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Abstract: This research aims to establish the ideal settings for Nylon-6 (PA6) three-dimensional
printing utilizing the fused filament production process and examine the resultant surface roughness.
ANOVA, S/N ratio, and modeling are explained, along with their application in identifying the ideal
values for surface roughness, sustainability, and mechanical properties. Average-surface roughness
(Ra), root-mean-squared surface roughness (Rq), print time (PT), print energy (PE), and tensile testing
(T) were explored as response parameters to identify the impact of PA6 parameters (layer thickness,
extrusion temperature, print speed, and infill density). Tests of validity demonstrated a significant
decline in Ra, Rq, PE, PT, and T for the ideal values of the developed product of 10.58 µm and 13.3 µm,
23 min, 0.13 kWh, and 42.7 Mpa, respectively. Ra, Rq, PT, PE, and T have all been optimized using
Taguchi techniques as a preliminary step towards application in future research and prototypes.

Keywords: surface roughness; mechanical testing; additive manufacturing; sustainability optimization;
regression modeling

1. Introduction

The method of joining materials successively layer by layer to construct an object is
known as “additive manufacturing” (AM) [1]. Layers are added to create the material
component [2]. Sheet lamination, binder jetting, directed energy deposition, and selective
laser milling are the most popular AM processes [3–5]. Around 1988, Crump [6] registered
a patent on the three-dimensional printing (3DP) fused filament fabrication (FFF) method,
and the schematic of the FFF 3D Printer is depicted in Figure 1.
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Figure 1. FFF 3D printer schematic (reprinted from [7]).

For example, 3D printers served as portable factories, aiding in rapid manufactur-
ing during the emergency response to the COVID-19 pandemic [8]. Medical implants,
orthodontics, aviation, refrigeration, and automotive products are some of the many areas
of engineering and industry that have benefited from technological advancements [9].
FFF and PolyJet dental models are accurate and precise and manufactured using additive
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manufacturing [10]. Biological, building applications, medicinal [11–13], jewelry industries,
lightweight heating components [14–16], and designs for investment artifacts are examples
of where FFF 3DP has been put to use [17]. FFF finds extensive usage in enhancing the
characteristics of a wide range of materials. These include bolstering tensile strength [18],
optimizing car components [19], creating prototypes for research purposes [20], conducting
microstructural investigations [21–23], and even contributing to the global effort against
the COVID-19 pandemic [8,24]. However, compared to other AM techniques, the surface
quality of components produced by FFF is inferior. The poor surface finish on finished
products is an inevitable drawback of the FFF process because of the heating and cooling
cycles required. Surface and dimensional flaws caused by the FFF process seem to be
major roadblocks to using FFF components in quick tooling and casting. The FFF pro-
cessing parameters used and the part configuration determine the fabricated component’s
surface quality.

Numerous scientists have endeavored to improve the surface quality of parts produced
by FFF. As indicated by [25], high building orientations and thinner slices reduce surface
roughness. Based on surface morphological roughness and the production time of the
component, a model was built for choosing standard part alignment. Surface roughness
was shown to be significantly influenced by layer thickness (LT), surface angles, cross-
sectional raster form, and overlap interval by Ahn et al. [26]. The contour widths and LT
were shown to be essential criteria for the surface roughness, as reported by Bakar et al. [25].
According to Nancharaiah et al. [27], raster width affects manufactured components’ quality.
Surface roughness was enhanced by slightly increasing print speed (S) and LT, as reported
by Stephen Oluwashola Akande. However, the raster width, if any, was not indicated [28].
Lower LT values at 100% infill density (IN) significantly affect surface roughness, as
discovered by Nuez et al. [29]. PA6 polymer components, when subjected to the same
processing conditions as polylactic acid (PLA), were shown to have a greater surface
roughness than other materials [30]. Thinner deposited layers are associated with better
part surfaces, as stated by Perez et al. [31]. According to studies [32], authors recommend
exercising extreme caution while selecting the extrusion temperature (ET) and the bed
temperature, as the former might cause layers to separate from the latter and the latter
to get damaged. The nozzle might become clogged at a low ET, and the material could
get wrapped up at a high one. Surface roughness was shown to be affected by ET, S, and
LT in a study by Gao et al. [33]. Researchers Vyavahare et al. [34] observed that surface
roughness was affected by ET, depositing speed, and LT.

Regarding developing AM process parameters, Taguchi optimization has emerged
as one of the most effective optimization strategies. Computer numerical control (CNC)
procedures [35,36], laser cutting [37], investment casting [38,39], the electrical discharge
machining (EDM) process [40], drilling [41], other machining [42–44], etc. are just a few
examples of the many systems that researchers have found success optimizing using the
Taguchi technique. The authors suggested the Taguchi approach to quickly and systemati-
cally enhance the quality, efficiency, and cost-effectiveness of operations [45,46]. Taguchi
analysis was performed by the authors [14] to look into the best way to optimize the FFF
3DP process parameters. Taguchi and gray relational analysis were employed by Srivas-
tava et al. to examine and improve the FFF process parameters, and the results were quite
promising [47]. The FFF processing parameters were investigated by Vyavahare et al.,
who then utilized a regression model to investigate the resulting data and improve the
model [34].

After reviewing the relevant literature, the parameter settings that may change the
surface quality or mechanical characteristics were chosen. The authors made an effort to
account for most of the variables. Print rate and raster width are chosen as independent
variables to further characterize the influence on surface roughness [48]. According to
the research [27,49], LT is the most essential factor in smoothing out surfaces. The build-
ing pattern significantly impacts surface roughness, good surface finish, and mechanical
characteristics [50].
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While companies strive to produce lightweight goods, doing so sometimes comes at
the expense of strength and mechanical qualities. Selecting the best IN allows maximum
strength with little material use [51]. According to [52], further research on the impact of ET
on surface roughness is required. The authors have used this metric for this exact reason.
The quality of a 3D-printed component is most affected by the bed temperature, as stated
in [32].

There is much research on optimizing surface roughness using a variety of methods.
Nonetheless, little is known about the printing and optimization of Nylon-6 (PA6) material,
and (iii) little effort is made to assess the influence of additional process factors. This
research aims to answer the following questions: (i). To investigate the impact of FFF
parameters on the average surface roughness (Ra), mean squared surface roughness of PA6
(Rq), print time (PT), print energy (PE), and tensile testing (T), the authors tested the effects
of varying the LT, ET, S, and IN. (ii). Taguchi and S/N ratio confirmation study on FFF 3DP
parameters (iii). In order to learn about the parametric impact of regression, a regression
model must be developed.

2. Materials and Methods
2.1. Materials

The experiment was conducted utilizing a PA6 material-equipped creality 10S Pro
printer with a diameter of 1.75 mm. The “kexelled” company supplied the PA6 materials
with the specifications listed in Table 1.

Table 1. Experimental materials specifications (credit: Kexelled).

TYPE Diameter S
mm/sec

ET
◦C

Bed
Temperature

◦C

Tensile
Strength

MPa

Flexural
Strength

MPa

PA6 1.75 mm 40–80 240–280 ◦C 80–100 ◦C 40 85

2.2. Methods

The PA6 material was chosen based on its compatibility with the Creality 10S Pro
printer and its characteristics demonstrated in previous research [53]. The fabrication of
test samples followed the specifications of the D638 type IV specimen, represented in
Figure 2a,b. Figure 2a illustrates the tensile (T) testing setup, while Figure 2b presents
detailed information about the Ra/Rq measurements taken at three distinct locations on
the sample, and Figure 2c shows the Ra tester.
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Figure 2. Fabricated sample and Ratester; (a) T testing setup (b) STL D638 type iv sample containing
the 1,2,3 places to measure the roughness, (c) JD 520 Ra tester.

Following experimental design finalization, the STL format was imported into the
slicer. Necessary adjustments were made before dispatching the file for 3D printing. The
parameter range for FFF 3DP, pertaining to the PA6 polymer employed in this study, is
outlined in Table 2.
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Table 2. Parameters for an FFF 3DP print of a PA6 polymer sample.

Parameter Unit Symbol Level 1 Level2 Level3

LT mm LT 0.12 0.2 0.3
S mm/s S 40 55 70

ET ◦C ET 240 255 270
IN % IN 10 50 90

Measurement Procedure

For T testing, the GTM 2500 device, outfitted with a 5 KN payload, was utilized (refer
to Figure 2a). This evaluation was performed at a steady crosshead speed of 5 mm/min,
diligently following the ISO 527:1997 standard. The entire assessment was conducted
in a controlled environment of 25 ◦C, employing a crosshead speed of 5 mm/s. Using
a profilometer from the company ‘JITAI KEYI,’ model JD520, the value of the fabricated
part’s surface roughness was determined as depicted in Figure 2c; this value was described
using Equation (1) as the arithmetic mean of the actual values of all deviances in the surface
profile along the centerline. Using Equation (2) [54], we determined the Rq by measuring
the deviation of height from the mean line along the length. Analytical measurements
were made using a sample length (Lw) = 4.8 mm in accordance with the ISO 16610-211
standard [55].

Ra =
1

Lw

∫ Lw

0
|Z(y)|dy (1)

Rq =

[
1

Lw

∫ Lt

0
(Z(y))2dy

] 1
2

(2)

Lw is the sample’s length while Z(y) is the coordinate of the curves used to create the profile.
Following the surface measurements, the samples underwent SEM analysis using an

SEM 4000 machine. This analysis provided a visual examination of the sample’s microstruc-
ture and surface characteristics. To streamline experimentation efforts in relation to PA6, the
implementation of L9 orthogonal array techniques has been adopted, aimed at optimizing
both time and cost considerations [32,56]. Thereafter, results were meticulously analyzed
using the Taguchi method, leading to the formulation of a rigorous statistical model to
validate the study’s outcomes. The printed PA6 sample structures are exhibited in Figure 3.
Three representative samples were printed for each test iteration, three measurements were
undertaken for T testing, and nine measurements were undertaken for Ra/Rq, and the
results were averaged to ensure precision.
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3. Results and Discussions
3.1. Taguchi Process

The A-loss function used by Genichi Taguchi [57] is the disparity and desired values
translated into the signal-to-noise ratio. The ratio of means to standard deviation is denoted
by the S/N ratio. This research reveals that surface quality is enhanced by decreasing Ra,
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Rq, PT, and PE [58]. The findings of the S/N ratio are presented in Table 3. Minitab 21.3
was used to conduct the Taguchi analysis.

Table 3. Design and outcomes of experiments with PA6 polymer.

LT (mm) ET (◦C) S (mm/s) IN (%) T (MPa) Ra (µm) Rq (µm) PT (min) PE (kWh)

0.12 240 40 10 26.42 11.28 14.20 58 0.338
0.12 255 55 50 33.54 11.43 14.29 59 0.344
0.12 270 70 90 42.66 11.71 14.74 61 0.356
0.20 240 55 90 37.9 11.97 14.96 45 0.263
0.20 255 70 10 27.41 12.98 16.33 29 0.169
0.20 270 40 50 32.74 12.22 15.28 49 0.286
0.30 240 70 50 27.39 13.81 17.26 26 0.152
0.30 255 40 90 34.72 12.43 15.64 39 0.228
0.30 270 55 10 22.2 13.85 17.41 26 0.152

3.2. Effects of the 3D Printing Parameters on Ra and Rq

Due to its tendency to shrink, heat up, and harden during printing, PA-6 is rarely
used [33]. Attempting to print PA-6 with a Creality CR10 S 3D Printer by varying eight
parameters (starting line thickness, ID, raster breadth, bed temperature, build patterns, ET,
S, and LT) proved unsuccessful. To print with the Creality CR10 S Pro, experimentation
was conducted with the LT, S, ET, and IN settings. A print temperature of 235 degrees
Celsius was tried, but the print tangled and failed to adhere to the bed surface. For PA-6,
the temperature was set within a range of 240 ◦C to 270 ◦C. Printing at 0.08 mm and 0.1 mm
LT was unfeasible, leading to the adoption of 0.12 mm and 0.3 mm, respectively. Print
speeds between 40 and 80 mm per second were tested, aligning with the manufacturer-
recommended minimum and maximum parametric values for the material. However, a
maximum print speed of 70 mm/s was ultimately achieved with this material. The speed
levels were established as 40mm/s for level 1, 55 mm/s for level 2, and 70 mm/s for level 3.
As IN significantly affects PT and PE, this parameter was explored by setting values ranging
from 10% to 90%. In the open-air printer, which had a minor effect on Ra and Rq due to
rapid air flow causing flaws in layers, the sample was printed.

The influence of the FFF settings on Ra (Figure 4a) and Rq (Figure 4b) is shown. On
the open-air printer, we printed the sample. Since the stair effect was constrained and the
specimen was smooth, a reduction in “LT” resulted in a notable fall in Ra and Rq.

Also, the delta values of 1.89 and 2.36 for Ra and Rq place them in position 1 as the
most crucial parameters for enhancing the Ra and Rq polymers. By lowering “S” from
70 mm/s to 40 mm/s, the values of Ra and Rq were drastically reduced. The result was a
refined finish. With a delta output of 0.86, the “S” parameter placed second, demonstrating
the significance of “S” in determining print quality. Increasing ET melted the material and
made it lie flat and smooth before it was wrapped, resulting in a lower Ra and Rq. With a
delta of 0.3, the “ET” parameter is placed fourth; at 90% IN, Ra and Rq dropped, whereas
at 10% IN, a rougher surface was noticed due to the space within the structure acting as
valleys. With a delta of 0.67, the “IN” parameter is placed third. The results are consistent
with the broader literature [33,59–61].
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Figure 4. Ra (a) and Rq (b) are under the influence of FFF 3D printing settings.

The effect of the interaction on Ra and Rq was analyzed using parametric interactions.
Figure 5a,b depict an interaction plot showing strong interactions between all factors. High
levels of “ET” melt the material, low levels of “LT” provide thinner lines, and low levels of
“S” create a decreased staircase effect, all of which contribute greatly to lowering Ra and
Rq [62].
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3.3. Effects of the FFF Parameters on Print Time and Energy

Decreasing the layer thickness will increase the amount of layer required to build the
object, thus increasing the print time. Thinner layers may require more precise movements
and finer details, increasing energy consumption. Delta values of 29 and 0.16 for PT and
PE, respectively, place it in the first place as the most crucial parameter for enhancing
the PT and PE of the polymer. A higher S reduces the time taken for each layer, thereby
decreasing the overall print time. High-S often requires higher energy consumption due to
increased motor movements and extrusion rates. Delta values of 10 and 0.05 for PT and PE,
respectively, place it in third place as the most important parameter for enhancing the PT
and PE of polymers. Higher ETs can reduce the viscosity of the filament, allowing it to flow
more easily and thus potentially reducing print time. Increasing the ET may require more
energy to heat the nozzle and maintain the desired temperature, resulting in higher energy
consumption. Delta values of 3 and 0.01 for PT and PE, respectively, place it in fourth place
as the most important parameter for enhancing the PT and PE of the polymer [63]. Higher
INs require more time to print because they involve more filament deposition. Increased
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IN generally leads to higher energy consumption as more filament is required to fill the
object’s internal structure. Delta values of 10.67 and 0.0.06 for PT and PE, respectively,
place it in second place as the most important parameter for enhancing the PT and PE
of polymers.

The impact of the FFF settings on PT and PE is shown in Figure 6a,b, respectively.
The outdoor printer was used to print the sample. As the “LT” was lowered, PT and PE
dropped noticeably due to the lack of a staircase effect and the uniformity of the surface.
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The effect of the interaction on PT and PE was analyzed using parametric interactions.
Figure 7a,b depict an interaction plot showing strong interactions between all factors. High
“ET” melt the material, the highest levels of “LT” provide thicker lines, and high levels of
“S” decrease the total PT of printing, all of which contribute greatly to lowering PT and
PE [62].
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3.4. Effects of the 3D Printing Parameters on Tensile Strength (T)

The influence of the FFF settings on T, as shown in Figure 8, is evident. A reduction in
“LT” led to a notable improvement in tensile strength, indicating the specimen’s enhanced
mechanical properties when the layer thickness was reduced.
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According to the delta values from the response table, “IN” is the most influential
parameter, with a delta of 13.08, indicating its pivotal role in enhancing tensile strength.
Adjusting “S” from 70 mm/s to 40 mm/s resulted in an appreciable increase in T, highlight-
ing the material’s better mechanical response at slower print speeds—the delta value of
1.27 ranks “S” fourth in terms of its impact on tensile strength. An increase in ET ensures a
more uniform melt of the material, leading to better layer adhesion and thereby improving
T. With a delta value of 1.96, the “ET” parameter ranks third in influencing tensile strength.
“LT”, with a delta value of 6.10, follows next. When “IN” was set at 90%, a surge in tensile
strength was observed, possibly due to better material consolidation and reduced internal
voids. At a mere 10% IN, the structure’s internal voids might have adversely impacted
tensile strength. With its significant delta value of 13.08, the “IN” parameter is the most
influential. These observations align well with findings from the broader literature [64,65].

Further, the interplay of these parameters and their collective impact on T were studied
through parametric interactions. Figure 9 reveals strong interactions between all factors.
Elevated “ET” values ensure optimal material melt, reduced “LT” values lead to finer
printed lines, and slower “S” values minimize rapid cooling and ensure better layer fusion,
collectively enhancing tensile strength T [62].
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3.5. Optimal Parameters for Ra, Rq, PT, PE, and T Selection

Tables A1–A5 display the attained Ra, Rq, PT, PE, and T S/N response values. Graphs
of the mean S/N ratio for PA6 were calculated in Minitab and are shown in Figure 10a,b. If
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the S/N ratio is high, the gap between the expected and actual values is minimal. From
Figure 10a,b, we can deduce that the “LT” setting at 0.12 mm, the “ET” setting at 255 ◦C,
the “S” setting at 40 mm/s, and the “IN” setting at 90% all yield the greatest mean S/N
ratio for Ra and Rq. Therefore, Tables A1 and A2 include bolded values for the anticipated
ideal FFF parameters (LT = 0.12 mm, ET = 255 ◦C, S = 40 mm/s, IN = 1, and E = 90 percent)
for obtaining the low Ra and Rq through the Taguchi approach. “LT-S1 ET-S2 S-S1 IN-S3”
was the anticipated best combination for Ra and Rq. The significance of each parameter
is illustrated by the S/N ratio obtained: for Ra and Rq influencing “LT,” the ratio is 1.31
(rank 1) and 1.31 (rank 1); for “ET,” it is 0.21 (rank 4) and 0.21 (rank 4); for “S”, it is 0.59
(rank 2) and 0.59 (rank 2); and for “IN,” it is 0.44 (rank 3) and 0.46 (rank 3).
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From Figure 12, we can deduce that the “LT” setting at Level 1, the “ET” setting at
Level 2, the “S” setting at Level 3, and the “IN” setting at Level 3 all yield the highest mean
S/N ratio for T. Therefore, Table A8 includes bolded values for the anticipated ideal FFF
parameters (LT at Level 1, ET at Level 3, S at Level 3, and IN at Level 3) for obtaining
high T through the Taguchi approach. “LT-S1 ET-S2 S-S3 IN-S3” was the anticipated
best combination for T. The significance of each parameter is illustrated by the S/N ratio
obtained: for T influencing “LT,” the delta is 1.69 (rank 2); for “ET,” it is 0.44 (rank 3); for
“S,” it is 0.37 (rank 4); and for “IN,” it is 3.62 (rank 1).
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3.6. Validation Test

It is necessary to conduct confirmation experiments to verify Taguchi’s projected ideal
circumstances. Equation (3) [66] was used to calculate the projected S/N ratio (εpredicted)
and estimate and assess the responses under predicted ideal Ra conditions.

εpredicted = ε l +
x

∑
i=0

ε0 − εM (3)

εM = Total mean S/N ratio
ε0 = Mean S/N ratio at an optimal level
x = input number of FFF parameters
Table A6 for Ra and Rq, Table A7 for PT and PE, and Table A8 for T detail the outcomes

of confirmation experiments conducted at the optimal printing parameters predicted by
Taguchi. When the optimal printing conditions are applied, the roughness performance
attributes improve. The predicted and optimal printing settings for both polymers have
similar S/N ratios, as shown in Tables A6–A8. S/N ratios for Ra, Rq, PT, PE, and T were
improved by 1.25 dB, 1.27 dB, 5.32 dB, 5.31 dB, and 2.35 dB, respectively, at the optimal
FFF printing condition compared to initial parameter values. The verification studies
show that the optimal printing conditions predicted by Taguchi yield superior results
than the preliminary parameter settings. Ra, Rq, PT, and PE decreased by 14.35% and
14.25%, 44.50%, 44.40%, and 32.6%, respectively, when comparing the baseline parameter
to Taguchi’s predicted ideal printing settings.

SEM TM4000 machine was used with initial settings and with Taguchi’s optimal
settings are shown in Figure 13a,b. Figure 13a has a more rough surface and bulges, while
Figure 13b has better surface quality.
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4. ANOVA for Ra, Rq, PT and PE

The ANOVA identifies the most important FFF tuning knob to optimize performance.
Tables 4–8 display the results of the ANOVA tests conducted on Ra, Rq, and PT, PE, and
T. Table 4 reveals that “LT,” followed by “S,” “IN,” and “ET,” has the biggest impact on
Ra. In descending order, the effects of LT, ET, S, and IN on Ra were 73.10%, 1.18%, 15.10%,
and 9.11%.

Table 4. ANOVA for Ra of PA6 polymer.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 4 7.20193 98.44% 7.20193 1.80048 63.20 0.001
LT 1 5.34805 73.10% 5.34805 5.34805 187.72 0.000
ET 1 0.08640 1.18% 0.08640 0.08640 3.03 0.157
S 1 1.10082 15.05% 1.10082 1.10082 38.64 0.003

IN 1 0.66667 9.11% 0.66667 0.66667 23.40 0.008
Error 4 0.11396 1.56% 0.11396 0.02849
Total 8 7.31589 100.00%

Table 5. ANOVA Table for the Rq of PA6 polymer.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 4 11.3691 98.99% 11.3691 2.84226 98.43 0.000
LT 1 8.3550 72.75% 8.3550 8.35502 289.34 0.000
ET 1 0.1700 1.48% 0.1700 0.17002 5.89 0.072
S 1 1.7174 14.95% 1.7174 1.71735 59.47 0.002

IN 1 1.1267 9.81% 1.1267 1.12667 39.02 0.003
Error 4 0.1155 1.01% 0.1155 0.02888
Total 8 11.4846 100.00%

Table 5 reveals that “LT,” followed by “S,” “IN,” and “ET,” has the biggest impact on
Rq. In descending order, the effects of LT, ET, S, and IN on Ra were 72.75%, 1.48%, 14.95%,
and 9.81%, respectively.

Table 6 reveals that “LT,” followed by “IN”, “S”, and “ET”, has the biggest impact on
PT. In descending order, the effects of LT, ET, S, and IN on Ra were 75.47%, 0.5%, 9.19%,
and 10.46%, respectively.

Table 7 reveals that “LT,” followed by “IN”, “S”, and “ET”, has the biggest impact on
PE. In descending order, the effects of LT, ET, S, and IN on Ra were 75.25%, 0.51%, 9.22%,
and 10.64%, respectively.
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Table 6. ANOVA Table for the PT polymer.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 4 1560.68 95.62% 1560.68 390.17 21.82 0.006
LT 1 1231.85 75.47% 1231.85 1231.85 68.88 0.001
ET 1 8.17 0.50% 8.17 8.17 0.46 0.536
S 1 150.00 9.19% 150.00 150.00 8.39 0.044

IN 1 170.67 10.46% 170.67 170.67 9.54 0.037
Error 4 71.54 4.38% 71.54 17.89
Total 8 1632.22 100.00%

Table 7. ANOVA table for the PE polymer.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 4 0.052943 95.61% 0.052943 0.013236 21.78 0.006
LT 1 0.041668 75.25% 0.041668 0.041668 68.58 0.001
ET 1 0.000280 0.51% 0.000280 0.000280 0.46 0.534
S 1 0.005104 9.22% 0.005104 0.005104 8.40 0.044

IN 1 0.005891 10.64% 0.005891 0.005891 9.70 0.036
Error 4 0.002430 4.39% 0.002430 0.000608
Total 8 0.055374 100.00%

Table 8. ANOVA for T of PA6 polymer.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 4 322.409 98.52% 322.409 80.602 66.65 0.001
LT 1 57.731 17.64% 57.731 57.731 47.74 0.002
ET 1 5.782 1.77% 5.782 5.782 4.78 0.094
S 1 2.136 0.65% 2.136 2.136 1.77 0.255

IN 1 256.76 78.46% 256.76 256.76 212.31 0
Error 4 4.837 1.48% 4.837 1.209
Total 8 327.246 100.00%

Table 8 reveals that “LT,” followed by “S”, “IN”, and “ET”, has the biggest impact on
T. In descending order, the effects of LT, ET, S, and IN on Ra were 17.64%, 1.77%, 0.65%,
and 78.46%, respectively.

5. Mathematical Modeling

Minitab 21.3 was used to conduct a regression analysis, which allowed for the devel-
opment of forecasting analytics for the variables Ra, Rq, PT, and PE as a function of “LT,”
“ET”, “S”, and “IN”. None of the responses have had any adjustments made to them. The
regression analysis yielded the prediction Equations (4) and (5) for Ra, Rq, PT, PE, and T.

Ra = 7.05 + 10.469 LT + 0.00800 ET + 0.02856 S− 0.00833 IN (4)

Rq = 8.58 + 13.085 LT + 0.011223 ET + 0.03567 S− 0.01083 IN (5)

PT = 68.2− 158.9 LT + 0.078 ET− 0.333 S + 0.1333 IN (6)

PE = 0.397− 0.924 LT + 0.000456 ET− 0.001944 S + 0.000783 IN (7)

T = 11.72 − 34.39 LT + 0.0654 ET + 0.0398 S + 0.1635 IN (8)

The determination coefficient, R2, was used to test the efficacy of the developed
models [67]. A value close to one indicates high congruence between the dependent
and independent variables [68]. If the updated data’s coefficient of determination (R2)
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is 94%, then the data was evaluated with 94% variability. The Ra and Rq mathematical
models developed in this work obtained impressively high R2 values of 97.44 and 98.99,
respectively. R2 values of 95.62, 95.61, and 97.04 for the derived PT, PE, and T mathematical
models are quite good. The predicted model’s coefficients were evaluated for significance
using the residual graphs [69]. Significant coefficients and a straight residual graph indicate
that the model’s residual errors are normally distributed [70]. Ra and Rq normal probability
plots are displayed in Figure 14; the proximity of the Ra and Rq residuals to the straight
line indicates the significance of the developed model coefficient models.
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PT and PE normal probability plots are displayed in Figure 15. In contrast, Figure 16 for
T. The proximity of the PT, PE, and T residuals to the straight line indicates the significance
of the developed model coefficient models.
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Figure 15. Graphs illustrating the normal probability distribution for the PT (a) and PE (b).

The built models were put through a series of conformance tests presented in Table 9.
The tests’ outcomes were casually chosen from the design of L9. The verification results
showed that, within the given parameter range, the expected values from the model and
the experimental data were in close agreement.
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Table 9. Mathematical model developed for confirmation.

Run Experimented Predicted Difference

Ra Rq PT PE T Ra Rq- PT PE T Ra Rq PT PE T

2 11.43 14.29 59 0.344 33.54 11.50 14.43 57.33 0.334 34.64 −0.07 −0.14 +1.67 −0.01 +1.1
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6. Conclusions and Future Directions

The following are the findings of the investigation:

• The optimal settings for 3D printing of Nylon-6 (PA6) using fused filament fabrication
(FFF) were determined through a comprehensive study that analyzed the average
surface roughness (Ra), root mean squared surface roughness (Rq), print time (PT),
print energy (PE), and tensile strength (T).

• Through the application of Taguchi analysis via the S/N ratio, significant reductions in
Ra, Rq, PT, and PE were achieved. The optimal values obtained were Ra of 10.58 µm,
Rq of 13.3 µm, PT of 23 min, PE of 0.13 kWh, and T of 42.7 MPa.

• An analysis of variance (ANOVA) was utilized to understand the influence of the
aforementioned parameters on surface roughness, print time, and print energy.

• Modeling based on the investigational results was also developed, which is expected
to facilitate predicting the best printing conditions without the necessity for time-
consuming trial tests.

• The study lays the foundation for future research and the practical implementation of
these optimized parameters in the 3D printing of PA6 using FFF, promising surface
finishes, and sustainability improvements.

Future Recommendations

• More PA6 parameters need to be studied, and then those values can be used to create
useful industrial models.

• Determine PA-6’s mechanical characteristics by subjecting it to flexural testing.
• Reduce the surface’s roughness by employing various optimization strategies, such as

the response surface methodology.
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Appendix A

Table A1. Mean response table of S/N ratio for Ra of PA6 polymer.

Level LT (mm) S (mm/s) ET (◦C) IN

1 −21.19 −21.80 −21.56 −22.05
2 −21.86 −21.77 −21.85 −21.90
3 −22.51 −21.98 −22.15 −21.61

Delta 1.31 0.21 0.59 0.44
Rank 1 4 2 3

Table A2. Mean response table of S/N ratio for Rq of PA6 polymer.

Level LT (mm) S (mm/s) ET (◦C) IN

1 −23.17 −23.76 −23.54 −24.04
2 −23.81 −23.75 −23.81 −23.84
3 −24.48 −23.96 −24.12 −23.58

Delta 1.31 0.21 0.59 0.46
Rank 1 4 2 3

Table A3. Mean response table of S/N ratio for PT of PA6 polymer.

Level LT (mm) S (mm/s) ET (◦C) IN

1 −35.46 −32.21 −33.63 −30.94
2 −32.04 −32.16 −32.26 −32.51
3 −29.47 −32.60 −31.08 −33.53

Delta 5.99 0.44 2.55 2.59
Rank 1 4 3 2

Table A4. Mean response table of S/N ratio for PE of PA6 polymer.

Level LT (mm) S (mm/s) ET (◦C) IN

1 9.220 12.462 11.045 13.742
2 12.639 12.517 12.411 12.168
3 15.189 12.069 13.592 11.138

Delta 5.969 0.449 2.547 2.605
Rank 1 4 3 2
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Table A5. Mean response table of S/N ratio for T of PA6 polymer.

Level LT (mm) S (mm/s) ET (◦C) IN

1 30.52 29.59 29.85 28.04
2 30.21 30.03 29.67 29.85
3 28.83 29.94 30.04 31.66

Delta 1.69 0.44 0.37 3.62
Rank 2 3 4 1

Table A6. The Validation test outcomes for Ra and Rq of PA6 polymer.

Preliminary Parameters Optimum Parameters

Predicted Experimented Predicted Experiment

Level LT-S2 ET-S2 S-S2 IN-S2 LT-S2 ET-S2 S-S2 IN-S2 LT-S1 ET-S2 S-S1 IN-S3 LT-S1 ET-S2 S-S1 IN-S3
Ra (um) 12.35 10.58
Rq (um) 15.51 13.30

S/N ratio (dB) (Ra (um)) −21.82 −21.61 −20.57 −20.62
S/N ratio (dB) (Rq (um)) −23.74 −23.81 −22.57 −22.63

S/N ratio (dB) improvement for
Ra (um) 1.25dB

S/N ratio (dB) improvement for
Rq (um) 1.27dB

Percentage Reduction in Ra 14.35
% Reduction in Rq 14.25

Table A7. The Validation test outcomes for PT and PE of PA6 polymer.

Preliminary Parameters Optimum Parameters

Predicted Experimented Predicted Experiment

Level LT-S2 ET-S2 S-S2 IN-S2 LT-S2 ET-S2 S-S2 IN-S2 LT-S3 ET-S2 S-S3 IN-S1 LT-S3 ET-S2 S-S3 IN-S1
PT (min) 40 23
PE (kWh) 0.234 0.13

S/N ratio (dB) for PT (min) −31.99 −31.90 −26.67 −28.80
S/N ratio (dB) for PE (kWh) 12.68 12.70 17.99 −16.9

S/N ratio (dB) improvement for PT 5.32
S/N ratio (dB) improvement for PE 5.31

% Reduction in PT 42.5
% Reduction in PE 44.4

Table A8. The Validation test outcomes for T of PA6 polymer.

Preliminary Parameters Optimum Parameters

Predicted Experimented Predicted Experiment

Level LT-S2 ET-S2 S-S2 IN-S2 LT-S2 ET-S2 S-S2 IN-S2 LT-S1 ET-S2 S-S3 IN-S3 LT-S1 ET-S2 S-S3 IN-S3
T (MPa) 32.2 42.7

S/N ratio (dB) for T (MPa) 30.25 30.34 32.68 32.69
S/N ratio (dB) improvement for T

(MPa) 2.35

% increment in T 32.6
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