation of each rotor, can be written as the concatenation of sub-matrices Ai:

A =
[
A1 A2 · · · An

]
(13)

with

Ai =

[
li(−1)α

i ki(−1)βi+1

ki(−1)β
i li(−1)α

i

]
(14)

In addition, B comprises a set of 2D rotation sub-matrices as:

B = diag{B1, B2, . . . , Bn} (15)
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with

Bi =

[
cos δi − sin δi
sin δi cos δi

]
0

(16)

Finally, matrix C contains information regarding the equilibrium thrust of each pro-
peller:

C = diag{C1, C2, . . . , Cn} (17)

with

Ci =

[
1 0
0 Ti

]
0

(18)

This completes the derivation of the linear approximation of the propulsion subsystem
of the PVTOL of Figure 1. The structure obtained here is useful because it allows separating
the three main physical properties that determine the resulting propulsion matrix P. In
particular:

• Matrix A contains information regarding the physical position and rotation direction
of each propeller. Since these properties are normally constant, updating matrix A
is not necessary when calculating a linear approximation on a different operating
point. However, analyzing its structure could be useful to determine which particular
propulsive configuration is better for particular applications.

• Matrix B contains information regarding the tilt angle of each of the propellers. De-
pending on the operating range and behavior of the propulsion system, this matrix
could be the most sensible for operating point modifications, and should be updated
accordingly in scheduling approaches.

• Matrix C contains information regarding the thrust force of each propeller. This
matrix could also require regular updates in a scheduling approach depending on the
operating behavior of the vehicle.

In many cases, matrices B and C may not require a full update if only a sub-set of
rotors change their operating point. Instead, updating sub-matrices Bi and Ci may be
sufficient.

Although, in this case, the derivation and decomposition of the propulsion matrix was
performed for the modified PVTOL, it may be possible that a similar decomposition could
be useful for other complex propulsion systems, which is the motivation for this analysis
(i.e., as a proof of concept).

2.2. Experimental Test Bench

In this section, an experimental test bench considering the modified PVTOL configu-
ration proposed in the previous section is introduced. The schematic of the test bench is
shown in Figure 3a, while Figure 3b shows the actual prototype. Although this is a simple
two-rotor setup, this configuration yields an over-actuated system (as noted in the previous
section); thus, it is sufficient to study the control allocation problem.

The test bench consists of a base with a transverse rod connecting a servo-motor
at each end. Two bearings allow the system to move freely on two degrees of freedom.
Brushless motors with propellers are attached to each of the servo-motors. A summary of
the technical specifications of the test bench is as follows:

• Two 2304 Racestar brushless motors (81 W max power).
• Two Gemfan 51466 three-blade propellers, one CW and one CCW.
• Two MG995 servo-motors.
• One BNO055 absolute orientation sensor.

The orientation angles are measured using the BNO055 absolute orientation sensor
array, which consists of a 3-axis accelerometer and gyroscope combined with a Kalman
filter for the pitch and yaw angle reconstruction. These kinds of sensors are normally
able to deliver measurements with a mean error of under 1.5 deg/s and 0.5 m/s2 for the
gyroscope and accelerometer, respectively [22–24]. This configuration can yield a low level
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of angle measurement error in applications where no axial acceleration is present, so that
the main source of measured acceleration is the gravity, as in the present application [25].

The test bench was operated with an external power source with a fixed voltage
of 12 V, which provided enough current for all the operating conditions tested. The
control algorithms were implemented in an ATmega2560 microcontroller, which is a low-
power 8-bit micro controller capable of 6 MIPS at 16 MHz. The possibility to implement
the proposed control allocation algorithm in this low-computational-power microcon-
troller is a salient characteristic, since most low-cost autopilot UAV solutions have limited
computational power.

EN

D

δ2

l2

l1

T1

R1

δ1

T2

R2

r

q

CCW

CW

AFT

FWD

(a)

(b)

Figure 3. (a) Test bench schematic. (b) Physical prototype.

The microcontroller code was directly generated with Simulink/Matlab without fur-
ther optimization operating at a sampling rate of 5 ms. Figure 4 shows the overall Simulink
program used for the implementation of the control algorithms presented in this article.

N
des

M
des

δ
2

δ
1

T
2

T
1

θ
real

ψ
real

ψ
des

θ
des

+
-

+
-

References

Sensors

Servo 1

Servo 2

Motor 1

Motor 2

C
ψ

C
θ

Figure 4. Simulink program for test bench.
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An Atmel-based microcontroller board was programmed for the test bench. A sum-
mary of the resulting input and output variables for the test bench is shown next.

• Input variables:

– Right motor thrust T1;
– Left motor thrust T2;
– Tilt angle of right motor δ1;
– Tilt angle of left motor δ2.

• Output variables:

– Pitch rate θ̇ = q;
– Yaw rate ψ̇ = r;
– Pitch angle θ;
– Yaw angle ψ.

Further details regarding the experimental and simulation setups are shown in
Section 3, together with the corresponding experiments and simulations.

Recalling Equation (5), the resulting motion equations are given by:

Iyy q̇ = T1l1 cos δ1 − T2l2 cos δ2 − T1k1 sin δ1 + T2k2 sin δ2
Izz ṙ = T1k1 cos δ1 − T2k2 cos δ2 + T1l1 sin δ1 − T2l2 sin δ2

(19)

where Iyy and Izz are the pitch and yaw inertial masses, respectively.
Accordingly, the resulting model considering the linearized propulsion model yields:

[
Iyy 0
0 Izz

][
∆q̇
∆ṙ

]
= P


∆T1
∆δ1
∆T2
∆δ2

 (20)

with P ∈ R2×4 as in Equation (11).

2.3. Control Allocation Problem

The objective is to design a linear controller for the pitch and yaw angles of the test
bench using the input vector [T1 δ1 T2 δ2]

T . According to (20), this results in an over-actuated
and a multivariable control problem. Although there are several control approaches which
can deal with multivariable cross-coupling, an ideal approach would be to have an input-
decoupling scheme which incorporates two virtual inputs, that is:[

Iyy 0
0 Izz

][
∆q̇
∆ṙ

]
=

[
Mdes
Ndes

]
(21)

where Mdes and Ndes are the two arbitrary virtual inputs.
Therefore, in this case, the control allocation problem consists in finding a matrix Pinv

such that I = PPinv so that the required physical input variables can be calculated for a
particular value of the desired virtual inputs, that is:

T1
δ1
T2
δ2

 = Pinv

[
Mdes
Ndes

]
(22)

In this article, two approaches to solve the control allocation problem will be compared:
(1) a decentralized control approach based on physical intuition and (2) a mathematical
approach based on SVD and optimization.

2.3.1. Physical Intuition-Based Decentralized Control Allocation

In this section, a proposal for the input signal mixer will be derived based on physical
intuition and the following assumptions:
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• A decentralized control approach for the pitch and yaw angles is sufficient to stabilize
the test bench. This implies that pitch and yaw moments are derived separately
without considering their interaction. This normally implies, for instance, that when
calculating the pitch angle input mixer (directly related to Mdes), it is assumed that
Ndes = 0. In addition, if the pitch angle mixer also affects the yawing moment N, then
these effects are neglected, or at best considered as input perturbations for the yaw
angle controller. That is, any residual cross-coupling is neglected.

• A small range of operation for the tilt-rotors is enough to stabilize the test bench. This
assumption allows maintaining the focus of this study on the linear elements of the
control allocation problem, which is the basis of most scheduling approaches. Later, it
will be confirmed experimentally that indeed only small tilt angles are required for
the stabilization of this PVTOL configuration. Nonetheless, extension of these results
for wider operating ranges will be forthcoming in future studies.

For small angles, the system tends to behave as a classical PVTOL configuration with
a single degree of freedom in the pitch angle and propeller thrust as inputs. In this case,
the resulting pitching moment yields:

M = l1T1 − l2T2 (23)

Thus, it is reasonable to use the differential thrust of propellers to induce pitching moment.
In addition, when no pitching moment is required, it is also desirable for both propellers
to maintain a specific equilibrium thrust T0. This yields the well-known PVTOL pitching
moment input mixer:

T1 = T0 +
Mdes
2l1

T2 = T0 −
Mdes
2l2

(24)

On the other hand, in the case of the yaw angle, if T1 ≈ T2 (i.e., Mdes ≈ 0), then the
yawing moment yields:

N = T1(k1 cos δ1 − k2 cos δ2) + T1(l1 sin δ1 − l2 sin δ2) (25)

Accordingly, noticing that T1 ≈ T2 in (24) implies T1 ≈ T0, the small angle approximation
for the yawing moments is:

N = T0l1δ1 − T0l2δ2 (26)

Therefore, the input mixer for the yawing moment is proposed as:

δ1 =
Ndes
2T0l1

δ2 = − Ndes
2T0l2

(27)

Equations (24) and (27) will be used for the decentralized control allocation approach.
It is clear that in this case, the pitching moment is achieved by modifying the propeller
thrust, whereas the yawing moment is achieved by modifying the rotor tilt angle. Therefore,
this solution is also easy to understand and to implement.

2.3.2. Singular Value Decomposition Control Allocation

In this section, a simple control allocation solution will be derived using the SVD
analysis of the linearization of the propulsion system. Recalling Equation (6), the SVD of
matrix P yields:

P2×2n = U2×2S2×2nVT
2n×2n (28)

where the sub-indexes show the size of each matrix.
Matrix S is a rectangular diagonal matrix called the singular values matrix, whose

diagonal elements si are always positive, typically written in descending order, and are
called the singular values of matrix P. In addition, matrices S and V are orthogonal. The
rank of matrix P is equal to the number of non-zero singular values. Thus, matrix P can be
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considered as a linear transformation of R2n into Rrs , where rs = rank(S) is the number of
non-zero si values, which in this case, since S ∈ R2×2n, can only be at most 2. Finally, this
analysis shows that for the modified PVTOL configuration with arbitrary number of tilting
rotors, a fully decoupling control allocation solution exists iff rs = 2.

The SVD of matrix P also allows viewing the linear transformation between an input
vector u ∈ R2n and an output vector y ∈ R2 as a series of intermediate linear transforma-
tions, as shown in Figure 5, where the intermediate transformed vectors are y2 ∈ R2n and
y1 ∈ R2, that is:

y2 = VTu y1 = Sy2 y = Uy1 (29)

2n

2n 2n

2n

2n2

1

2 2

11 2

2 1
u y yy

12

Figure 5. Decomposition of the linear transformation matrix P into intermediate transformations.

Figure 5 shows that the loss of dimension introduced by matrix P occurs in the
intermediate transformation y1 = Sy2 and is due to the rank of matrix S. In particular,
matrix S has the following structure:

S =
[

S1 02×2n−2
]

(30)

where 02×n−2 denotes a zero matrix of the indicated size and S1 is given by:

S1 = diag{s1, s2} (31)

If the rank of P is two (i.e., S1 is invertible), then all the possible input combinations u
which produce a particular desired output y can be calculated with:

y1 = UTy
y2S = S1

−1y1

y2 =

[
y2S
y2N

]
u = Vy2

(32)

where y2N ∈ R2n−2 is an arbitrary vector which does not have any effect over the resulting
output vector y.

If y2N = 0, then Equation (32) yields the Moore–Penrose pseudo-inverse. In particular,
y2N introduces additional degrees of freedom which account for the null subspace of S. The
process of using this pseudo-inverse transformation to calculate an input u which produces
a particular desired output y is represented in Figure 6. This allows injecting an arbitrary
vector y2N which can be selected according to additional practical considerations. Note
that in this case, the SVD analysis was preferred over the direct pseudo-inverse approach
because of the additional flexibility that the SVD decomposition yields, such as more precise
control of the null space injection and information contained in matrices S and V.
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Figure 6. Graphical representation of using the pseudo-inverse to calculate input u from the desired
output y.

2.3.3. SVD-Based Control Allocation Configuration

In the previous section, a control allocation approach based on SVD was presented for
the general case of n co-linear tilting rotors. This method introduced additional degrees of
freedom which could be potentially used to better comply with additional specifications.
In this section, the SVD control allocation method will be applied to the two-rotor modified
PVTOL test bench and the additional degrees of freedom will be configured according to
practical considerations.

Considering the physical parameters of the test bench, and the equilibrium points
reported in Table 1, the propulsion matrix P (i.e., the linear approximation of the propulsion
system) yields:

P =

[
0.2050 −0.0424 −0.2050 0.0424
0.0103 0.8446 −0.0103 −0.8446

]
(33)

Table 1. Test bench parameters and equilibrium points.

Variable Value

T10 4.12 N
T20 4.12 N
δ10 0°
δ20 0°
l1,2 0.205 m
k1,2 0.0103 m

Using Equations (28) and (32) with u = [T1 δ1 T2 δ2]
T and y = [Mdes Ndes]

T yields:
T1
δ1
T2
δ2

 =


2.433 0.122 0.707 −0.025
−0.029 0.592 0.025 0.707
−2.433 −0.122 0.707 −0.025
0.029 −0.592 0.025 0.707




Mdes
Ndes

a
b

 (34)

where the vector containing the additional degrees of freedom is given by y2N = [a b]T .
Parameters a and b can be selected freely according to the designer considerations. In

this case, the first consideration is that it is desirable that δ1 = δ2 = 0 when Mdes = Ndes = 0.
Physically, this implies that, in equilibrium, the rotors should point upwards. Therefore,
from (34), it is required that

0.025a + 0.707b = 0 (35)

Thus, b is set as:
b = −0.035a (36)

Next, parameter a is selected so that the quadratic error considering the non-linear
propulsion model is minimized. This yields the following minimization problem:

min
a

J = (e2
M + e2

N) (37)
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with: [
eM
eN

]
=

[
M
N

]
− P Pinv(a)

[
Mdes
Ndes

]
(38)

where M and N are as in Equation (5), P is from (33), and Pinv(a) is matrix (34) with an
arbitrary a value.

A simple numerical exercise, shown graphically in Figure 7, reveals that the optimal
value for this parameter is a = 5.82.

−10 0 10 20

0

5

10
10
−3

−10 0 10 20

−1

0

1
10
−3

Figure 7. Cost function J and its derivative (dJ) as a function of a.

Finally, the resulting input mixer yields:
T1
δ1
T2
δ2

 =


2.433Mdes + 0.122Ndes + 4.12
−0.029Mdes + 0.592Ndes

−2.433Mdes − 0.122Ndes + 4.12
0.029Mdes − 0.592Ndes

 (39)

2.3.4. Final Mixer Algorithm Comparison

In this section, the resulting mixer algorithms using both approaches will be compared
for T1 and δ1 (note that T2 and δ2 are similar). In particular, the decentralized control
approach using the parameters of Table 1 and Equations (24) and (27) yields:

T1,dec = 4.12 + 2.43Mdes δ,dec = 0.592Ndes (40)

On the other hand, from Equation (39), using the SVD approach yields:

T1,dec = 4.12 + 2.43Mdes + 0.122Ndes δ,dec = 0.592Ndes − 0.029Mdes (41)

Examination of Equations (40) and (41) reveals that both approaches arrive at similar
results, with the main difference being that the SVD approach introduces additional decou-
pling factors. In addition, this also shows that the selection of the free parameters during
the SVD approach design is an important element which allowed for the incorporation of
similar physical insights as the decentralized approach.

3. Results
3.1. Simulation Results

In this section, the effectiveness of both control allocation approaches is tested through
simulations using the control scheme shown in Figure 8, where the inverse propulsion
system dynamics (i.e., Pinv) is obtained according to the control allocation schemes of the
previous section.

A pair of PID controllers was designed for the pitch and yaw angles, Cθ and Cψ,
respectively, using Equation (21) as a design model. That is, it was assumed that the
propulsion system is fully decoupled and compensated. This assumption yields a pair of
simple double-integrator dynamics, which are controlled through direct pole placement
and the specifications of Table 2. These specifications aim at introducing a certain degree
of bandwidth separation between the orientation angles and consider a slower response
time for the propeller tilting servos than the propeller thrust. This aspect will become an
important issue for the experimental implementation and is commented on later in the
article. The resulting PID gains are reported in Table 3.
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Figure 8. Test bench control system scheme. In this case, Pinv represents the control allocation
algorithm.

Table 2. Specifications.

Requirement Pitch θ Yaw ψ

Overshoot Mp <35% <25%
Settling Time Ts <11 s <15 s

Table 3. Simulation PID controller gains.

Constant Pitch Yaw

Proportional 2 1.5
Integral 0.1 0.1
Derivative 1.5 1

The simulations were performed with both control allocation approaches (i.e., decen-
tralized and SVD-decoupled), the previously mentioned PID controllers and the non-linear
model of the modified PVTOL test bench from Equation (19). In order to assess the resulting
cross-coupling due to the input mixer algorithms, the following conditions were simulated:

1. Pitch-Varying Case: The pitch θ reference changes in steps, while the yaw ψ reference
remains constant at zero.

2. Yaw-Varying Case: The yaw ψ reference changes in steps, while the pitch θ reference
remains constant at zero.

3.1.1. Pitch-Varying Case

Figure 9a shows the simulated responses of the pitch and yaw angles for the decen-
tralized approach, while Figure 9b presents the same variables using the SVD-decoupling
algorithm. This figure shows that while the pitch angle response of both approaches is
similar and within the control specifications, the cross-coupling introduced in the yaw
angle is significantly greater in the case of the decentralized input mixer.

In order to better assess the effectiveness of the SVD-decoupling control allocation
approach, Figure 10 presents a comparison between the reference moments (i.e., M, N and
Mdes, Ndes) and the actual moments exerted by the propulsion system for the simulation
of Figure 9 with the SVD-decoupling approach. This figure shows that the resulting SVD-
decoupling mixer has a very low error level (N and M deltas) and very good tracking
capabilities. The greatest error level is observable in the case of the yawing moment at the
time of the pitch angle step movement, which is when the propulsion system cross-coupling
is at its highest.
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Figure 9. Pitch θ varying simulated responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.
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Figure 10. Comparison between reference moments and the actual moments exerted by the propul-
sion system for the SVD-decoupling control allocation approach (a) Pitching moment M. (b) Yawing
moment N.

3.1.2. Yaw-Varying Case

For the yaw variation simulations, Figure 11a shows the simulated responses of the
pitch and yaw angles for the decentralized approach, while Figure 11b presents the same
variables using the SVD-decoupling algorithm. Similarly to the pitch-varying case, the
cross-coupling in the pitch angle due to variations in the yaw angle reference is reduced by
using the SVD-decoupling mixer.
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Figure 11. Yaw ψ varying simulated responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.

Finally, Figure 12 presents a comparison between the reference moments (i.e., M, N
and Mdes, Ndes) and the actual moments exerted by the propulsion system for the simulation
of Figure 11 with the SVD-decoupling approach. The greatest error level is observable in
the case of the pitching moment at the time of the yaw angle step movement, which is
when the propulsion system cross-coupling is at its highest.
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Figure 12. (a) Pitch moment M for varying yaw ψ input from decoupling control. (b) Yaw moment
N for varying yaw ψ input from decoupling control.

3.1.3. Discussion

The previous results show that, in a simulated environment, the SVD-decoupling
approach is effective in reducing the resulting cross-coupling, even when considering
non-linear propulsion dynamics. In addition, the proper setting of the free variables when



Machines 2024, 12, 46 18 of 24

calculating the propulsion system inverse dynamics allowed obtaining similar responses to
the physical insight approach. That is, the SVD-decoupling approach allows integrating
physical insight easily. This is an important feature, because in most real applications,
practical considerations have to be taken into account. For example, Figure 13 presents
a comparison between the tilt-rotor angles for the simulations of the previous section
considering both control allocation approaches. This figure shows that both approaches es-
sentially produce the same overall tilt-rotor angles; however, the SVD-decoupling approach
introduces slight adjustments, which resulted in a reduced cross-coupling.
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Figure 13. (a) Rotor angles δ1, δ2 from decentralized and decoupling controllers for a Pitch θ varying
input. (b) Rotor angles δ1, δ2 from decentralized and decoupling controllers for a Yaw ψ varying input.

3.2. Experimental Results

The control system of Figure 8 was implemented experimentally using the test bench
of Figure 3 and a similar set of experiments to those presented in the simulations was
performed.

The PID gains of the previous section (i.e., simulation) were taken as a baseline in the
tuning of the prototype’s controller. Since the simulated test bench equations (Equation (19))
did not account for friction damping, a slight adjustment of the PID gains was necessary to
maintain the control specifications. A comparison of the frequency-domain response of the
original (i.e., simulated) and the experimentally adjusted PID controllers is presented in
Figure 14. This figure confirms that the main differences between these controllers are (1)
decreased phase (damping) in the experiment and (2) increased gain for the experimental
PID controller, which is in line with the effects of a higher level of friction in the experimental
setup. The resulting PID gains used for the experiments are presented in Table 4. Both
control allocation schemes were implemented using the same PID controllers.

Table 4. Experimental PID controller gains.

Constant Pitch Yaw

Proportional 1.5 1.5
Integral 1 0.5
Derivative 0.5 1
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Figure 14. (a) Pitch θ moment PID controller bode diagrams for simulation and experiment. (b) Yaw
ψ moment PID controller bode diagrams for simulation and experiment.

3.2.1. Pitch-Varying Case

The experimental responses of the test bench when the pitch reference is modified
for both control allocation approaches are shown in Figure 15. In comparison with the
simulated responses from Figure 9, this figure shows that the pitch angle responses are more
affected by the amplitude of the pitch angle variation in both approaches. For instance,
the overshoot when moving the pitch angle reference from 20◦ to −20◦ is larger than
in the simulated response. This could be mostly due to actuator saturation (absolute or
rate) or other non-modelled dynamics. The effect is that the cross-coupling reduction in
the yaw angle of the SVD-decoupling approach is reduced in the largest pitch reference
modification (40◦ magnitude), but it is maintained in the other cases (20◦ magnitude).
In addition, a greater reduction was observed for the positive pitch angle variation than
the corresponding negative of the same magnitude. This suggests that there could be
imbalances in the test bench, either mechanical or due to actuator mismatch.
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Figure 15. Pitch θ varying experimental responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.

3.2.2. Yaw-Varying Case

Figure 16 shows the experimental results when varying the yaw angle reference. In
this case, the cross-coupling reduction in the pitch angle introduced by the SVD-decoupling
approach is maintained in all cases, while the overall yaw angle response performance
is similar for both approaches. The contrast with the pitch-varying case, where the cross-
coupling was greater in the largest magnitude reference change, suggests an asymmetry in
the response times of the main pitch and yaw actuators (i.e., electronic speed controllers for
pitch and tilt servos for yaw in this case).
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Figure 16. Yaw ψ varying experimental responses. (a) Decentralized control allocation approach.
(b) SVD-decoupling control allocation approach.
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3.3. Quantitative Analysis

A quantitative summary of the experimental responses is presented in Table 5, which
shows the Mean Squared Error (MSE) of the experimental responses of Figures 15 and 16.

Comparing both control allocation approaches when varying the pitch angle reference,
there was a reduction of 20.4% in the MSE of the yaw angle cross-coupling when using the
SVD-decoupling scheme. A reduction of 70.5% in the MSE of the pitch angle cross-coupling
was also observed when the yaw angle reference was modified with the SVD-decoupling
scheme.

On the other hand, Table 5 also reveals that, interestingly, the cross-coupling reductions
of the SVD-based scheme came at the cost of a slight increase in MSE at the reference angle
responses. In particular, increases of 2.15% and 1.59% were observed for the pitch and yaw
angles, respectively.

This trade-off of cross-coupling reduction and main angle tracking performance was
not observed in the simulated responses, which suggests again that actuator limitations
and asymmetry may be a possible explanation.

Figures 17 and 18 present the error distribution of the experimental responses. A
closer look at Figure 17, which corresponds to the experiment where the pitch angle
reference is modified, shows that the error distribution for the yaw angle is considerably
reduced with the SVD-decoupling approach, with much tighter quartiles overall, while
the median is similarly close to zero in both cases. In contrast, for the pitch angle, the
SVD-decoupling approach yields similarly large quartiles with a slightly larger range.
In addition, the distribution of the inner quartiles with the SVD-decoupling approach is
significantly skewed compared with the decentralized approach, while maintaining the
same overall size, resulting in the median being farther from zero in the SVD-decoupling
approach, which can explain the slight increase of MSE in this case.

In the case of the yaw varying experiment, Figure 18 shows that the error distribution of
the pitch angle, which represents the cross-coupling in this experiment, is also considerably
reduced with the SVD-decoupling approach, with all quartiles much closer to zero as well
as the median. For the yaw angle, the SVD-decoupling approach yields a very similar error
distribution to the decentralized approach, with the main differences being a median closer
to zero and a slight skew to negative errors for the outer quartiles.

These figures confirm and extend the observations made with Table 5. That is, intro-
ducing the SVD-decoupling scheme reduces the cross coupling significantly while only
slightly affecting the reference angle performance.

−4

−2

0

2

4

DesC SVD-DC DesC SVD-DC
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Figure 17. Error distribution of the experimental responses of the pitch θ varying experiment.
DesC = decentralized control. SVD-DC = SVD decoupling control.
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Figure 18. Error distribution of the experimental responses of the yaw ψ varying experiment.
DesC = decentralized control. SVD-DC = SVD decoupling control.

Table 5. Mean Squared Error comparison between decentralized and decoupling controllers for pitch
θ and yaw ψ reference variations.

Experiment DoF Decentralized Decoupling ∆%

Pitch θ
Variation

Pitch θ 37.4525 38.2600 2.1560
Yaw ψ 4.1196 3.2768 −20.4583

Yaw ψ
Variation

Pitch θ 2.3904 0.7042 −70.5405
Yaw ψ 118.6156 120.5088 1.5960

4. Discussion and Conclusions

In this article, a modified PVTOL configuration with an arbitrary number of co-linear
tilting rotors was introduced as a baseline to study the control allocation problem found in
many of the recently proposed VTOL aircraft designs. A general model for the resulting
propulsion subsystem, as well as its linearization, was also developed. This linearization,
which is necessary for many of the current control allocation strategies, is presented in a
general and structured manner, to facilitate a better understanding of the effects of each of
the physical parameters of the propulsion system.

Following the proposed modified PVTOL configuration, a two-tilting-rotor test bench
was implemented experimentally. This test bench yields an over-actuated system which
can be used to study the control allocation problem theoretically and experimentally. An
SVD control allocation approach was developed for the resulting test bench. The proposed
approach allows deriving an adequate input mixer algorithm for the over-actuated system,
and it is shown that the remaining free degrees of freedom can be used to integrate physical
insight and to solve general optimization goals (in this case, the minimization of error due
to linearization).

The resulting SVD control allocation scheme is compared with a more traditional
scheme derived by physical insight. It is shown that both approaches yield a similar use
of the available control variables, with the SVD-based scheme introducing minor input
modifications which allow obtaining a considerable decrease in cross-coupling in the test
bench orientation angles.

Simulation and experimental results validate that the SVD control allocation scheme
allows decreasing cross-coupling while maintaining the same overall performance as the
traditional approach. The main deviations from the simulated and experimental results
are due to the presence of friction damping in the experimental test bench, which was
expected.

Interestingly, other smaller deviations suggest that actuator discrepancies can also
have a significant effect on the resulting performance, that is, differences in actuator
time responses, saturation levels, etc., due to the type of actuator, for instance, tilt-rotor
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servo dynamics vs. electric motor controller and propeller dynamics. Further research
which incorporates better specific actuator properties is required to extend the benefits
of decoupling control allocation schemes in general. This is an important finding, since
many applications which require control allocation solutions use a mixture of dissimilar
actuators.

Finally, the results support the continued use of the proposed modified PVTOL config-
uration, in either the presented two-rotor version or in a more complex configuration, for
the study of the control allocation problem.
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