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Abstract: There has been growing interest in using permanent magnet synchronous motors (PMSMs)
for pumping applications to improve energy efficiency. One promising approach for powering these
motors in variable speed applications is using an M3C due to its inherent fault tolerance capability.
However, M3C converters require a more complex control system than simpler converters. For
instance, a basic M3C control system for power transmission requires seventeen PI controllers, whose
fixed adjustment depends on the M3C’s dynamical model parameters’ value knowledge, needing
initial extensive and time-consuming testing to obtain it. As an alternative, we propose an adaptive
M3C control system for variable speed drives powering multiple PMSM-driven centrifugal pumps
that reduces the number of controllers to six. Furthermore, the proposal does not require initial
knowledge of the converter, motor, or load parameters, making it more practical and versatile. The
proposal introduces an ad hoc hybrid passivity-based model reference adaptive controller in cascade
with a passivity-based control. It was validated through theoretical stability proof and comparative
simulation results with a basic control system under normal and fault operations. As a result, the
proposal effectively follows the required rotor speed while enhancing performance by decreasing the
current consumption and recovering from a 10% input phase imbalance, a cell short circuit, an open
cell, and parameters changes of the motor–pump set.

Keywords: M3C control; adaptive control; PMSM; model reference adaptive control; adaptive
passivity-based control

1. Introduction
1.1. Motivations

The centrifugal pump powered by induction motors (IMs) is widely used to move flu-
ids in various economic sectors. However, its energy consumption is significant compared
to other machinery [1]. Therefore, researchers like [1] propose improving the mechanical
pump design, while others suggest replacing the IM with more efficient permanent magnet
synchronous motors (PMSMs) [2–6]. This manuscript focuses on moving centrifugal pumps
with PMSMs.

Using PMSMs is currently a prominent trend in various motor-driving applications
due to their low inertia, low noise, high power density, and high efficiency ([7], Section 2.1).
They offer the best of both AC (reliable operation benefits) and DC (excellent speed control
performance) motors, making them ideal for engineering applications [7,8]. Compared to
traditional induction motors (IMs), PMSM motors have demonstrated superior efficiency,
as evidenced by ([2], Figure 3). Here, centrifugal pumps driven by PMSMs have a 5%, 8%,
and 10% higher efficiency than those driven by IMs for flow rates of 100 m3/h at 100%,
80%, and 60% speeds, respectively. The works [3,4] propose customizing PMSM design for
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this application, while [5,6] study a variable speed PMSM for water pumps powered by
an AC-AC converter fed by photovoltaic panels. The works [5,6] use a two-level voltage
source inverter controlled by model reference adaptive control (MRAC).

The books [9,10] describe the basis of MRAC for the single-input and single-output
(SISO) and multiple-input and multiple-output (MIMO) cases, respectively. Based on
the concepts given in [9], the work [11] proposes a cascade adaptive passivity-based
controller (APBC), and [12] presents a cascade MRAC. This manuscript uses APBC and
MRAC techniques together, considering the adaptive control advantages mentioned in ([7],
Section 4.5). Furthermore, it applies the direct adaptive control architecture ([7], Figure 20)
to an AC-AC converter different than the one used by [5,6].

With the evolution of semiconductors and processors, new power topologies have
emerged [13]. The work [14] proposes several fault-tolerant multilevel converters. In this
sense, the use of a modular multilevel cascaded converter (MMCC) obtained popularity
due to its many benefits, such as redundancy, high efficiency, robustness, lower output
voltage TDH, and low maintenance [15–17]. Among these converters, the M3C topology is
particularly noteworthy and employs smaller floating capacitors [15,18].

Moreover, M3C has inherent fault tolerance characteristics, allowing it to continue
proper operations even after having a power supply phase imbalance or power cell fail-
ure [15,18]. It ensures energy balancing with low impact on the output currents [18]. Fur-
thermore, it reduces current harmonics, enhances the power factor and efficiency, [15,17,19],
eliminates voltage fluctuations, and ensures optimal operation at low output frequen-
cies [20,21]. There are even several studies that propose fault detection and control under a
fault of M3C [22–24]. This manuscript focuses on controlling the following fault-tolerant
M3C used for variable speed drive in PMSM-driven centrifugal pumps.

1.2. Background

Figure 1 shows a commonly used M3C.
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Figure 1. Basic power topology of an M3C for transferring energy between the power supply and the
load, which is based on [15,18,25,26].

An M3C has modularity, the ability to reach high-voltage levels, power quality, bidi-
rectional power conversion, and redundancy [27]. It has nine clusters (three per phase)
that link the input phases (a, b, c) with the output phases (r, s, t), each consisting of
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three cells. Additionally, each cell has a full-bridge monophasic inverter. It has been
widely utilized [15]; examples are injecting wind energy into an electrical network [25],
in low-frequency AC transmission [28], and as a solid-state transformer for medium- and
high-voltage AC substations [29].

However, while having these fault-tolerant capabilities, controlling the M3C is com-
plex compared to simpler converters. Figure 2 describes how the control system of an
M3C involves:
• Complex managing of feedback signals that rearrange nine-dimensional measurement

vectors iij, VCij, into matrix form to work with variables at an intricate coordinate
system called 2αβγ, and to later rearrange them back to their vector form to allow for
the control [18,26].

• Controlling the average capacitor voltage (ACV) VCavg in cascade with the input
currents amplitude Iin control through the required input voltage v∗in−cl .

• Keeping zero imbalance of the cluster capacitor voltage (CCV) in cascade with the
circulating current icir control via the needed cluster voltage v∗cl . It considers reducing
the inter-CCV imbalances (CCV imbalance among clusters of different sub-converters)
and the intra-CCV imbalances (CCV imbalance among clusters inside the same sub-
converters) to zero.

• Controlling a required output variable by adjusting the output voltage v∗out−cl ampli-
tude and frequency.
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Figure 2. Basic control system of an M3C for transferring energy between the power supply and the
load, which is based on [15,26].

The control diagram of Figure 2 uses Park transform P [30], αβγ transform C [26], dou-
ble αβγ transform CXCT of different matrix variables X [26], and the combined components
transformation matrix CD [31]. Furthermore, the local cell balancing (LCB) and modulation
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block may use a phase-shifted (PS) pulse-wide modulation (PWM) technique [21,32], a
space vector modulation (SVM) [13], or predictive control [20]. As described below, this
manuscript controls an M3C with the most extensively used PS-PWM [15].

1.3. Related Works

Regarding the controllers, the works [19,31] consider that the M3C has several SISO
subsystems and use proportional integer (PI) controllers for all variables except for the
circulating current. Most reported control strategies for the circulating current regulation
are based on a simple P controller [19,31]. However, some authors use a P-resonant (PR)
controller as described in [15]. As a result, there are thirteen (13) PI controllers and four
(4) PR or P controllers. One (1) PI regulates the ACV direct component in cascade with
two (2) PIs for the input current amplitude direct and quadrature components. Eight (8)
PIs aim to reduce the CCV imbalance in cascade with four (4) PR or P circulating current
controllers. Finally, two (2) PIs regulate the load output current amplitude direct and
quadrature components for energy transfer applications between the power supply and
the load [15].

The M3C has also been powering electrical motors with an output control strategy that
differs from the one shown in Figure 2, and uses a speed control loop. The works [21,26,33]
power IMs with an M3C, while [32] drives PMSMs. However, [21,26,32,33] do not describe
the used output control strategy. In contrast, ref. [34] (Figure 3a) clearly identifies a
field-oriented control (FOC) strategy for an MMCC converter feeding IMs. Moreover, it
presents MIMO controllers, significantly reducing the number of controllers. All control
systems proposed in [21,26,32–34] require an initial estimation of the plant parameters for
their adjustment, typically obtained through extensive and time-consuming testing. As an
alternative, the following subsection describes our main contributions.

1.4. Contributions

This manuscript proposes an MIMO adaptive control of an M3C-based variable speed
drive. It operates multiple PMSM-driven centrifugal pumps using a scalar control scheme
(V/ f ) [35] for the output control, as FOC is unnecessary in pumping applications. Our
proposal involves the following novelties:

1. Obtaining the multivariable M3C state-space model for control. It is an MIMO
dynamical system with a currents inner loop, a voltages outer loop, and an inner–
outer interface. Appendix A of this manuscript details the model obtained, which
complements, describes, rearranges, and summarizes elements taken from [15,26,28].
In contrast to [15,26,28], herein, we give details for control implementation, such as
the matrix and vector operations (please see, for instance, the managing feedback
signals details given in Figure 2), and identify the state-space model form with inner
and outer loops.

2. Using MIMO adaptive controllers instead of non-adaptive SISO controllers [19,31,34]. We
show that it is a viable and more straightforward solution. The proposal gains the benefits
discussed in [34] of reducing the number of controllers by using an MIMO approach
for an MMCC but herein for the M3C. In contrast to the works [19,31,34], tuning
adaptive controllers does not require an initial estimation of the plant parameters,
decreasing the commissioning time. Moreover, they adapt to plant changes without
compromising their effectiveness.

3. Proposing a passivity-based hybrid MRAC called PBMRAC. In contrast to [5,6,9],
it uses the MRAC as a low-pass filter for the noisy reference input signals. More-
over, PBMRAC introduces to MRAC a term of an adaptive passivity-based controller
(APBC) [11] to attend to the closed-loop system response time. M3C control particu-
larly needs it after having inner reference input noise periods more than sixty times
distant from the M3C inner time constant.

4. Presenting APBC in cascade with PBMRAC. It expands the cascade MRAC [12] and
the cascade APBC [11]. The first uses an outer SISO controller, whereas the M3C
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outer loop requires an MIMO controller. Moreover, as Figure 2 shows, the M3C has
zero or constant outer references, eliminating the need for the outer reference model;
therefore, an outer APBC [11] ensures a faster outer loop’s time response.

The following manuscript sections describe the control preliminaries in Section 2.
Section 3 details the proposed adaptive control algorithm. Section 4 exhibits the experimen-
tal setup and obtained results illustrating the proposal’s effectiveness. Finally, the authors
present concluding remarks in Section 5.

2. Preliminaries

This section commences by introducing the mathematical model of the plant to be
controlled, the M3C. This modeling is necessary for the controllers’ design. Subsequently,
it presents the conventional PI tuning methods, having the issue of a significant number of
controllers. Finally, it gives the requisite background information of the cascade MRAC
to be extended with the proposal to decrease the number of controllers, among other
advantages.

2.1. M3C State-Space Model

The M3C state-space model obtained is detailed in Appendix A, resulting in
Equations (A7) and (A13). The following dynamical equations describe it:

2αβγ Currents Inner Loop

˙ILin−cl(t) = −
√

3
L Vin−cl(t) + ∆in−cl(t), Input current amplitude

˙icir−cl(t) = − 1
L vcl(t), Circulating alternating current

˙Iout−cl(t) = − 1
L Vout−cl(t) + ∆out−cl(t), Output current amplitude

(1)

2αβγ Inner–Outer Interface

ILin−cl(t) = [ILin−cl_d(t) 0]T ,

icir−cl(t) = C−1
D

{
T−1

r

[
P(−θin)

−1

P(θin)
−1

]
Icir1(t) +

[
P(−θout)−1

P(θin)
−1

]
Icir2(t)

}
,

(2)

2αβγ Voltages Outer Loop

V̇Cavg(t) =
Vavg(t)

3Cε(t)V∗C
ILin−cl_d(t) + ∆avg(t), ACV amplitude

V̇Cintra(t) =
Vintra(t)T
√

6Cε(t)V∗C
Tr Icir1(t) + ∆intraCD

(t), Intra-CCV imbalance amplitude

V̇Cinter(t) =
Vinter(t)T(t)√

3Cε(t)V∗C
Icir2(t) + ∆inter(t), Inter-CCV imbalance amplitude

(3)

where, in the inner loop, the output variables to control are the amplitudes of the input and
output cluster currents Iin−cl ∈ <2×1 and Iout−cl ∈ <2×1, and the instantaneous circulating
current icir−cl ∈ <4×1. Here, the input variables are the amplitudes of the input and
output voltages Vin−cl ∈ <2×1 and Vout−cl ∈ <2×1, and the instantaneous cluster voltage
vcl ∈ <4×1. The parameter is the coupling inductors inductance L. Finally, the time-varying
and bounded disturbance terms for the input are ∆in−cl(t) = 3

L εin(t)Vin_rated ∈ <2×1 and

∆out−cl(t) = −
√

3
L εout(t)Vout_rated ∈ <2×1 for the output currents, where εin(t) and εout(t)

are rated voltages fluctuations.
For the outer loop, the output variables are the ACV VCavg ∈ <, the intra-CCV

imbalance VCintra ∈ <4×1, and the inter-CCV imbalance VCinter ∈ <4×1. The input variables
are the amplitudes of the cluster input direct component Iin−cl_d ∈ < and the circulating
currents Icir1 ∈ <4×1 and Icir2 ∈ <4×1. There are also time-varying bounded disturbance
terms ∆avg(t) ∈ <, ∆intraCD

(t) ∈ <4×1, and ∆inter(t) ∈ <4×1. Finally, the fixed parameters
are the cells capacitor capacitance C and required capacitor voltage V∗C ∈ <, while the time-
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varying parameters are the cluster voltages amplitudes Vintra(t) ∈ <4×1, Vinter(t) ∈ <4×1,
Vavg(t) ∈ < and the capacitor voltage fluctuations ε(t).

The inner–outer interface links the direct component of the line input cluster current
ILin−cl_d with the input cluster current Iin−cl . Moreover, it relates the circulating current
amplitudes Icir1 and Icir2 with the instantaneous circulating current icir−cl , after using the
auxiliary transformation matrix CD [31] and the Park transformation matrix P [30] with the
corresponding input θin and output θout angles dependence. Please see Appendix A and
Figure 2 for details.

Regarding the operating points in this 2αβγ coordinate, the outer loops consider an
ACV setpoint of V∗Cavg = 3V∗C ([26], definition given below in Equation (26)), working at
zero intra-CCV imbalance V∗CintraCD

= 0 and zero inter-CCV imbalance V∗Cinter = 0 [15].

Moreover, the output current reference would be I∗out−cl =
sqrt(3)

3 Iout for applications of
energy transference between the power supply and the load ([15], Equation (24)).

The following section describes the PI controllers design for the M3C converter.

2.2. Basic Control Based PI Controllers

PI controllers design starts by assuming that plant parameters are constant; thus,
εin(t) = εout(t) = ε(t) = 1. Later, the method splits every Equations (1)–(3) into scalar
subsystems, each one having the general form ẏ(t) = b · u(t) + δ(t). Here, y(t) ∈ < is the
output variable, u(t) ∈ < is the input, b represents the fixed subsystems parameter, and
δ(t) is the disturbance.

Then, Laplace transform is applied, obtaining Y(S) = ( b
S )(U(S) + b−1∆(S), not in-

cluding the circulating current working in alternating current. Here, the corresponding
open-loop transfer function is FTLA(S) = b

S after neglecting the disturbance term, i.e.,
∆(S) = 0.

After considering the PI transfer function (Kp +
Ki
S ) acting in series with the FTLA, the

feed forward transfer function is G(S) = (Kp +
Ki
S )( b

S ). Later, considering the feedback
transfer function H(S), one may obtain the following closed-loop transfer function as [36]:

FTLC =
G(S)

1 + G(S)H(S)
=

Kpb · S + Kib
S2 + Kpb · S + Ki · b

=
2ξωnS + ω2

n
S2 + 2ξωnS + ω2

n
, (4)

where ξ is the damping coefficient and ωn is the natural frequencies in rad/s.
The feedback sensor transfer function H(S) is often considered a unitary gain. More-

over, we can identify in (4) the equivalence terms 2ξωn = Kpb and ω2
n = Kib between the

general second-order equation of the right side and the obtained result of the center side.
This allows for adjusting the PI controllers as follows:

u(t) = θTω(t) = [Kp Ki]

[
e(t)∫ t

0 e(τ) dτ

]
, with Kp =

2ξωn

b
and Ki =

ω2
n

b
. (5)

To tune the fixed parameters θT of PI controllers based on (5), ξ =
√

2
2 is usually

considered ([36], Section (5-3)). However, there are different values of b, ωn, and PI
quantities for the distinct controlled variables, as Table 1 shows. Two (2) identical PIs
regulate the input and output current amplitude components d and q with b = −

√
3

L , as

described in (1) and (A7). One (1) PI controls the ACV with b =
Vavg

3CV∗C
as can be seen in (3)

and (A14). Four (4) PIs control the intra-CCV imbalance, where Vintra = Vinα

[
1 1 1 1

]T

from (A14); thus, all components of the vector Vintra are equal to Vinα
, having the same

b =
VT

intra√
6CV∗C

. Finally, also four (4) PIs control the inter-CCV imbalance. However, these have

different values of b as described in Table 1 due to Vinter =
[
−Voutα Voutα Vinα

Vinα

]T

from (A14).
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The alternating circulating current controller often considers four (4) P controllers
adjusted as in (5) but ki = 0 [37], and, in our case, b = − 1

L and ωn = 2π(10 fout).

Table 1. Values of b and ωn for each controller.

Controller b ωn PI Quantity

Input Current
Amplitude Control dq −

√
3

L
2π( fin) 2

ACV Control d Vavg
3CV∗C

2π (1 Hz) 1

Intra-CCV Imbalance
Control

Vinα√
6CV∗C

2π (5 Hz) 4

Inter-CCV Imbalance
Control αγ

− Voutα√
3CV∗C

2π (5 Hz) 1

Inter-CCV Imbalance
Control βγ

Voutα√
3CV∗C

2π (5 Hz) 1

Inter-CCV Imbalance
Control γαβ

Vinα√
3CV∗C

2π (5 Hz) 2

Finally, for applications of energy transference between the power supply and the
load [15,26], the output current amplitude control dq would have two PI controllers adjusted
as in (5) and considering b = − 1

L and ωn = 2π( fout).

Remark 1. It is imperative to estimate the plant parameters value θT to adjust the PI controllers,
as seen in Equation (5) and Table 1. This knowledge is usually obtained through initial extensive
testing, which can be time consuming (please see [38] as an example for IMs). It is also crucial
for the controllers to handle plant changes without compromising their effectiveness. For example,
robustness is needed to handle the disturbances shown in Equations (1) and (3) and model uncer-
tainties or unmodeled dynamics such as those of the cell inverters considered as a transfer function
K/(1 + τS) and causing a delay of minimum 5× Tau.

Finally, the output controller must be adjusted as we study pumping applications.
Thus, the following P controller, called a scalar control scheme (V/ f ), is commonly used
for a two-level voltage source inverter feeding PMSD-driven centrifugal pumps ([35],
Equation (1)):

V∗out−cl_d =


0 for 0 < ωr < ωr_min

P1ω∗r +
√

2Vboost, with P1 =
√

2( Vs_rated
ωr_rated

− Vboost
ωr_c

) for ωr_min < ωr < ωr_c.

P2ω∗r , with P2 =
√

2 Vs_rated
ωr_rated

for ωr_c < ωr < ωr_rated

(6)

Here, Vs_rated is the rated phase voltage from the motor data plate. ωr_rated is the
motor-rated rotor speed in rad/s. The Vboost is a controller bias or offset (with a value up
to 50% of Vs_rated) allowing the PMSM to deliver a certain amount of starting torque. The
Vboost operates from minimum frequency ωr_min (with a value up to 6% of ωr_rated) to the
cut-frequency ωr_c (with a value up to 50% of ωr_rated) [35].

Remark 2. In order to attain the desired rotor angular frequency ω∗r with a ramp-up, a two-level
voltage source inverter necessitates a phase stator voltage amplitude of V∗out−cl = [V∗out−cl_d 0]T .
However, the output voltage required for the M3C is in double αβγ coordinates, utilizing a power
invariant transformation [39] in lieu of Clarke’s transformation that preserves the amplitude [40].
This paper proposes utilizing Equation (6) ([35], Equation (1)) in conjunction with the subse-
quent equation:

V∗out−cl =
√

3[V∗out−cl_d 0]T (7)
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The following section will give an overview of an adaptive controller that can maintain
optimal performance while adapting to plant changes without requiring knowledge of
plant parameters.

2.3. Cascade Adaptive Control Background

The M3C modeled as (1) to (3) needs a cascade control system and the following
cascade MRAC ([12], Equations (14)–(22)) ensures the outputs yo and yi tracks the references
y∗o and y∗i :

ẏro(t) = −aroyro(t) + broy∗o (t), Outer reference model
uo(t) = −θo(t)Tωo(t), Outer adaptive control law
ωo(t) =

[
yo(t) f2(u; I, yi) y∗o (t)

]T , MRAC outer information vector
θ̇o(t)T = −(sign(bo)eo(t)ωo(t)T + σoθo(t)T)Γo, Outer adaptive law for MRAC
θ∗o (t)T =

[
b−1

o (t)aro b−1
o (t)ao −b−1

o (t)bro
]
, Ideal outer MRAC parameter

(8)

y∗i (t) = f1(uo(t)), Inner–outer loop interface (9)

ẏri(t) = −Ariyri(t) + Briy∗i (t), Inner reference model
ui(t) = −θi(t)Tωi(t), Inner adaptive control law
ωi(t) =

[
yi(t)T 1T

m y∗i (t)
T]T , MRAC inner information vector

θ̇i(t)T = −(sign(Bi)ei(t)ωi(t)T + σiθi(t)T)Γi, Inner adaptive law for MRAC
θ∗i (t)

T =
[
B−1

i Ari B−1
i Ai(t) −B−1

i Bri
]
. Ideal inner MRAC parameter

(10)

Here, the outer tracking error is eo(t) = yro(t) − yo(t) ∈ < and the inner tracking
error is ei(t) = yri(t)− yi(t) ∈ <m. The variables yro(t) ∈ <, yri(t) ∈ <m are the outer and
inner reference model outputs. The set points are y∗o (t) ∈ < and y∗i (t) ∈ <m. The reference
model parameters are aro, bro ∈ < and Ari, Bri ∈ <(m×m−Diagonal), made equal (aro = bro
and Ari = Bri) for an exact set point tracking without scaling. The adaptive external
and internal controllers uo(t) ∈ < and ui(t) ∈ <m depend on their adaptive parameters
θo(t) ∈ <3 and θi(t) ∈ <(m×3m) and their corresponding information vectors ωo(t) ∈ <3

and ωi(t) ∈ <3m. The ideal adaptive parameters are θ∗o (t) ∈ <3 and θ∗i (t) ∈ <(m×3m).
The term 1m ∈ <m refers to a vector with all its components equal to one. Besides the
model reference parameters, the cascade MRAC has the following tuning parameters:
adaptive law fixed-gains Γo ∈ <(3×3−Diagonal) and Γi ∈ <(3m×3m−Diagonal), and adaptive
law modification factors σo ∈ < and σi ∈ <(3m×3m−Diagonal).

Cascade MRAC (8)–(10) applies to time-varying cascade systems of the following
form ([12], Equations (11)–(13)):

ẏi(t) = Ai(t) + Bi(t) · ui(t), Inner loop
yi(t) = f1(uo(t)), Inner–outer interface
ẏ0(t) = ao(t) f2(u; I, yi) + bo(t) · uo(t), Outer loop

(11)

where yo(t) ∈ < and yi(t) ∈ <m are the outer and inner output variables, respectively.
The inputs are uo(t) ∈ < for the outer loop and ui(t) ∈ <m for the inner loop. More-
over, ao(t), bo(t) ∈ < and Ai(t), Bi(t) ∈ <m×m are time-varying plant parameters, where
Bi(t) = |Bi(t)|Sign(Bi(t)) and b0(t) = |b0(t)|Sign(b0(t)), with |Bi(t)| and |b0(t)| the mod-
ulus of each element of Bi(t) and b0(t).

Remark 3. It is important to note that the cascade MRAC (8)–(10) uses an outer SISO controller,
whereas the M3C outer loop (3) requires an MIMO controller. Additionally, Figure 2 shows that the
M3C has zero or constant outer references, eliminating the need for the outer reference model of (8),
which would slow down the outer loop’s time response. Finally, the inner control loop receives noisy
reference input signals with certain switching noise periods. Although the inner reference model
of (10) could filter these signals, it would disregard the required inner loop response time, failing to
ensure both needs.



Machines 2023, 11, 884 9 of 30

These issues are solved by the controller proposed in the following section.

3. Proposal

Based on the previously described preliminaries, this section proposes an adaptive
controller that solves the cascade MRAC issue identified in Remark 3 and decreases the
number of controllers. It applies to the following system that encompasses the M3C
state-space model (1)–(3) introduced in Section 2.1:

ẏi(t) = Bi(t)ui(t) + ∆i(t), Inner loop
yi(t) = f1(uo(t)), Inner–outer interface
ẏ0(t) = Bo(t)uo(t) + ∆o(t), Outer loop

(12)

where yo(t) ∈ <n and yi(t) ∈ <m are the outer and inner output variables, respec-
tively. The outer control input is uo(t) ∈ <n and the inner is ui(t) ∈ <m. Moreover,
Bo(t) ∈ <n×n and Bi(t) ∈ <m×m are time-varying and unknown plant parameters, where
Bi(t) = |Bi(t)|Sign(Bi(t)) and B0(t) = |B0(t)|Sign(B0(t)). Here, the matrixes |Bi(t)| and
|B0(t)| are composed by the modulus of each element of Bi(t) and B0(t) and are unknown.
Furthermore, the matrix Sign(Bi(t)) and Sign(B0(t)) are composed by the sign of each
element of Bi(t) and B0(t) and are known. The known interface nonlinear function is
f1 ∈ <m×n. Finally, ∆i(t) and ∆o(t) are the inner and outer bounded and unknown distur-
bances, respectively.

The following theorem describes the proposal:

Theorem 1. For systems of the form (12), the following adaptive controller ensures that the outputs
yo and yi tend to the constant references y∗o and y∗i , respectively:

uo(t) = −θo(t)Tωo(t), Outer control law

ωo(t) =
[
∆T

o_b up
o (t)T

]T
, APBC outer information vector

with up
o (t) = Ko∇Veo (t),

θ̇o(t)T = −(sign(bo)∇Veo (t)ωo(t)T + σoθo(t)T)Γo, APBC outer adaptive law
θ∗o (t)T =

[
B−1

o (t) B−1
o (t)

]
, Ideal outer APBC parameter

(13)

y∗i (t) = f1(uo(t)), Inner–outer loop interface (14)

ẏri(t) = −Ariyri(t) + Briy∗i (t), Inner reference model
ui(t) = −θi(t)Tωi(t), Inner control law based

ωi(t) =
[
yi(t)T y∗i (t)

T ∆T
i_b up

i (t)
T
]T

, PBMRAC inner inform. vector

with up
i (t) = Ki∇Vei (t),

θ̇i(t)T = −(sign(Bi)∇Vei (t)ωi(t)T + σiθi(t)T)Γi, PBMRAC inner adaptive law
θ∗i (t)

T =
[
B−1

i Ari −B−1
i Bri B−1

i

]
. Ideal inner PBMRAC parameter

(15)

Here, the outer tracking error is eo(t) = yro(t)− yo(t) ∈ <n and the inner tracking error
is ei(t) = yri(t)− yi(t) ∈ <m. The variables yro(t) ∈ <n and yri(t) ∈ <m are the outer and
inner reference model outputs, respectively. The set points are y∗o (t) ∈ <n and y∗i (t) ∈ <m. The
inner and outer controllers uo(t) ∈ <n and ui(t) ∈ <m depend on their adaptive parameters
θo(t) ∈ <n×2n and θi(t) ∈ <(m×3m) and their corresponding information vectors ωo(t) ∈ <2n

and ωi(t) ∈ <3m. The unknown ideal adaptive parameters are defined as θ∗o (t) ∈ <n×2n and
θ∗i (t) ∈ <(m×3m). Moreover, Veo (t) and Vei (t) are Lyapunov-type energy terms.

Following, the adaptive controller tuning parameters settings are described. The outer APBC
loop tunes the outer PB gain as Ko =

5δ1o
T∗s

In ∈ <(n×n−Diagonal), where 5T∗s is the process’ required

stabilization time [35]. The adaptive law modification term is σo = δ2o In ∈ <(n×n−Diagonal), de-
pending on the identity matrix In of order n. The adaptive law fixed-gain is Γo ∈ <(2n×2n−Diagonal).
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Moreover, the fine-tuning scalar factors are 0 < αo1l , αo2l < 10 and 0 < δ1o, δ2o < 10, with
l = 1, 2, 3, . . . , n ([12], Theorem 1). Finally, APBC adjusts the adaptive law fixed-gain ([35],
Equation (11)) as follows:

Γo = Diag
[

αo11∆o1_b
1+∆2

o1_b
. . . αo1n∆on_b

1+∆2
on_b

αo21up
o1_b

1+up
o1_b

2 . . .
αo2nup

on_b

1+up
on_b

2

]
. (16)

The inner PBMRAC loop adjusts the model reference parameter as Ari = fnoiseδ1i
20 In ∈

<(n×n−Diagonal). The PB gain Ki is computed as (Ari + Ki) = 15Ko (over fifteen times faster
than the outer loop), and the adaptive law modification terms σi = δ2i Im ∈ <(m×m−Diagonal).
Here, 0 < δ1i, δ2i < 10 are fine-tuning scalar adjusting factors, together with 0 < αi1l , αi2l , αi3l ,
αi4l < 10, where l = 1, 2, 3, . . . , n. Finally, the adaptive law fixed-gain Γi ∈ <(2m×2m−Diagonal) is
adjusted via the following equation ([12], Theorem 1):

Γi = Diag
[

αi11yi1_b
1+yi1_b

2 . . . αi1nyin_b
1+yin_b

2
αi21y∗i1_b
1+y∗i1_b

2 . . .
αi2ny∗in_b
1+y∗in_b

2

αi31∆i1_b
1+∆2

i1_b
. . . αi3n∆in_b

1+∆2
in_b

αi41up
i1_b

1+up
i1_b

2 . . .
αi4nup

in_b

1+up
in_b

2

]
.

(17)

Remark 4. The proposed adaptive controller handles identified plant changes in Remark 1 in three
ways. First, adaptive controller parameters ensure robustness against changes in plant parameters.
Second, considering the terms ∆T

o_b and ∆T
i_b in the information vectors ωo(t) and ωi(t), respectively,

deals with the unknown disturbances in Equation (12), extending ideas from [41]. However, for an
adaptive and lower-effort approach, we consider magnitude values ∆T

o_b and ∆T
i_b of ∆T

o and ∆T
i (or

a known portion of these), which may even be equal to one. Finally, despite the fact that terms ∆T
o_b

and ∆T
i_b may also include unmodeled dynamics with neglectable time variations, the proposal also

has the σθ modification to handle their time-varying characteristics.

The following is the theorem proof.

Proof of Theorem 1. As a result of applying the adaptive controllers (13) and (15) to the
corresponding dynamical equation of (11), we obtain the closed-loop dynamical error
equations, which require verification of their stability.

In detail, the term up
o (t) is added and subtracted to the right side of the outer loop

equation of (11). The outer control law of (13) is then applied, the outer tracking error
definition eo(t) = y∗o (t)− yi(t) is considered, and the terms are regrouped conveniently. In
regard to the inner loop, we subtract the inner reference model of (15) from the inner loop
equation of (11). Later, we add and subtract the term Ariyi(t) to the right side and consider
the inner tracking error definition ei(t) = yri(t) − yi(t). Moreover, we apply the inner
control law of (15) and regroup terms. As a result, the following control error dynamical
equations are obtained:

ėo(t) = up
o (t)− Bo(t)φo(t)Tωo(t),

ėi(t) = −Ariei(t) + up
i (t)− Bi(t)φi(t)Tωi(t),

(18)

where φo(t)T = θo(t)T − θ∗o (t)T and φi(t)T = θi(t)T − θ∗i (t)
T are the adaptive parameters

errors. Obtaining now the first-time derivative of φo(t)T and φi(t)T , considering the
definitions given in Theorem 1 for θo(t)T , θ∗o (t)T , θi(t)T , and θ∗i (t)

T , these error dynamical
equations give:

φ̇o(t)T = −(sign(Bo)∇Veo (t)ωo(t)T + σoθo(t)T)Γo − θ̇∗o (t)T ,
φ̇i(t)T = −(sign(Bi)∇Vei (t)ωi(t)T + σiθi(t)T)Γi − θ̇∗i (t)

T .
(19)

These closed-loop dynamical error Equations (18) and (19) have the following associ-
ated Lyapunov function:
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V(ei, e0, φi, φo) = Vei + Ve0 + Trace( 1
2 |Bi|φT

i Γ−1
i φi) +

1
2 |bo|φT

o Γ−1
o φo. (20)

Taking the first-time derivative of (20), considering the derivative property of the
product in the trace and replacing the control error dynamical Equation (18), we obtain:

V̇(ei, e0, φi, φo) = −∇VT
ei

Ariei −∇VT
ei

up
i +∇VT

ei
Biφ

T
i ωi −∇VT

eo up
o +∇VT

eo BoφT
o ωo

+Trace(|Bi|φ̇T
i Γ−1

i φi) + |Bo|φ̇T
o Γ−1

o φo.
(21)

Moreover, using the vector property aTb = Trace(abT), we can rewrite the following
term: (∇VT

eo Bo)(φT
o ωo) = Trace((BT

o∇Veo )(ω
T
o φo)). Moreover, we can also re-express the

term (∇VT
ei

Bi)(φ
T
i ωi) = Trace((BT

i ∇Vei )(ω
T
i φi)). Finally, considering that Bo = |Bo|Sign(B0)

and Bi = BT
i = |Bi(t)|Sign(Bi(t)) (due to Bi being diagonal), the following expression

is given:
V̇(ei, e0, φi, φo)−∇VT

ei
Ariei −∇VT

ei
up

i −∇VT
eo up

o
+Trace(|Bi|sign(Bi)∇Vei )(ω

T
i φi)) + |Bi|φ̇T

i Γ−1
i φi)

+Trace(|Bo|sign(Bo)∇Veo )(ω
T
o φo)) + |Bo|φ̇T

i Γ−1
o φo).

(22)

Here, replacing the control parameters error dynamical Equation (19), canceling terms,
and taking into account the expressions θo(t)T = φo(t)T + θ∗o (t)T and θi(t)T = φi(t)T +
θ∗i (t)

T , the Lyapunov function first-time derivative becomes:

V̇(ei, e0, φi, φo, ) = −∇VT
ei

Ariei −∇VT
ei

up
i −∇VT

eo up
o

−Trace(|Bi|σiφ
T
i φi)− Trace(|Bo|σoφT

o φo)

−Trace(|Bi|σiθ
∗T

i φi)− Trace(|Bi|θ̇∗
T

i Γ−1
i )

−Trace(|Bo|σoθ∗
T

o φo)− Trace(|Bo|θ̇∗
T

o Γ−1
o ).

(23)

Here, we have that Ari, |Bi|, σi, |Bo|, and σo are positives; therefore, the first five terms
of (23) are negatives. However, although the terms Γi and Γo are also positives, there is
nothing that we can say about the sign of the last four terms of (23) at first sight. Therefore,
we re-express Equation (23) using some modulus and norm properties.

Using the Frobenius norm definition and the Cauchy–Schwarz inequality, we have that
|Trace(ABC)| ≤ ‖A‖F‖B‖F‖C‖F ([10], Section 11.2.2). Moreover, considering a positive
A, Trace(ABT B) = |Trace(ABT B)| ≤ ‖A‖F‖B‖2

F. Therefore, the following terms become
−Trace((|Bi|σi)φ

T
i φi) ≤ −‖(|Bi|σi)‖F‖φi‖2

F and −Trace((|Bo|σo)φT
o φo) ≤ −‖(|Bo|σo)‖F

‖φo‖2
F. Also, the last fourth terms fulfill −Trace(|Bi|σiθ

∗T

i φi) ≤ −‖(|Bi|σi)‖F‖θ∗
T

i ‖F‖φi‖F,
−Trace(|Bo|σoθ∗

T
o φo) ≤ −‖(|Bo|σo)‖F‖θ∗

T
o ‖F‖φo‖F, −Trace(|Bi|θ̇∗

T

i Γ−1
i φi) ≤ −‖(|Bi|)‖F

‖θ̇∗i ‖F‖φi‖F‖Γ−1
i ‖F, and −Trace(|Bo|θ̇∗

T
o Γ−1

o φo) ≤ −‖(|Bo|)‖F‖θ̇∗o ‖F‖φo‖F‖Γ−1
o ‖F. Finally,

using the property 2ab ≤ a2 + b2 ([10], Section 11.2.2) and conveniently adding the term r2

to the right side of Equation (23), the Lyapunov function first-time derivative (23) becomes:

V̇(ei, e0, φi, φo, ) = −∇VT
ei

Ariei −∇VT
ei

up
i −∇VT

eo up
o

+r2 − ‖(|Bi|σi)‖F‖φi‖2
F − ‖(|Bo|σo)‖F‖φo‖2

F
− 1

2‖(|Bi|σi)‖F‖(θ∗
T

i ‖2
F + ‖φi‖2

F)−
1
2‖(|Bo|σo)‖F‖(θ∗

T
o ‖2

F + ‖φo‖2
F)

− 1
2‖(|Bi|)‖F(‖θ̇∗i ‖2

F + ‖φi‖2
F)‖Γ

−1
i ‖F − 1

2‖(|Bo|)‖F(‖θ̇∗o ‖2
F + ‖φo‖2

F)‖Γ−1
o ‖F,

(24)

where the plant parameters and their first-time derivatives are bounded. Therefore,
V̇ ≤ −∇VT

ei
up

i − ∇VT
eo up

o and closed-loop dynamical error Equations (18) and (19) are
passive outside the region Ω. This last equation is the following instability hyper elliptical
paraboloid, which is compact, closed, and includes the origin:

Ω = [‖(|Bi|σi)‖F‖φi‖2
F + ‖(|Bo|σo)‖F‖φo‖2

F
+ 1

2‖(|Bi|σi)‖F‖(θ∗
T

i ‖2
F + ‖φi‖2

F) +
1
2‖(|Bo|σo)‖F‖(θ∗

T
o ‖2

F + ‖φo‖2
F)

+ 1
2‖(|Bi|)‖F(‖θ̇∗i ‖2

F + ‖φi‖2
F)‖Γ

−1
i ‖F +

1
2‖(|Bo|)‖F(‖θ̇∗o ‖2

F + ‖φo‖2
F)‖Γ−1

o ‖F] < r2.
(25)
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Furthermore, substituting into (25) the terms up
o (t) = Ko∇Veo (t) and up

i (t) = Ki∇Vei (t)
defined in (13) and (15), and using Lyapunov’s second method, we can conclude that the
closed-loop dynamical error Equations (18) and (19) are bounded outside Ω. Suppose that
the errors are as minor as possible, resulting in V̇ > 0 within the instability compact and
closed region Ω, including the origin. In that case, they will be pushed back to a stable
boundary. In practice, the values of σi, σo, Γi, and Γo are chosen so the permanent errors are
the lowest possible.

Thus, ei(t), eo(t), φi(t), and φo(t) are bounded outside Ω, i.e., ei(t), eo(t), φi(t),
φo(t) ∈ L∞ outside Ω. Since ei(t) = yi(t) − yri and eo(t) = yo(t) − yro are bounded,
it implies that yi(t) and yo(t) are bounded, as yri, y∗i and yro, y∗0 are bounded references.
Moreover, φi(t) and φo(t) are bounded, and we have bounded plant parameters; then,
the adaptive parameters θi(t) and θo(t) are bounded, since θi(t)T = φi(t)T + θ∗i (t)

T

and θo(t)T = φo(t)T + θ∗o (t)T . Having all these bounded signals outside Ω, and that
V, e(t), φ(t) ∈ L∞, from (18) and (19), we have that ėi(t), ėo(t), φ̇i(t), φ̇o(t) ∈ L∞. Integrat-
ing both sides of V̇(ei, e0, φi, φo, ) in the interval (0, ∞) gives

V(∞)−V(0) =
∫ ∞

0 (−∇VT
ei

Ariei −∇VT
ei

Ki∇Vei (t)−∇VT
eo Ko∇Veo (t)

+r2 − ‖(|Bi|σi)‖F‖φi‖2
F − ‖(|Bo|σo)‖F‖φo‖2

F
− 1

2‖(|Bi|σi)‖F‖(θ∗
T

i ‖2
F + ‖φi‖2

F)−
1
2‖(|Bo|σo)‖F‖(θ∗

T
o ‖2

F + ‖φo‖2
F)

− 1
2‖(|Bi|)‖F(‖θ̇∗i ‖2

F + ‖φi‖2
F)‖Γ

−1
i ‖F − 1

2‖(|Bo|)‖F(‖θ̇∗o ‖2
F + ‖φo‖2

F)‖Γ−1
o ‖F) dτ.

(26)

As V is bounded outside Ω, from the right-hand side of this last equation, we have that
e(t) ∈ L2 outside Ω. Furthermore, as ei(t), ėi(t) ∈ L∞ and ei(t) ∈ L2, and eo(t), ėo(t) ∈ L∞

and e0(t) ∈ L2, all outside Ω, using Barbalat’s Lemma ([9], Section 4.5.2), we have that ei(t)
and eo(t) both tend asymptotically to zero outside Ω. Hence, yi(t) → y∗i and yo(t) → y∗o
outside Ωc. We do not ensure parameter convergence. This concludes the proof.

The following section applies the proposed controller to the M3C converter and
describes the obtained results.

4. Simulation Results

This section describes the comparative simulation results obtained after applying
the proposed adaptive and PI controllers to the M3C. These controllers are applied to the
control system shown in Figure 2, acting over the power topology of Figure 1, with three
cells per cluster.

Simulations run on a personal computer, in PLECS 4.7.2. The modeling settings are
solver RADAU with variable-step, using a relative tolerance of 1× 10−3.

The M3C load corresponds to four equal PMSMs electrically connected in parallel and
each moving a centrifugal pump. Table 2 shows the motor–pump parameters.

Table 2. Motor–pump parameters.

Parameter Value Parameter Value

Prated 644 [W] Trated 4.1 [N-m]

Vs_rated 165 [V] Is_rated 2.65 [A]

fe 75 [Hz] fp 0.95

P 3 Φ 0.305 [Wb]

ωr 157.08 [rad/s] Jm 0.0036 [Nms2]

Rs 6.2 [Ω] JLoad 0.0108 [Nms2]

Ld 25.025 [mH] Kload 93.053 · 10−6 [Kg m2]

Lq 40.17 [mH] T0 0.41 [N-m]
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Here, Vs_rated and Is_rated are the rated stator voltage and current of the PMSM, respec-
tively. The power factor is fp and fe is the electric required frequency of the PMSM for it to
run at the rated speed. P is the number of pole pairs and ωr is the PMSM-rated speed. The
PMSM-rated torque and power are Trated and Prated, respectively. Moreover, Rs, Ld, and
Lq are the resistance and inductance of the motor, Φ is the magnetic flux induced by the
motor magnets, Jm is the motor inertia, and JLoad is the inertia of the load. On the other
hand, the load parameters are the initial load torque T0 at zero speed and the constant Kload,
characterizing the pump model equation TLoad = Kload ·ω2

r + T0.
The M3C is designed to power these PMSMs-driven centrifugal pumps, having the

same Prated. Table 3 presents the plate data and parameters value of the M3C.

Table 3. Plate data and parameters value of the M3C.

Parameter Value Parameter Value

Prated 644 [W] V∗C 1500 [V]

Vin_rated 220 [V] Vout_rated 165 [V]

fin 50 [Hz] fout 75 [Hz]

Lin 1.5 [mH] L 1.0 [mH]

fsw 10 [KHz] C 3.3 [mF]

The reference capacitor voltage mean value V∗C is defined based on the M3C in-
put and output rated voltages Vin_rated and Vout_rated and the number of cells. Here,
V∗C ≥ 1.2 ·

√
2 · (Vin_rated + Vout_rated), being divisible by three (number of cells per cluster).

Therefore, V∗C ≥ 1.2 ·
√

2 · (Vin_rated + Vout_rated) = 3· 500 [V] = 1500 [V] ≥ 1.2 ·
√

2 ·
(220 [V] + 400 [V]) ≥ 1052[V].

Moreover, the power supply has the rated voltage Vin_rated, the input frequency fin,
and an input inductance Lin. The load has the rated voltage Vout_rated equal to the rated
motor voltage Vs_rated, and an output frequency fout equal to the rated motor frequency fe.
Finally, we have the cells with switching frequency fsw and a capacitance capacitor C. The
cluster coupling inductance is L.

The following subsection describes the applied proposed and basic controllers.

4.1. Applied Controllers

For comparison purposes, the following two control systems are applied to the M3C-
based variable speed drive for multiple PMSM-driven centrifugal pumps.

4.1.1. Basic Control System [37]

The basic control includes sixteen (16) PI controllers, whose settings are calculated
based on the definitions provided in Equation (5) and Table 1:

• Input Control:

– One (1) PI for the 2αβγ ACV control:

Kp_VCavg =
8.485πCV∗C

Vavg
= 0.4241, Ki_VCavg =

12π2CV∗C
Vavg

= 1.8843,

where the constant cluster voltage amplitude is Vavg = Vind =
√

2Vin_rated. The output
of the ACV controller is the input cluster line current amplitude direct component
reference I∗Lin−cl_d. Here, the input cluster line current amplitude reference is I∗Lin−cl =

[ILin−cl_d 0]T and is controlled by the following controllers:

– Two (2) PIs for the 2αβγ input cluster line current ILin−cl amplitude direct and
quadrature components:

Kp_Iin−cl_d = Kp_Iin−cl_q = −
√

2(2π fin)L√
3

= −81.65πL = −0.2567,

Ki_Iin−cl_d = Ki_Iin−cl_q = − (2π fin)
2L√

3
= −5773.5π2L = −56.98.
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• CCV Imbalance Control.

– Four (4) PIs for the 2αβγ intra-CCV imbalance control ([37], outer controller of
Figure 3):

Kp_VC1α = Kp_VC1β = Kp_VC2α = Kp_VC2β =
14.142π

√
6CV∗C

Vind
= 1.1541,

Ki_VC1α = Ki_VC1β = Ki_VC2α = Ki_VC2β =
100π2

√
6CV∗C

Vind
= 25.642.

– Four (4) PIs for the 2αβγ inter-CCV imbalance control ([37], Figure 4):

Kp_VCαγ = − 14.142π
√

3CV∗C
Voutd

= −0.6348, Kp_VCβγ =
14.142π

√
3CV∗C

Voutd
= 0.6348,

Kp_VCγα = Kp_VCγβ =
14.142π

√
3CV∗C

Vind
= 0.8161,

Ki_VCαγ = − 100π2
√

3CV∗C
Voutd

= −14.1031, Ki_VCβγ =
100π2

√
3CV∗C

Voutd
= 14.1031,

Ki_VCγα = Ki_VCγβ =
100π2

√
3CV∗C

Vind
= 18.1316,

with the constant voltage Voutd =
√

2Vout_rated. Both of these controllers are in cascade
with the following controller:

– Four (4) PIs controllers for the 2αβγ circulating current, considering only a P
action ([37], inner controller of Figure 3):

Kp_icirc−cl_αα = Kp_icirc−cl_αβ = Kp_icirc−cl_βα = Kp_icirc−cl_ββ

= −
√

2
√

3(2π10 fout) = −4242, 64πL = −13.3266,
Ki_icirc−cl_αα = Ki_icirc−cl_αβ = Ki_icirc−cl_βα = Ki_icirc−cl_ββ = 0.

• Output control.
One (1) P for the 2αβγ output voltage amplitude V∗out−cl = [Vout−cl_d 0]T , with the
V∗out−cl_d of Equation (6) ([35], Equation (1)) with (7).

4.1.2. Adaptive Control System

The adaptive control system consists of the following six (6) controllers, which are
configured according to the definitions given in Equations (13)–(15). These controllers
utilize the Lyapunov-type energy terms Veo (t) = 1

2 eT
o eo and Vei (t) = 1

2 eT
i ei. Moreover,

all base disturbances ∆o_b and ∆i_b are computed based on Equations (1) and (3) in a
stable state (zero first-time-derivatives), considering rated values from Table 3 and unitary
parameter values (taking the known disturbance portion).

• Input Control.

– One (1) APBC (13) for the 2αβγ ACV control, with:

∆o_b_VCavg = − 4Prated
9V∗C

= −0.19, Ko_VCavg =
Ki_Iin−cl

15 = 0.67,

Γo_VCavg = Diag[ 1
(1 + 0.192)

1
(1 + 102)

] = Diag[0.9649 0.0099], σo_VCavg = 1.

The output of this ACV controller is the input cluster line current amplitude direct
component reference I∗Lin−cl_d. Therefore, the inner loop input cluster line current
amplitude reference is I∗Lin−cl = [ILin−cl_d 0]T , having the following controller:

– One (1) PBMRAC (15) for the 2αβγ input cluster line current, and filtering a 2
KHz reference input noise:

Ari_in = Bri_in = 2000
20 I2 = 100I2,

Ki_in = Ki_Icirc−cl (2π fin)I2 − Ari_in = (3141.6− 100)I2 = −3041.6I2,

∆i_b_in = 3
√

2Vin_rated[1 1]T = 933.6[1 1]T , σi_in = I2,

Γi_in = Diag[ 16
(1 + 162)

16
(1 + 162)

16
(1 + 162)

16
(1 + 162)

933.6
(1 + 933.62)

933.6
(1 + 933.62)

16
(1 + 162)

16
(1 + 162)

]

= Diag[0.0623 0.0623 0.0623 0.0623 0.001 0.001 0.099 0.099].

• CCV imbalance control.
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– One (1) APBC (13) for the 2αβγ intra-CCV imbalance.

∆o_b_VCintra
= −

√
2Vin_rated Icir_rated√

6V∗C
[1 1 1 1]T = −4.23[1 1 1 1]T ,

Ko_VCintra =
Ki_Icirc−cl

15 I4 = 0.67I4, σo_VCavg = I4,

Γo_VCintra = Diag[ 1
(1 + 102)

1
(1 + 102)

1
(1 + 4.232)

1
(1 + 4.232)

] = Diag[0.001 0.001 0.053 0.053].

– One (1) APBC (13) for the 2αβγ inter-CCV imbalance.

∆o_b_VCinter
= −[−

√
2Vout_rated Icir_rated√

3V∗C

√
2Vout_rated Icir_rated√

3V∗C

√
2Vin_rated Icir_rated√

3V∗C

√
2Vin_rated Icir_rated√

3V∗C
]T ,

= [7.7 − 7.7 − 6 − 6]T ,

Ko_VCinter =
Ki_Icirc−cl

15 I4 = 0.67I4, σo_VCavg = I4,
Γo_VCinter = Diag[ 1

(1 + 7.72)
1

(1 + 7.72)
1

(1 + 62)
1

(1 + 62)
] = Diag[0.016 0.016 0.027 0.027].

The inner controller is designed as follows

– One (1) PBMRAC (15) for the 2αβγ circulating cluster current, and filtering a
3.0 KHz reference input noise:

Ari_circ−cl = Bri_circ−cl = 2π 3000
20 I4 = 942.5I4,

Ki_circ−cl = Ki_Icirc−cl (2π(2 fout)I4 − Ari_circ−cl = (9424.7− 942.5)I4 = −8482.3I4,
∆i_b_circ−cl = 0 σi_circ−cl = 0, Γi_circ−cl =

10
(1 + 102)

I4 = 0.099I4.

• Output control.
One (1) P for the output voltage amplitude V∗out−cl = [Vout−cl_d 0]T , using the
V∗out−cl_d of Equation (6) ([35], Equation (1)) joined to (7).

Remark 5. The basic control system has an initial estimator of the plant parameters [38]. Later,
based on the obtained values, it adjusts the fixed parameters θT of fifteen PI controllers with
control laws of the form u(t) = θTω(t). It uses fifteen controlled variable information vectors
ω(t) ∈ <2 (5). In contrast, the proposed adaptive control system adjusts five control laws of the
form u(t) = −θ(t)Tω(t) and does not need an initial estimation of the plant parameters. It has five
variable-size controlled variable information vectors ω(t) and adapts their time-varying parameters
of the form θ(t)T =

∫ t
0 −(sign(b)∇Ve(τ)ω(τ)T + σθ(τ)T)Γ dτ with θ(0) = 0. Additionally,

both solutions use a P controller for the output voltage amplitude, which does not depend on the
plant parameters but on the PMSMs nameplate data.

The following sections present the comparative results of the M3C feeding the four
PMSMs, each moving a centrifugal pump. The results were obtained with a simulation time
of 8 s, under the following situations: normal operation, input phase imbalance, a cluster
cell short circuit, an opened cluster cell, and parameters changes of the motor–pump set.

For all cases, the set points in this 2αβγ coordinate are: V∗Cavg = 3V∗C = 4500 V,
V∗CintraCD

= 0, and V∗Cinter = 0. Moreover, the reference rotor angular speed ωr_rated∗ = is

0 rad/s between 0 s and 1 s, having a ramp up reaching ωr_rated at 5 s and keeping the
remaining time constant.

4.2. Results under a Normal Operation

Figure 3 shows the comparative simulation results under a normal operation. Here,
we operate with the rated input and output voltages.

Figure 3a,g demonstrate that the M3C adaptive proposal results in 25% lower input
and output current consumption (with a reduction of 5 A) compared to the basis control
that utilizes PI controllers. Moreover, the adaptive controllers also exhibit less input current
overshoot than the PI controllers. Figure 3b shows that the proposed M3C adaptive control
has 64% less CCV overshoot (with a 70 V reduction) than the basic solution. Figure 3h
shows that adaptive and basic solutions ensure that the rotor speed follows the reference.
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Figure 3. Comparative simulation results under normal operation: (a) phase a input current,
(b) branch ar CCV, (c) controlled 2αβγ ACV, (d) controlled d component of the input current ampli-
tude in 2αβγ, (e) controlled intra and inter CCV imbalance in 2αβγ, (f) controlled αα component of
the circulating current in 2αβγ, (g) phase r output current, (h) PMSM angular rotor speed.

Regarding the directly controlled variables in double-αβγ coordinates, both the adap-
tive and basic solution also follow the reference. However, the adaptive solution has lower
overshoots of ACV in Figure 3c, input current amplitude in Figure 3d, intra and inter
CCV imbalance in Figure 3e, and circulating current in Figure 3f. Moreover the adaptive
proposal consumes less input and fewer circulation currents. As for the basic solution, the
adaptive one has a 5 KHz noisy input amplitude in double-αβγ.

4.3. Results under an Input Phase Imbalance

Figure 4 displays the comparative simulation results under an input phase imbalance.
This first fault considers a drop of 10% of the “a” phase voltage, starting at 3 s.
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Figure 4. Comparative simulation results under an input voltage imbalance, with a 10% voltage drop
in phase a at 3 s: (a) phase a input current, (b) branch ar CCV, (c) controlled 2αβγ ACV, (d) controlled
d component of the input current amplitude in 2αβγ, (e) controlled intra and inter CCV imbalance
in 2αβγ, (f) controlled αα component of the circulating current in 2αβγ, (g) phase r output current,
(h) PMSM angular rotor speed.

Figure 4a,g illustrate that, prior to the fault, the M3C adaptive proposal results in 25%
lower input and output current consumption, with a reduction of 5 A compared to the
basis control. The adaptive controllers also show less input current overshoot than the PI
controllers. However, during the first second after the fault, the basic solution deteriorated
while the adaptive approach recovered its better performance faster. Figure 4b shows that
the proposed M3C adaptive control has 64% less CCV overshoot (with a 70 V reduction)
than the basic solution, similar to Figure 3b. However, the basic solution deteriorated
after the fault while the adaptive approach tended to recover its performance. Figure 4h
demonstrates that both the proposal and basic M3C controllers maintain the rotor speed in
line with the reference, similar to Figure 3d. This is evident even when a fault occurs at 3 s,
as it does not affect the pumping speed response.

Regarding the variables in double-αβγ coordinates, again, the adaptive solution has
lower overshoots of ACV in Figure 3c, input current amplitude in Figure 3d, intra and inter
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CCV imbalance in Figure 3e, and circulating current in Figure 3f. Moreover, the adaptive
proposal consumes less input and circulation currents before the fault. After, the adaptive
proposal completely recovers its performance within 2 s in contrast to the basic solution.

4.4. Results under a Cluster Cell Short Circuit

Figure 5 exhibits the comparative simulation results under a cluster cell short circuit.
This fault happens in cell one of the cluster ar at 3 s.
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Figure 5. Comparative simulation results under a cluster ar short circuit at 3 s: (a) phase a input
current, (b) branch ar CCV, (c) controlled 2αβγ ACV, (d) controlled d component of the input current
amplitude in 2αβγ, (e) controlled intra and inter CCV imbalance in 2αβγ, (f) controlled αα component
of the circulating current in 2αβγ, (g) phase r output current, (h) angular rotor speed.

Figure 5a,g show that, prior to the fault, the M3C adaptive proposal results in 25%
lower input and output current consumption, with a reduction of 5 A compared to the basis
control. However, during the first two seconds after the fault, the basic solution deteriorated
and had a 70% increase in input current consumption, increasing by 35 A compared to
the adaptive approach. Figure 5b shows that the M3C adaptive control method has a 64%
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reduction in CCV overshoot compared to the basic solution, reducing 70 V. This reduction is
similar to the one shown in Figure 3b. However, the basic solution demonstrates a quicker
CCV to recovery after the fault tending toward the CCV reference of 1500 V. Figure 5h
demonstrates that both the proposal and basic M3C controllers maintain the rotor speed in
line with the reference, similar to Figures 3d and 4d. Again. this is observed even after the
fault happens at 3 s, which does not have an impact on the pumping speed’s response.

Regarding the variables in double-αβγ coordinates, a similar behavior to the one
shown in Figure 3 is obtained. The adaptive solution has lower overshoots of ACV in
Figure 5c, input current amplitude in Figure 5d, intra and inter CCV imbalance in Figure 5e,
and circulating current in Figure 5f. After the fault, the adaptive solution completely
recovers its performance within 2 s, while the basic solution does not.

4.5. Results under an Opened Cluster Cell

Figure 6 exhibits the comparative simulation results under an opened cluster cell. This
fault occurs in cell one of the cluster ar at 3 s. Figure 6 describes a similar behavior to
previously described faulty situations. However, both solutions have a lower degradation
under this fault.
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Figure 6. Comparative simulation results under a cluster ar open circuit at 3 s: (a) phase a input
current, (b) branch ar CCV, (c) controlled 2αβγ ACV, (d) controlled d component of the input current
amplitude in 2αβγ, (e) controlled intra and inter CCV imbalance in 2αβγ, (f) controlled αα component
of the circulating current in 2αβγ, (g) phase r output current, (h) PMSM angular rotor speed.

4.6. Results under Parameters Changes of the Motor–Pump Set

Figure 7 exhibits the comparative simulation results under one of the most probable
faults in the pump-PMSM set. It starts with the short of the stator winding turns, provoking
pumps’ mechanical difficulties. Specifically, there is a 0.8 times decrease in Rs, Ld, and Lq at
5 s, and a 1.5 times increase in both T0 and Kload at 7 s.

Figure 7a,g show that, before the fault, the M3C adaptive proposal behaves similarly
under a normal operation. It has 25% lower input and output current consumption, with a
reduction of 5 A compared to the basis control. However, unlike the basic solution with a
3 A increase in input current consumption, the adaptive approach kept the input current
consumption after the fault at 5 s. Compared to normal operation, there is a 4 A current
consumption increase after the load torque rise at 7 s.

Figure 7b shows that the M3C adaptive control method has a 64% reduction in CCV
overshoot compared to the basic solution, reducing 70 V. This reduction is similar to the
one shown in Figure 3b. Moreover, unlike the PI controller’s basic solution, the proposal
fully recovered its performance after the faults.

Figure 7h demonstrates that both the proposal and basic M3C controllers maintain the
rotor speed in line with the reference, similar to Figure 3d. Again, this is observed even
after the fault happens at 5 s and 7 s, which does not impact the pumping speed’s response.

Regarding the variables in double-αβγ coordinates, a similar behavior to the one
shown in Figure 3 is obtained. The adaptive solution has lower overshoots of ACV in
Figure 7c, input current amplitude in Figure 7d, intra and inter CCV imbalance in Figure 7e,
and circulating current in Figure 7f. After the faults, the adaptive solution completely
recovers its performance, while the basic solution does not.

Remark 6. The M3C is a high-power converter that operates at a lower switching frequency than
10 Hz, resulting in a higher sampling time. Moreover, our strategy synthesizes the voltage references
using PS-PWM, yielding a high-power quality even for lower frequencies [19,31]. However, the
simulation tests were conducted at higher switching frequencies of 15 kHz (sampling time of 66.6 µs)
and 20 kHz (sampling time of 50 µs) to verify the computational burden. Both basic and proposed
solutions ran correctly despite the worst scenario of a diminished sample time. Additionally, a
technique with similar computational complexity to the proposal was successfully implemented at
10 kHz in [42]. Finally, proposal implementation could be improved further after analyzing different
solver choices, simulation steps, and relative tolerance [43].
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Figure 7. Comparative simulation results under parameters changes of the motor at 5 s (there is
0.8 times decrease in Rs, Ld, and Lq), and the pump at 7 s (there is a 1.5 times increase in both T0

and Kload): (a) phase a input current, (b) branch ar CCV, (c) controlled 2αβγ ACV, (d) controlled d
component of the input current amplitude in 2αβγ, (e) controlled intra and inter CCV imbalance
in 2αβγ, (f) controlled αα component of the circulating current in 2αβγ, (g) phase r output current,
(h) PMSM angular rotor speed.

5. Conclusions

In this study, adaptive control for an M3C-based variable speed drive powering
multiple PMSM-driven centrifugal pumps was proposed. The controller design considered
this applifcation’s mathematical model, having unknown plant parameters, unknown
disturbances, and unmodeled dynamics of the cell inverters that cause delays (please see
Remark 4). As a result, the study found that the adaptive proposal offers better performance
and fault tolerance than the non-adaptive solution based on PI controllers.

The first step was to obtain the multivariable M3C state-space model for control,
which allowed for the design and implementation of novel MIMO adaptive controllers.
Notably, the paper proposed and applied a novel cascade APBC-PBMRAC to the M3C.
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Simulation results demonstrate that the proposal and basic M3C controllers ensure that the
rotor speed follows the reference, even when a fault occurs. However, the proposal has
several advantages over the basic solution:

1. It reduces the number of non-adaptive PI controllers from sixteen (16) to five (5)
MIMO adaptive controllers.

2. It is a more straightforward solution that does not require previous estimation of the
plant parameters, reducing the commissioning time.

3. The proposed adaptive control has fewer overshoots than the basic solution.
4. Additionally, it shows a more stable CCV response (less noisy), which is as expected

due to the APBC-PBMRAC design.
5. Finally, the basic solution tends to remain degraded after a fault, while the adaptive

approach tends to recover quickly from any studied fault.
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Appendix A

This section starts by describing the M3C state-space dynamical model obtained.

Appendix A.1. Inner control Loop M3C Dynamical Model

The M3C inner loop dynamical model involves the following equation, obtained after
applying Kirchhoff’s voltage law to the power system of Figure 1 ([26], Figure 2), [31] and
rearranging terms in a matrix form (for details, please see Appendix A.3):

Appendix A.1.1. x-y Voltage–Current Model ([15], Equation (9))

vin−xy = L ˙icl−xy + vcl−xy + vout−xy + vnN−xy, (A1)

where L is the coupling inductor inductance shown in Figure 1. Moreover, the instantaneous
input phase voltage vin−xy, cluster phase current icl−xy, cluster phase voltage vcl−xy, output
phase voltage vout−xy, and neutral voltage vnN−xy are defined as follows:

vin−xy =

va vb vc
va vb vc
va vb vc

, icl−xy =

iar ibr icr
ias ibs ics
iat ibt ict

, vcl−xy =

var vbr vcr
vas vbs vcs
vat vbt vct

,

vout−xy =

vr vr vr
vs vs vs
vt vt vt

, vnN−xy =

1 1 1
1 1 1
1 1 1

,

(A2)

where va, vb, vc are the instantaneous phase voltages of the power supply. The instan-
taneous phase cluster currents and voltages are iar, ibr, icr, ias, ibs, ics, iat, ibt, ict and var,
vbr, vcr, vas, vbs, vcs, vat, vbt, vct, respectively. Finally, vr, vs, vt are the instantaneous load
phase voltages.

For independent control, a double-αβγ transformation CXCT [26] is applied to (A1). It
consists of multiplying (A1) by the αβγ transform C [26] from the left and the right side,
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with matrix X representing each phase variable vin−xy, icl−xy, vcl−xy, vout−xy, and vnN−xy.
As a result, we have:

Appendix A.1.2. Double-αβγ Voltage–Current Model ([15], Equation (18))

√
3vin−2αβγ = L ˙icl−2αβγ + vcl−2αβγ +

√
3vout−2αβγ + 3vnN−2αβγ, (A3)

where the αβγ transform C [26], the input phase voltage vin−2αβγ, the cluster phase current
icl−2αβγ, the cluster phase voltage vcl−2αβγ, the output phase voltage vout−2αβγ, and the
neutral voltage vnN−2αβγ are defined as follows:

C =


√

2√
3

−
√

2
2
√

3
−
√

2
2
√

3

0
√

2
2

−
√

2
2√

3
3

√
3

3

√
3

3

, vin−2αβγ =

 0 0 0
0 0 0

vinα
vinβ

vinγ

, icl−2αβγ =

iαα iβα iγα

iαβ iββ iγβ

iαγ iβγ iγγ

,

vcl−2αβγ =

vαα vβα vγα

vαβ vββ vγβ

vαγ vβγ vγγ

, vout−2αβγ =

0 0 voutα

0 0 voutβ

0 0 voutγ

, vnN−2αβγ =

0 0 0
0 0 0
0 0 1

.

(A4)

Here, vinα
, vinβ

, vinγ
are the phase voltages of the power supply in double-αβγ coor-

dinates. The cluster phase currents and phase voltages in double-αβγ coordinates are iαα,
iβα, iγα, iαβ, iββ, iγβ, iαγ, iβγ, iγγ and vαα, vβα, vγα, vαβ, vββ, vγβ, vαγ, vβγ, vγγ, respectively.
Moreover, voutα , voutβ

, voutγ are the load phase voltages in double-αβγ coordinates.
Based on previous Equations (A3) and (A4), the obtained decoupled state-space model

for the input port, circulating currents, and output port is [31] (Figure 2), [15] (Figure 5):

Appendix A.1.3. Double-αβγ State-Space Model of Instantaneous Voltage–Current ([15],
Equations (19)–(21))

˙iin−cl = − 1
L vin−cl +

√
3

L vin, Input phase current
˙icir−cl = − 1

L vcl , Circulating phase current
˙iout−cl = − 1

L vout−cl −
√

3
L vout, Output phase current

(A5)

with the instantaneous input phase voltage vin having an input frequency ωin, and the
instantaneous output phase voltage vout having an output frequency ωout. These variables,
joining the instantaneous cluster phase currents iin−cl , icir−cl , iout−cl , and the instantaneous
cluster voltages vin−cl , vcl , vout−cl , are defined as:

iin−cl =

[
iαγ

iβγ

]
, vin =

[
vinα

vinβ

]
, vin−cl =

[
vαγ

vβγ

]
,

icir−cl =

[
iαα iβα

iαβ iββ

]
, vcl =

[
vαα vβα

vαβ vββ

]
,

iout−cl =

[
iγα

iγβ

]
, vout =

[
voutα

voutβ

]
, vout−cl =

[
vγα

vγβ

]
.

(A6)

Finally, multiplying the Park transformation P [30] from the left by the input and
output phase current equations of (A5) converts them to their dq coordinates to allow for
their amplitude control. The circulating phase current equation of (A5) remains the same
for the control of this instantaneous variable. Moreover, we consider the input cluster line
current control, related to the phase current, as ILin−cl =

√
3Iin−cl . As a result, the previous

model (A5) takes the form:
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Appendix A.1.4. Double-αβγ Voltage–Current State-Space Model

˙ILin−cl = −
√

3
L Vin−cl +

3
L Vin, Input phase current amplitude

˙icir−cl = − 1
L vcl , Circulating phase current

˙Iout−cl = − 1
L Vout−cl −

√
3

L Vout, Output phase current amplitude

(A7)

where the Park transformation P, the amplitudes of the input phase voltage Vin, output
phase voltage Vout, cluster input line current ILin−cl , cluster output phase current Iout−cl ,
and cluster phase voltages Vin−cl , Vout−cl , all in d-q coordinates, are defined as:

P =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
, ILin−cl =

[
ILin−cl_d
ILin−cl_q

]
, Vin =

[
Vin_d
Vin_q

]
,

Vin−cl =

[
Vin−cl_d
Vin−cl_q

]
, Iout−cl =

[
Iout−cl_d
Iout−cl_q

]
, Vout =

[
Vout_d
Vout_q

]
, Vout−cl =

[
Vout−cl_d
Vout−cl_q

]
,

(A8)

where ILin−cl_d and ILin−cl_q are the amplitude components of the input coordinates of the
cluster line currents. Vin_d and Vin_q are the amplitude components of the power supply
phase voltage. Vin−cl_d and Vin−cl_q are the amplitude components of the input coordinates
of the cluster phase voltages. Iout−cl_d and Iout−cl_q are the amplitude components of the
output cluster phase currents. Vout_d and Vout_q are the amplitude components of the power
supply phase voltage. Finally, Vout−cl_d and Vout−cl_q are the amplitude components of the
output cluster phase voltages. The Park transformation uses θ = θin =

∫
ωindτ for the

input signals and θ = θout =
∫

ωoutdτ for the output signals.
The following section describes the outer loop M3C dynamical model obtained.

Appendix A.2. Outer Control Loop M3C Dynamical Model

The outer loop M3C dynamical model considers the formula IC = CV̇Cijk of an ideal
capacitor instantaneous current IC, depending on the capacitance C and the capacitor
voltage variation ˙VCijk of a cell shown in Figure 1. Then, this last expression is re-expressed
to obtain the variation rate of the cluster capacitor voltage VCij = ∑3

k=1(VCijk) in terms of
the power through a cluster Pcl as ˙VCij =

1
CVC

Pcl ([26], Equation (8)). Finally, applying this
concept to the M3C, assuming that the clusters have three cells (summing their voltage
variation expressions), are balanced, and all capacitors are the same, and that the average
cluster capacitor voltage fluctuates ε(t) times around its required value V∗C , the following
matrix expression is obtained:

Appendix A.2.1. x-y Cluster Capacitor Voltage–Power State-Space Model

V̇C−xy =
1

Cε(t)V∗C
Pcl−xy. (A9)

The reference cluster capacitor voltage mean value is V∗C ≥ 1.2 ·
√

2 · (Vin_rated +
Vout_rated), where V∗C is a multiple of three (number of cells per cluster). Moreover, the in-
stantaneous cluster capacitor voltage VC−xy and cluster power Pcl−xy are defined as follows:

VC−xy =

VCar VCbr VCcr
VCas VCbs VCcs
VCat VCbt VCct

, Pcl−xy =

Par Pbr Pcr
Pas Pbs Pcs
Pat Pbt Pct

, (A10)

where the cluster capacitor instantaneous voltages are VCar, VCbr, VCcr, VCas, VCbs, VCcs, VCat,
VCbt, VCct.
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Again, for independent control, a double-αβγ transformation CXCT [26] is applied
to (A9). Thus, (A9) is multiplied by the αβγ transform C [26] from the left and the right
side, with matrix X representing the instantaneous cluster capacitor voltage VC−xy and
the cluster instantaneous power Pcl−xy (A10). Then, re-expressing the obtained result in a
state-space form, we have:

Appendix A.2.2. Double-αβγ State-Space Model of Instantaneous Voltage–Power

V̇Cavg = 1
Cε(t)V∗C

Pavg, ACV

V̇Cintra =
1

Cε(t)V∗C
Pintra, Intra-CCV imbalance

V̇Cinter =
1

Cε(t)V∗C
Pinter, Inter-CCV imbalance

(A11)

having the following variables definitions:

VCavg =VCγγ, Pavg = Pγγ,

VCintra =
[
VCαα VCαβ VCβα VCγα

]T , Pintra =
[
Pαα Pαβ Pβα Pγα

]T ,

VCinter =
[
VCαγ VCβγ VCγα VCγβ

]T , Pinter =
[
Pαγ Pβγ Pγα Pγβ

]T .

(A12)

Here, in double-αβγ coordinates vCαα, the cluster capacitor instantaneous voltages
components are vCβα, vCγα, vCαβ, vCββ, vCγβ, vCαγ, vCβγ, and vCγγ, and the instantaneous
cluster power components are Pαα, Pβα, Pγα, Pαβ, Pββ, Pγβ, Pαγ, Pβγ, and Pγγ, which are
clearly defined in ([15], Equations (26)–(33)). However, there is an issue with the intra-
CCV and inter-CCV imbalance control. Every power component could be controlled by
controlling certain components of the circulating current icir−cl (A6) except for Pγα ([15],
Equation (32)), which would be controlled by iαα as Pαγ ([15], Equation (30)). Therefore,
an extra auxiliary transformation is made after multiplying from the left the intra-CCV
imbalance equation of (A11) by the matrix CD [31] as a solution to allow for control.
Moreover, the power formulas are re-expressed as a function of the phase voltages and
phase currents as detailed in ([15], Equations (38)–(45)) separating the control terms from
the rest, which are considered as a disturbance. Finally, the state-space form for control
takes the following form:

Appendix A.2.3. Double-αβγ Voltage–Power State-Space Model

V̇Cavg =
Vavg(t)

3Cε(t)V∗C
ILin−cl_d + ∆avg(t), ACV

V̇CintraD = Vintra(t)T
√

6Cε(t)V∗C
Tr Icir1 + ∆intraCD

(t), Intra-CCV imbalance

V̇Cinter =
Vinter(t)T
√

3Cε(t)V∗C
Icir2 + ∆inter(t), Inter-CCV imbalance

(A13)

where the auxiliary transformation matrix CD [31], capacitor voltage VCintra, VCinter, VCavg,
the cluster voltage Vintra, Vinter, Vavg, the cluster current Icir1, Icir2, Iavg, and the disturbances
∆intra, ∆inter, ∆avg, are defined as follows:
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CD =
1
2


1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0

, Tr =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

,

Vavg = Vinα
, VCintraD =CDVCintra =

[
VC1α VC1β VC2α VC2β

]T ,

Vintra =
[
Vinα

Vinα
Vinα

Vinα

]T ,

Vinter =
[
−Voutα Voutα Vinα

Vinα

]T ,

Icir1 =
[
I1α1 I1β1 I2α1 I2β1

]T ,

Icir2 =
[
I1α2 I1β2 I2α2 I2β2

]T ,

∆avg = ∆γγ, ∆intraCD
=
[
∆2α ∆2β ∆1α ∆1β

]T ,

∆inter =
[
∆αγ ∆βγ ∆γα ∆γβ

]T ,

(A14)

where the disturbance terms are obtained from the power expressions ([15], Equations (38)–
(45) [26], Equations (17)–(25)), after separating the control terms components. The result gives:

∆γγ =
1
3
(Vinβ

Iinβ
)− 1

3
(Voutα Ioutα + Voutβ

Ioutβ
). (A15)

∆1α =
1
6
[(Vinα

Ioutα −Voutα Iinα
) + (Vinβ

Ioutβ
−Voutβ

Iinβ
)] +

1√
6
[(−Vinβ

I2β) + (−Voutα I2α + Voutβ
I2β)]−Vn I1α,

∆1β =
1
6
[(Vinα

Ioutβ
−Voutβ

Iinα
)− (Vinβ

Ioutα −Voutα Iinβ
)] +

1√
6
[(Vinβ

I2α) + (Voutα I2β + Voutβ
I2α)]−Vn I1β,

∆2α =
1
6
[(Vinβ

Ioutα −Voutα Iinβ
)− (Vinβ

Ioutβ
−Voutβ

Iinβ
)] +

1√
6
[(Vinβ

I1β) + (−Voutα I1α + Voutβ
I1β)]−Vn I2α,

∆2β =
1
6
[(Vinβ

Ioutβ
−Voutβ

Iinβ
) + (Vinβ

Ioutα −Voutα Iinβ
)] +

1√
6
[(−Vinβ

I1α) + (Voutα I1β + Voutβ
I1α)]−Vn I2β.

(A16)

∆αγ =
1

3
√

2
[(Vinα

Iinα
−Vinβ

Iinβ
)]− 1√

3
[Voutα(I2α) + Voutβ

(I1β + I2β)−Vn Iinα
],

∆βγ = − 1
3
√

2
[(Vinα

Iinβ
+ Vinβ

Iinα
)]− 1√

3
[Voutα(I2β) + Voutβ

(I1α − I2α)−Vn Iinβ
],

∆γα = − 1
3
√

2
[(Voutα Ioutα −Voutβ

Ioutβ
)] +

1√
3
[Vinα

(I1α) + Vinβ
(−I1β + I2β)−Vn Ioutα ],

∆γβ =
1

3
√

2
[(Voutα Ioutβ

+ Voutβ
Ioutα)] +

1√
3
[Vinα

(I1β) + Vinβ
(I1α − I2α)−Vn Ioutβ

].

(A17)

The following section details the different vector and matrix transformations made in
the previous state-space model obtained.

Appendix A.3. Vector and Matrix Transformation Details

This section details the used vector and matrix transformations, starting from the
managing feedback signals block located at the right lower side of Figure 2. First, the vector
of the cluster capacitor voltages VCij is obtained after summing the capacitor voltages
∑3

k=1(Vijk) per cell k inside each cluster as follows:
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VCijk︷ ︸︸ ︷

VCar1 VCar2 VCar3
VCbr1 VCbr2 VCbr3
VCcr1 VCcr2 VCcr3
VCas1 VCas2 VCas3
VCbs1 VCbs2 VCbs3
VCcs1 VCcs2 VCcs3
VCat1 VCat2 VCat3
VCbt1 VCbt2 VCbt3
VCct1 VCct2 VCct3


⇒

3

∑
k=1

(VCijk) =

∑3
k=1 VCijk︷ ︸︸ ︷

∑3
k=1 VCark

∑3
k=1 VCbrk

∑3
k=1 VCcrk

∑3
k=1 VCask

∑3
k=1 VCbsk

∑3
k=1 VCcsk

∑3
k=1 VCatk

∑3
k=1 VCbtk

∑3
k=1 VCctk


=

VCij︷ ︸︸ ︷

VCar
VCbr
VCcr
VCas
VCbs
VCcs
VCat
VCbt
VCct


. (A18)

Then, the following rearrangements R are made to convert vectors to the matrix form
to allow for implementation. This applies to the measurement vectors of the cluster currents
iij and the cluster capacitor voltage VCij:

iij︷ ︸︸ ︷

iar
ibr
icr
ias
ibs
ics
iat
ibt
ict


⇒ R(iij) =

ixy︷ ︸︸ ︷iar ibr icr
ias ibs ics
iat ibt ict

,

VCij︷ ︸︸ ︷

VCar
VCbr
VCcr
VCas
VCbs
VCcs
VCat
VCbt
VCct


⇒ R(VCij) =

VCxy︷ ︸︸ ︷VCar VCbr VCcr
VCas VCbs VCcs
VCat VCbt VCct

 . (A19)

The matrix X’s previously obtained results are double-αβγ transformed CXCT [26].
The right lower side of Figure 2 shows these operations, multiplying X by the αβγ transform
C [26] from the left and right sides. Following, for X = iij and X = VCij, it gives:

C︷ ︸︸ ︷
√
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2
2
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3
−
√

2
2
√
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0
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3
3

√
3

3

√
3

3

 ·
ixy︷ ︸︸ ︷iar ibr icr

ias ibs ics
iat ibt ict

 ·
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2
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2
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√
3

3
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2
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√

3
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√

2
2

√
3

3

 =

icl−2αβγ︷ ︸︸ ︷iαα iβα iγα

iαβ iββ iγβ

iαγ iβγ iγγ

, (A20)
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VCxy︷ ︸︸ ︷VCar VCbr VCcr
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√
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√
3
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2
2
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 =

VC−2αβγ︷ ︸︸ ︷VCαα VCβα VCγα

VCαβ VCββ VCγβ

VCαγ VCβγ VCγγ

 . (A21)

Moreover, there are other rearrangements R made to convert the matrix obtained
in (A20) and (A21) to their vector form to allow for implementation. The resulting vectors
are demultiplexed in managing feedback signals block of Figure 2. It delivers the cluster
instantaneous phase currents and capacitor voltages defined in (A6) and (A14) (iin−cl ,
icirc−cl , iout−cl , and VCintra, VCinter, VCavg) as follows:



Machines 2023, 11, 884 28 of 30

icl−2αβγ︷ ︸︸ ︷iαα iβα iγα

iαβ iββ iγβ

iαγ iβγ iγγ

⇒ R(icl−2αβγ) =



iαγ

iβγ

iαα

iαβ

iβα

iββ

iγα

iγβ

iγγ


,

VC−2αβγ︷ ︸︸ ︷VCαα VCβα VCγα

VCαβ VCββ VCγβ

VCαγ VCβγ VCγγ

⇒ R(VC−2αβγ) =



VCαα

VCαβ

VCβα

VCββ

VCαγ

VCβγ

VCγα

VCγα

VCγγ


. (A22)

Additionally, the cluster instantaneous capacitor voltage intra-components are multi-
plied by the matrix CD [31]:

CD︷ ︸︸ ︷
1
2


1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0


VCintra︷ ︸︸ ︷
VCαα

VCαβ

VCβα

VCββ

 =

VCintraCD︷ ︸︸ ︷
VCαα + VCββ

VCαβ −VCβα

VCαα −VCββ

VCαβ + VCβα

 =

VCintraCD︷ ︸︸ ︷
VC1α

VC1β

VC2α

VC2β

 . (A23)

The outer signals of the intra-CCV imbalance control are located at the left-center side
of Figure 2. These are multiplied by the T−1

r matrix to obtain icir1 to be summed with icir2.
The result is multiplied by the inverse matrix C−1

D to obtain the circulating current i∗cir−cl
as follows:

i∗cir1︷ ︸︸ ︷
i∗1α1
i∗1β1
i∗2α1
i∗2β1

 =

T−1
r︷ ︸︸ ︷

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


i∗cir1D︷ ︸︸ ︷
i∗2α1
i∗2β1
i∗1α1
i∗1β1

,

i∗cir1︷ ︸︸ ︷
i∗1α1
i∗1β1
i∗2α1
i∗2β1

+

i∗cir2︷ ︸︸ ︷
i∗1α2
i∗1β2
i∗2α2
i∗2β2

 =

i∗CintraCD︷ ︸︸ ︷
i∗1α
i∗1β

i∗2α
i∗2β

 , (A24)

i∗cir−cl︷ ︸︸ ︷
i∗1α + i∗2α
i∗1β + i∗2β

−i∗1β + i∗2β

i∗1α − i∗2α

 =

C−1
D︷ ︸︸ ︷

1 0 1 0
0 1 0 1
0 −1 0 1
1 0 −1 0


i∗cir−clD︷ ︸︸ ︷

i∗1α
i∗1β

i∗2α
i∗2β

 =

i∗cir−cl︷ ︸︸ ︷
i∗αα

i∗αβ

i∗βα

i∗ββ

 . (A25)

Later, the output signal of the controllers (V∗in−cl , V∗cl , V∗out−cl) is multiplexed, consid-
ering v∗γγ = 0, and the obtained vector is rearrangement R in the following matrix form:

v∗αγ

v∗βγ

v∗αα

v∗αβ

v∗βα

v∗ββ

v∗γα

v∗γβ

v∗γγ


⇒ R =

v∗cl−2αβγ︷ ︸︸ ︷v∗αα v∗βα v∗γα

v∗αβ v∗ββ v∗γβ

v∗αγ v∗βγ v∗γγ

 . (A26)

The obtained matrix X = v∗cl−2αβγ is then multiplied by the inverse αβγ transforma-

tion matrix C−1 [26] from the left and right sides, obtaining the required cluster voltage
as follows:
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√

2√
3

0
√

3
3

−
√

2
2
√

3

√
2

2

√
3

3
−
√

2
2
√

3
−
√

2
2

√
3

3

 ·
v∗cl−2αβγ︷ ︸︸ ︷v∗αα v∗βα v∗γα

v∗αβ v∗ββ v∗γβ

v∗αγ v∗βγ v∗γγ

 ·
C−1T︷ ︸︸ ︷

√
2√
3

−
√

2
2
√

3
−
√

2
2
√

3

0
√

2
2

−
√

2
2√

3
3

√
3

3

√
3

3

 =

v∗xy︷ ︸︸ ︷v∗ar v∗br v∗cr
v∗as v∗bs v∗cs
v∗at v∗bt v∗ct

 . (A27)

A final rearrangement R is made to convert the obtained matrix to the required voltage
vector form as follows:

v∗xy︷ ︸︸ ︷v∗ar v∗br v∗cr
v∗as v∗bs v∗cs
v∗at v∗bt v∗ct

⇒ R(v∗xy) =

v∗ij︷ ︸︸ ︷

v∗ar
v∗br
v∗cr
v∗as
v∗bs
v∗cs
v∗at
v∗bt
v∗ct


. (A28)
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