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Abstract: The multi-random-effects gamma process has a better characterization effect for degraded
data with individual differences. In this paper, a reliability evaluation method for gamma stochastic
processes with multiple random effects is studied. The mathematical model of multiple random effects
gamma process was established. The model parameters estimation method was established based on
the Bayesian approach. The prior distribution acquisition method was discussed, and the parameters
of the multiple randomeffects gamma process were estimated by the MCMC-Gibbs method. The
correctness of the model and method was verified by numerical simulation, the influence of algorithm
parameters on the algorithm solving process was studied. In the fourth part, the reliability of aviation
hydraulic rotary joints was studied by using multiple random effects gamma processes.

Keywords: gamma stochastic process; Bayesian method; reliability evaluation

1. Introduction

Nowadays, the reliability of products is a focus issue in the product manufacturing
industry. Under the impact of external and internal stress, the physical or chemical changes
in the materials of the product will lead to the gradual degradation of product performance.
When the performance degrades to the specified threshold, the products will be considered
to be in a failed state. This type of failure is called soft failure, which is a primary failure
mode of products. The performance degradation data of the products contain past and
current health status information, and the future health status of the products can be
evaluated based on this information. The remaining service life and operation reliability of
the products can be predicted according to the performance degradation information, which
can provide scientific guidance for product maintenance, repair and replacement [1–5].

It is important to select a suitable degradation model to describe the process of product
performance degradation. The traditional mathematical model was first used in reliability
evaluation and residual life prediction. Before the 1990s, the simple regression model was
used as a degradation process model to describe the product performance degradation
process. However, the simple stochastic model could not take the uncertainty in the
model of product performance degradation, so the remaining life value obtained by the
model is a definite value, which is not consistent with the actual situation. Later, Lu and
Meeker [6] proposed a stochastic coefficient regression model for the product performance
degradation process. The regression coefficient is considered as a random parameter, and
the measurement noise item is added to the model. Then the model has been developed to
some extent. Wang et al. [7] summarized the stochastic coefficient regression model and
calculated the failure threshold by optimization method. The random time series model is
also applied to product life prediction.
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The stochastic process model is an important degradation model, which is widely
used to describe the degradation process of product performance because of its good math-
ematical characteristics. The Wiener process is the earliest stochastic process introduced
into the reliability field [8–12]. Afterward, the inverse Gaussian process [13–15] and the
gamma process are also used as mathematical models for different degradation processes.

The gamma process can be used to describe wear, aging and fatigue phenomena.
In recent years, the theoretical research of gamma processes has been developed rapidly
and has been widely used in the field of engineering reliability. Duan et al. [16] stud-
ied the design problem of the step-stress accelerated degradation test (SSADT) based on
the non-stationary gamma process with random effects. Mercier et al. [17] analyzed two
imperfect repair models for a degrading system; the deterioration level of the system
was modeled by a nonhomogeneous gamma process. This study provides a reference
for the maintenance of the system. Ling et al. [18] studied the degradation analysis for
products with two-phase degradation under gamma processes. The research proposed a
Bayesian approach and a likelihood approach via a stochastic expectation-maximization
algorithm for the statistical inference of the remaining useful life. Cholette et al. [19]
used gamma processes to study the performance degradation process of boiler heat
exchanger. Jiang et al. [20] proposed a Gamma constant-stress accelerated degradation
model based on the principle of the degradation mechanism invariance. Paroissin [21]
built a recursive estimator using an online estimation problem for gamma processes.
Song et al. [22] proposed a time-discrete and zero-adjusted gamma process model. The
results show that the proposed model has satisfactory fit performance and predictive per-
formance. Fan et al. [23] used the gamma processes model to predict the real lumen decay
and color shift lifetimes. Wang et al. [24] used Gamma processes to predict the lifetime
based on accelerated degradation data. Lin et al. [25] presented a two-phase gamma pro-
cess model, and the model was applied to estimate the state of charge and the remaining
useful discharge time of batteries. Wang et al. [26] proposed a dynamic RUL prediction
and optimal maintenance time (OMT) determination approach using a Gamma process
model. Salem et al. [27] studied parameter estimation and lifetime prediction of differential
gamma processes.

The Gamma degradation model with random effects has a good fitting effect for
the degenerate data, which was researched in the literature [28–31]. Zhou et al. [32]
proposed a reparameterized gamma process with random effects; the variational Bayesian
algorithm was used to infer the model parameters. The results show that the proposed
method is superior to MCMC algorithm and EM algorithm in computational efficiency and
estimation accuracy.

The multi-random-effects gamma process has a better characterization effect for de-
generation data with individual differences. In previous studies, the scale parameter of
the gamma process was often taken as random parameters, and the randomness of the
initial values was not considered. In order to further expand the reliability evaluation
method based on gamma processes, this paper proposes a reliability evaluation method for
gamma stochastic processes with multiple random effects. The model takes into account
the randomness of the initial value and degradation rate, and adopts the distribution of
random parameters different from previous studies. In the first part, the mathematical
model of the multi-random-effects gamma process was established. In the second part, the
model parameters estimation method was established based on the Bayesian approach.
The prior distribution acquisition method was discussed, and the parameters of the multi-
random-effects gamma process were estimated by the MCMC-Gibbs method. In the third
part, the correctness of the model and method was verified by numerical simulation. In
the fourth part, the reliability of aviation hydraulic rotary joints was studied by using
multi-random-effects gamma processes. This method has certain theoretical significance
and engineering application value.
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2. Mathematical Model of Multiple Random Effects Gamma Processes
2.1. Gamma Random Process

The gamma process is a classic random process with independent and non-negative
increments, which is suitable for representing degradation phenomenon characteristics
such as crack growth and metal wear. The degradation value of the sample at time t is
represented by y(t). The gamma process satisfies the following characteristics:

(1) For any moment t, the degradation increment ∆y = y(t + ∆t)− y(t) is independent.
(2) The degenerate increment ∆y beys the Gamma distribution Ga{α(t + ∆t), α(t), β},

where β is the scale parameter and α is the monotonically increasing shape parameter.
If α(0) = 0, the probability density function of the gamma distribution is:

g(y; α(t), β) =
βα(t)

Γ(α(t))
yα(t)−1e−βy (1)

where α > 0 is the shape parameter and β > 0 is the scale parameter, Γ(α) =
∫ ∞

0 tα−1e−tdt
is a gamma function.

2.2. Multiple Random Effects Gamma Processes

The initial value of equipment performance degradation value is inconsistent due to
environmental change, manufacturing error and installation technology in the manufac-
turing process. Moreover, in the work process, the random stress and the difference in
equipment material properties lead to a dynamic and random fluctuation of equipment
performance degradation rate. In order to improve the accuracy of reliability assessment,
the model should be further improved.

When considering the influence of random effects on the gamma process, the initial
value and the degradation rate are random, and the difference between the initial value and
the degradation rate will affect the remaining life prediction accuracy. Therefore, in order
to describe the degradation process more accurately, the randomness of the degradation
process should be considered.

Considering that the degradation process {X(t), t ≥ 0} of product performance changes
with time, assuming that the degradation process conforms to the change law of gamma
process, the degradation amount X(t) of equipment at any time t can be described by the
following model:

X(t) = X(0) + Ga(α(t), β) (2)

where X(0) = x0 is the initial value of degradation parameter value, Ga(α(t), β) is the
gamma process with shape parameter α(t) and scale parameter β.

It is reasonable to assume that the distribution of initial parameters is uniform when
certain dimensional tolerances need to be satisfied during manufacturing. Assuming X(0)
a uniform distribution x0~U(a0, b0).

Parameters α(t) and β can be used as influencing parameters of degradation rate. In
this paper, the shape parameter α(t) is regarded as a random parameter to describe the
difference of degradation rate. When the shape parameter is selected as a linear function
α(t) = at, it is assumed that the distribution followed by the parameter a is uniform
distribution, a~U(αa, αb).

3. Parameter Estimation of Degradation Model Based on Bayesian Method
3.1. Bayesian Parameter Estimation

Based on Bayesian statistical theory, the Bayesian approach is an important method of
parameter estimation, which has been widely used in reliability engineering [33]. Bayesian
approach considers the function of prior information of the unknown parameters in the
process of parameter estimation and combines the available data with prior information.
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Bayesian approach treats the unknown parameters as random variables and obtains the
posterior distribution of the unknown parameters according to the following formula:

p( θ|X) =
π(θ)L(X|θ)∫
π(θ)L(X|θ)dθ

(3)

where π(θ) is the prior density function of the parameter θ. L(X|θ) is the conditional
density function under known parameter θ, which is called the likelihood function.

It is assumed that there are a total of n samples for the test, and each sample has
been measured mi(i = 1, 2, · · · , n) times during the test. Note that the degradation amount
measured at the second j measurement time of the second i sample is xij, the two adjacent
measurement intervals are ∆tij = tij − tij−1, and the degradation increment between the
two adjacent measurement intervals is ∆xij = xij − xij−1. According to the characteristics
of gamma distribution, the degradation increment is satisfied.

f
(

∆xij
∣∣α(∆tij

)
, β
)
=

βα(∆tij)

Γ
(
α
(
∆tij

))∆xα(∆tij)−1 exp
(
−β∆xij

)
(4)

Assuming that the samples are independent of each other, α = [α1, α2, · · · αn], the
likelihood function for the random effect gamma process is expressed as:

L
(

∆xij
∣∣α, β

)
=

n

∏
i=1

(
mi

∏
i=1

f
(

∆xij
∣∣αi, β

))
f (αi) (5)

where αi is a random variable subject to uniform distribution, and the probability density
function is:

f (αi) =
1

αb − αa
(6)

After obtaining the probability density function of the parameter based on Formula (3),
the Bayesian estimation of the parameter θ under the square loss function is:

θ̂ =

∫
Θ

θL( x|θ)π(θ)dθ∫
Θ

L( x|θ)π(θ)dθ
=
∫
Θ

θπ( θ|x)dθ = E( θ|x) (7)

The computation of posterior distribution for θ based on Formula (3) is an intractable
problem bottleneck in Bayesian analysis. When faced with complex high-dimensional prob-
lems, it is difficult to obtain a posterior distribution through analytical methods. MCMC
(Markov Chain Monte Carlo) and EM algorithm are two commonly used algorithms in
Bayesian formula parameter estimation. MCMC is based on the Markov theory and Monte
Carlo method, which directly simulates independent random samples of the posterior
distribution, and then obtains the relevant statistical characteristic information values by
analyzing the simulated samples. In this paper, MCMC method is used to estimate the
unknown parameters of the model.

This paper proposes a reliability estimation method, as shown in Figure 1. Firstly, the
unknown parameters of the gamma process are estimated by using the moment method
based on the degradation data. The prior distribution of unknown parameters of multi-
random effect gamma processes is constructed according to the estimated results of un-
known parameters. Then, based on the degradation data and the prior distribution of
unknown parameters, the MCMC method is used to estimate the unknown parameters of
the multi-random effects gamma process, and the multi-random effects gamma process
model is obtained. Finally, the life distribution was obtained by Monte Carlo method.
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3.2. Determination of the Prior Distribution

The prior information can be utilized in the Bayesian method, so the probability
distribution form and parameters in the Bayesian model should be obtained according
to experience and historical data. Uniform distribution and gamma distribution are the
common distribution types used as prior distributions. When prior information is insuffi-
cient, gamma distribution is the most commonly used distribution. In this paper, uniform
distribution and gamma distribution are used as prior distributions, and the method of
obtaining parameters of uniform distribution is studied.

There are a total of n degenerate samples. For each degenerate sample, ∆xi = xi− xi−1,
∆ti = ti − ti−1,i = 1, 2, · · · . The sample mean and sample variance of each degenerate
sample can be calculated as:

R =
1
n

n

∑
i=1

∆xi
∆ti

(8)

S2
R =

1
n− 1

n

∑
i=1

(
∆xi
∆ti
− R

)2

(9)

E
(

R
)
=

α

β
(10)

Var
(

R
)
=

1
n2

α

β2 ∑n
i=1

(
1

∆ti

)
(11)

The estimated values of parameters α and β can be obtained as:

α̂ =
R2

∑n
i=1

(
1

∆ti

)
nS2

R
(12)

β̂ =
R∑n

i=1

(
1

∆ti

)
nS2

R
(13)

The M estimated values of parameters α and β can be obtained. According to the
estimated values of parameters α and β of each degradation curve, the corresponding
distribution types and parameters can be constructed.
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The distribution test method can be used to select and analyze the random distribution
types of model parameters. Therefore, the distribution types of model parameters can be
determined whether they conform to the set distribution types. Due to the randomness of
the degenerate process, the parameters α and β in the gamma process are stochastic. When
the gamma process parameters are taken as a random parameter, one of the parameters is
generally regarded as a random parameter. Therefore, when distribution test for random
parameters are conducted, another parameter is treated as a fixed parameter. It can improve
the accuracy of parameter distribution test. For example, if the parameter α is regarded
as a random parameter, the estimated value parameter α for the distribution test can be
calculated as follows:

α = R× βAVE (14)

where βAVE is the mean value of β̂ calculated by Formula (13).
When the prior distribution cannot be obtained, conjugate distribution is often used as

the distribution type of the prior distribution. For the random parameters of a gamma pro-
cess, the gamma distribution can be used as a prior distribution. However, it is difficult to
obtain the value of the prior distribution parameters, and the prior distribution parameters
have an important effect on the parameter estimation result.

The parameter estimation values of each curve are calculated according to
Equations (12) and (13). For parameter α, when parametric randomness is described by
uniform distribution, the parameter αa and αb need to be obtained. Either a uniform
distribution or a gamma distribution can be used as a prior distribution. However, the
parameters of the gamma distribution are difficult to obtain. When the uniform distribution
is used as the prior distribution, the parameter values of the prior distribution are most
likely to be located near the minimum and maximum of the moment estimation value of pa-
rameter α. The parameters of the prior distribution can be constructed using the minimum
and maximum of the moment estimation value, which are discussed in Section 4.2.1. For
parameter β, When a uniform distribution is used as a prior distribution, the values of the
prior distribution can be taken using the maximum and minimum values of the parameter
β moment estimation value.

3.3. Life Distribution Prediction Process

When the performance degradation value reaches the failure threshold, it means that
the product performance is seriously deteriorated: even if it is working normally, it is
regarded as failure. The service life of the product is the time from the product come into
use to the first time it reaches the failure threshold.

Therefore, the service life of the product is defined as:

T = inf{X(t) ≥ l} = { t|X(t) ≥ l, X(s) < l, 0 ≤ s < l} (15)

where l is the failure threshold.
When the parameters of degradation model are fixed effect parameters, the probability

density function and distribution function of failure time are:

F(t|l, α, β ) =

l∫
0

βαt

Γ(αt)
xαt−1e−βxdx =

Γ(αt, lβ)
Γ(αt)

(16)

f (t|l, α, β ) =
dF(t|l, α, β )

dt
=

α

Γ(ct)

lβ∫
0

[
ln(ξ)− Γ′(αt)

Γ(αt)

]
ξαt−1e−ξ dξ (17)

where Γ(a, x) =
∫ ∞

x ta−1e−tdt.
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When considering the uncertainty of initial values and degenerate parameters,
le = l − x0, let le replace l, the probability density function and distribution function of the
available failure time are:

f (t) =
+∞∫
−∞

+∞∫
−∞

f (t|le, α, β ) f (α) f (le)dαdle (18)

F(t) =
+∞∫
−∞

+∞∫
−∞

F(t|le, α, β ) f (α) f (le)dαdle (19)

The probability density function and distribution function of multi-random effect
gamma process require complex calculus calculation. It is difficult to obtain analytical
formula of life distribution for multiple random effects gamma processes. In this paper,
we use the Monte Carlo and Euler discretization methods to simulate the random process
{X(t), t ≥ 0}:

X(k+1)∆t = Xk∆t + Ga(α(∆t), β) (20)

Bootstrap method is a sample expansion method. It can generate a large number of
bootstrap samples independently from the original samples, so as to achieve statistical
inference of the entirety. Given the failure threshold, the random degradation curve can
be generated through the Formula (16) and the failure time can be calculated. The specific
steps are as follows:

Step 1: Set the number of bootstrap samples M, discrete time step ∆t, and failure
threshold l;

Step 2: Randomly generate M initial bootstrap sample value x0i(i = 1, 2, · · · , M)
according to the uniform distribution U(a0, b0); Randomly generate M degradation coeffi-
cients αi (i = 1, 2, · · · , M) according to the uniform distribution U(αa, αb).

Step 3: For the degenerate trajectory i, use the Formula (15) to calculate X(M)
(k+1)∆t

according to X(M)
k∆t . Judge whether it exceeds the failure threshold l. If X(m)

(k+1)∆t ≥ l, the
failure time of the sample i is approximately considered Ti = (k + 1)∆t; on the contrary, if
X(m)
(k+1)∆t < l, continue to increase the number of time steps k until X(m)

(k+1)∆t ≥ l.
Step 4: Repeat steps 2 to 4 to obtan the first failure time set of samples

T = {T1, T2, · · · , TM}.
Step 5: The characteristic parameters of the life value can be obtained by

statistical method.

4. Numerical Study
4.1. Data Introduction

In order to verify the feasibility and correctness of the method proposed in this paper,
the numerical simulated method is used in this part. According to the method proposed in
this paper, the parameters of the simulation data are estimated and the life distribution is
calculated. First of all, twelve data sets satisfying multiple random effect gamma process
are constructed by numerical simulation method. The degradation path of each data set is
shown in Figure 2.
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Figure 2. Multi random effect gamma process degradation path. Figure 2. Multi random effect gamma process degradation path.

These twelve sets of data sets have different model parameters, so as to compare
the applicability of the method to different forms of data. In these twelve groups of data,
1 time unit is taken as a sample point, each data set contains M degradation paths, and
each degradation path contains N data points. Data sets 1~3 have the same degenerate
model parameters and the number of data points, but they contain different paths M. Data
sets 4~6 have the same degenerate model parameters and the number of paths, but they
contain different data points N. Data sets 7~9 have the same number of data points and
paths, but their model parameters αb are different. Data sets 10 to 12 have the same number
of data points and paths, but their model parameters β are different.

It can be seen from Figure 2 that for different degradation model with different
parameters, the degradation trajectory has different change trends. Among them, the
parameter a0 and b0 represent the size and dispersion of the initial parameter value; the
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parameters and sum together determine the dispersion degree of the degradation path.
When the parameter is β fixed, the parameter αa and αb represent the dispersion degree of
the degradation track; When the parameter αa and αb are fixed, the parameter β represents
the degradation rate of the parameter. Therefore, it can be seen that the multi-random effect
gamma process has good applicability for different degradation paths.

4.2. Parameter Estimation Result
4.2.1. Estimation Results of Prior Parameters

Since initial parameters a0 and b0 can be estimated only by data initial values, this
part focuses on the research of the estimation methods of gamma process parameters αa αb
and β. For different degraded data sets, the method established in Section 3.2 was used to
pre-estimate the hyperparameters αa, αb and β. The results are shown in Figures 3 and 4.
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Figure 3. Hyperparameter α  estimation results. Figure 3. Hyperparameter α estimation results.
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Figure 4. Hyperparameter β estimation results.

As can be seen from Figure 3, the hyperparameter α is an interval value (αa ≤ α ≤ αb),
so for different data sets, most of the estimated value of hyperparameters α fall into the real
interval, but some of the estimates exceed the real parameter interval. When we choose
a uniform distribution as the type of prior distribution of αa and αb, the distribution pa-
rameter can be assumed to be U(α̂min1, α̂min2) and U(α̂max1, α̂max2), where α̂min1 and α̂min2
are the two smallest values of the hyperparameter α, α̂max1 and α̂max2 are the two largest
values of the hyperparameter α. The estimated value of the hyperparameter β distributed
around the true value evenly. Therefore, uniform distribution is a reasonable prior distri-
bution to model the hyperparameter β. The distribution parameter can be assumed to be
U
(

β̂min, β̂max
)
, where β̂min is the minimum estimated value of the hyperparameter β and

β̂max is the estimated maximum value of the hyperparameter β.
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To research the influence of prior distribution on parameter estimation results, different
prior distribution types and parameters were used for unknown parameters. Where prior
distribution 1 adopted gamma distribution for all unknown parameters αa~Ga(0.1, 0.1),
αb~Ga(0.1, 0.1) and β~Ga(0.1, 0.1); Prior distribution 2 adopted uniform distribution for
all unknown parameters; Prior distribution 3 adopted gamma distribution for parameter
αa and αb, and uniform distribution for parameter β. The results of parameter estimation
are shown in Table 1 (it is noted that data sets 1, 4, 8 and 10 are the same, so the results of
data sets 4, 8 and 10 are omitted in Table 1).

Table 1. Parameter estimation result.

Data set 1

Value αa = 1 αb = 2 β = 1

Prior distribution 1 0.8827 1.7550 0.8748
Prior distribution 2 1.1010 2.0580 0.9924
Prior distribution 3 0.8972 1.7850 0.8936

Data set 2

Value αa = 1 αb = 2 β = 1

Prior distribution 1 0.9816 2.2390 1.0990
Prior distribution 2 0.8339 3.7050 1.2260
Prior distribution 3 0.9796 2.1780 1.0850

Data set 3

Value αa = 1 αb = 2 β = 1

Prior distribution 1 1.0080 1.7250 0.9500
Prior distribution 2 0.6122 3.5540 1.0630
Prior distribution 3 0.9999 1.7340 0.9511

Data set 5

Value αa = 1 αb = 2 β = 1

Prior distribution 1 1.0830 2.0050 0.9644
Prior distribution 2 1.1370 1.9210 0.9524
Prior distribution 3 1.0760 2.6920 0.9730

Data set 6

Value αa = 1 αb = 2 β = 1

Prior distribution 1 1.2800 1.8690 0.9309
Prior distribution 2 1.2690 1.9380 0.9407
Prior distribution 3 1.2740 1.8500 0.9274

Data set 7

Value αa = 1 αb = 3 β = 1

Prior distribution 1 1.2380 2.9050 0.9797
Prior distribution 2 1.6340 3.2830 1.0870
Prior distribution 3 1.2520 3.0220 1.0060

Data set 9

Value αa = 1 αb = 4 β = 1

Prior distribution 1 0.5100 5.0250 1.2470
Prior distribution 2 1.2230 7.3670 1.4070
Prior distribution 3 0.5547 5.1130 1.2610

Data set 11

Value αa = 1 αb = 2 β = 1.5

Prior distribution 1 1.12 2.245 1.643
Prior distribution 2 1.282 3.177 1.919
Prior distribution 3 1.072 2.29 1.661

Data set 12

Value αa = 1 αb = 2 β = 0.5

Prior distribution 1 1.011 2.368 0.5196
Prior distribution 2 1.208 2.56 0.5493
Prior distribution 3 0.9823 2.41 0.5256

As shown in Table 1, when prior distribution 1 is adopted for unknown parameters,
the estimated values have better estimated accuracy. It indicates that the gamma distri-
bution can be used as prior distribution of unknown parameters and can obtain better
estimated accuracy. When prior distribution 2 is adopted for the unknown parameters, the
estimated accuracy of the parameters αa and αb is poor. Combined with Figure 3, when the
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moment method is used to estimate the hyperparameters, the randomness of the samples
will cause some sample points to deviate from the boundary of the true interval, and the
prior distribution of the parameters αa and αb is greatly affected by the boundary value of
the hyperparameters estimated value. Combined with Figure 4, when the moment method
is used to estimate the hyperparameter β, the parameter estimated values of all samples are
evenly distributed on both sides of the real value. When the uniform distribution is used
as the prior distribution of the parameter β, the accurate value of the prior distribution
will lead to a more accurate posterior distribution after the likelihood function modifica-
tion. On the whole, when prior distribution 3 is adopted for unknown parameters, it has
good estimation accuracy for the unknown parameters. This is because prior distribution
3 combines the advantages of the above two prior distributions to achieve good estimation
results for parameter αa, αb and β.

4.2.2. Robustness Analysis of Parameter Estimation

The robustness of different prior distributions for degradation processes with different
parameters was discussed in this part. Each degradation process in Figure 2 was simulated
for 10 times, respectively, and the mean relative error (MRE) was used to calculate the
statistical characteristics of parameter evaluation results under different prior distributions.
The mean relative error of parameter estimation under different sample numbers is shown
in Figure 5. It can be seen from Figure 5, with the increase in the sample number, the
estimation errors of the prior distribution 1 and prior distribution 3 for the parameter αa
and αb gradually decrease. This shows that the prior distribution without information
can increase the accuracy of parameter estimation when the sample number is large. The
estimation error of the prior distribution 2 for the parameter αa and αb increases with the
increase in the sample number. The reason for this phenomenon is that extreme parameter
estimation values is easy to produce by using the moment estimation method when the
sample number is large. The uniform prior distribution constructed on this basis has a
large error. With the increase in the sample number, the estimation accuracy of parameter
β with different prior distributions is improved.
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The mean relative error of parameter estimation under different sample point numbers
is shown in Figure 6. On the whole, the accuracy of parameter estimation using different
prior distributions will increase with the increase in the sample point number. Therefore,
increasing the number of detection points in the degradation test can improve the accuracy
of reliability assessment. There is a smaller parameter estimation error using the prior
distribution 3.
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The mean relative error of parameter estimation under different β value is shown in
Figure 7. The estimation error for αa using the prior distribution 2 is minimal, but the prior
distribution 2 is unstable for the estimation of αa. On the whole, the prior distribution 3 has
good stability for estimation of different parameters.
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The mean relative error of parameter estimation under different α value is shown in
Figure 8. When the α value is low, the dispersion of the degenerate trajectory is small, and
the estimation error of the parameter α is minimal. On the contrary, when the α value is
large, the dispersion of the degenerate trajectory is large, and the estimation error of the
parameter β is minimal.
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Figure 8. The MRE of different prior distributions under different α value.
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4.3. Lifetime Distribution Acquisition

The lifetime of samples can be obtained by the method established in Section 3.3, and
the distribution characteristics of lifetime can be obtained by statistical methods. In this
section, the lifetime distribution of data set 1 was calculated.

According to the characteristic of the stochastic process, the discrete time interval does
not affect the value of lifetime distribution. However, when the time interval is too large, it
will cause a certain error in the result. At the same time, the amount of computation will
rapidly increase with small time interval. The changes of lifetime average and calculation
time with discrete time are shown in Figure 9. It can be seen from the Figure 9, with
the decrease in discrete time interval, the average life gradually converges to a certain
value. However, the computation time increases rapidly with the decrease in discrete
time interval. Therefore, when using the method in Section 3.3 to calculate the lifetime
distribution, appropriate discrete time intervals should be selected to obtain more accurate
calculation results with less calculation time.
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The changes in average lifetime and calculation time with the number of samples are 
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The changes in average lifetime and calculation time with the number of samples are
shown in Figure 10. It can be seen from the Figure 10, when the number of samples is small,
the average life has a large volatility. When the number of samples is greater than 1000, the
volatility of the average life gradually decreases and gradually converges to a certain value.
The calculation time will increase with the increase in the number of samples. Since the
horizontal coordinate in the figure is a logarithmic coordinate system, the calculation time
and the number of samples show an exponential change relationship. In fact, under the
linear coordinate system, the calculation time will show a trend of linear increase with the
increase in the number of samples.
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The frequency histogram of lifetime values is shown in Figure 11. It can be seen from
Figure 11, the lifetime value presents a positive skew distribution, that is, the curve is
shorter on the left side and longer on the right side at the highest point. The statistical
characteristics of the lifetime value are shown in Table 2. It can be seen from the Table 2 that
the average value of the sample lifetime is greater than the median value, and the skewness
of the sample lifetime is greater than 0, indicating a positive skewness distribution. The
experience cumulative failure distribution obtained from the lifetime value of each sample
is shown in Figure 12. According to the cumulative failure distribution, the lifetime value
under any reliability can be obtained.
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5. Engineering Application

The wear degradation process of the aviation hydraulic rotary joint was analyzed in
this Section. The fit clearance between the elbow joint and the nozzle sleeve is one of the
main reasons that lead to the reliability reduction in the hydraulic rotary joint. When the fit
clearance of the rotary joint increases to the specified failure threshold, the rotary joint is
considered to have failed. The wear of the rotary joint is shown in Figure 13.
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The variation in the fit clearance value with the number of reciprocating rotations
is shown in Figure 14. It can be seen from Figure 14, the fit clearance of the hydraulic
rotary joint shows a gradual increasing trend with the increase in the number of rotation.
However, due to the randomness of wear and the measurement error, the variation in
fit clearance of the same hydraulic rotary joint shows a certain random fluctuation, and
the degradation trajectory of different hydraulic rotary joints is different, which is mainly
manifested in the initial value and degradation rate are different. In this paper, the multi-
random effect gamma random process is used to model the wear and degradation process
of aviation hydraulic rotary joint, and based on this, the life of aviation hydraulic rotary joint
was analyzed.
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The distribution test of wear increment was carried out using K-S test method, and
the test result is shown in Table 3. The p-value of the test is 0.9163, which indicates that the
wear degradation increment conforms to the gamma distribution. So, it is reasonable to use
gamma process to analyze the wear degradation process of hydraulic rotary joint.



Machines 2023, 11, 905 17 of 20

Table 3. Wear increment distribution test.

Distribution Type α Value β Value p Value Whether Conform to a
Gamma Distribution

Gamma distribution 1.8081 769.2308 0.9163 yes

Firstly, the data in Figure 14 were used to estimate the model parameters of the
multi-random effect gamma process. It is assumed that the prior distribution of the
parameter a0 was gamma distribution Ga(0.1, 0.1), the prior distribution of the parameter
b0 was gamma distribution Ga(0.1, 0.1), the prior distribution of the parameter αa was
gamma distribution Ga(0.1, 0.1), the prior distribution of the parameter αb was gamma
distribution Ga(0.1, 0.1) and the prior distribution obtained by the moment estimation
method was uniform distribution U(2240, 17, 403). The parameter estimation results of the
multi-random effect gamma process model extracted from Markov chain by MCMC-Gibbs
sampling are shown in Table 4.

Table 4. Parameter estimation results for multiple random effects gamma processes.

Parameters a0 b0 αa αb β

Estimated value 0.006853 0.03204 0.6703 3.103 4207
7.5% 0.0161 0.05091 2.014 5.854 6380
2.5% 1.239 × 10−14 0.0269 4.265 1.548 2561

Median 0.006223 0.02978 0.49 2.892 4119

The threshold was set to 0.07 mm, the sample size was set to 1000, and the discrete
time step was to 0.001. Figure 15 shows the frequency histogram of the life value of the
aviation hydraulic rotary joint, and Table 5 shows the statistical characteristics of the life
value. It can be seen from the Figure 11, the life value distribution has a strong skewness
distribution, with a skewness of 1.3492. The life value has a large quantity distribution in
the range of 500,000 times to 900,000 times.
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Table 5. Statistical characteristics of life value of hydraulic rotary joint.

Quantitative
Characteristics Mean Value Mid-Value Variance Skewness

Value 1,296,500 1,116,900 35,930,000 1.3492

The experience CDF obtained from the lifetime of each sample is shown in Figure 16.
It can be seen that when the lifetime value is less than 1 million times, the cumulative
failure probability of the aviation hydraulic rotary joint increases faster. According to
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the cumulative failure probability, the life value under any reliability can be obtained,
which can provide reference for the replacement and maintenance of aviation hydraulic
rotary joint.
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6. Conclusions 
This study has proposed a reliability evaluation framework for gamma random deg-
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6. Conclusions

This study has proposed a reliability evaluation framework for gamma random degra-
dation process with multiple random effects. The gamma process with multiple random
effects established in this paper can well describe the product performance degradation
process with monotonic and dispersive characteristics. Because prior distribution has
an important influence on parameter estimation in Bayesian approach, this paper has
discussed the construction method of prior distribution of unknown parameters.

The moment method has used to obtain the initial values of the degradation model
parameters of different samples, and then the parameter values of the prior distribution
have obtained. When gamma distribution was selected as the prior distribution of parame-
ter αa and αb, uniform distribution was selected as the prior distribution of parameter β,
the accuracy of parameter estimates is the highest. The numerical experiments show that
the proposed method can obtain good parameter estimation results.

The Monte Carlo method has used to obtain the sample life value, and the product
reliability has obtained on this basis. It is found that the discrete time and the number
of samples in the Monte Carlo method have a great impact on the calculation time. In
order to maintain a balance between the calculation time and the calculation accuracy, it
is necessary to select the appropriate discrete time and the number of samples. Statistics
of the sample life value show that the average life value is greater than the median value,
and the skewness of the sample life value is greater than 0, which conforms to the normal
skewness distribution characteristics.
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