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Abstract: Moving on paths or trails present in natural environments makes autonomous navigation of
unmanned ground vehicles (UGV) simpler and safer. In this sense, aerial photographs provide a lot of
information of wide areas that can be employed to detect paths for UGV usage. This paper proposes
the extraction of paths from a geo-referenced satellite image centered at the current UGV position. Its
pixels are individually classified as being part of a path or not using a convolutional neural network
(CNN) which has been trained using synthetic data. Then, successive distant waypoints inside the
detected paths are generated to achieve a given goal. This processing has been successfully tested
on the Andabata mobile robot, which follows the list of waypoints in a reactive way based on a
three-dimensional (3D) light detection and ranging (LiDAR) sensor.

Keywords: unmanned ground vehicles; outdoor navigation; satellite images; neural networks; path
detection; synthetic data

1. Introduction

With more information available in the environment, path-planning methods for an
unmanned ground vehicle (UGV) can generate better results [1]. For off-road navigation,
especially in uneven terrain, it is helpful to use a digital elevation map to avoid non-
traversable zones for UGVs [2,3].

Long-range navigation of UGVs requires not only processing of onboard sensor data
but also requires taking advantage of prior environmental knowledge provided by over-
head data [4]. This is particularly convenient for less structured outdoors such as disaster
areas [5], natural terrains [6], and agricultural fields [7].

On natural terrains, it is common to find footpaths employed by persons or animals
that connect different places of interest. If present, they can be employed by UGVs to facili-
tate their movements because they usually represent the safer ways in such environments.
These trails can be followed by an UGV [8] or an unmanned aerial vehicle (UAV) [9] to
facilitate and to speed up autonomous navigation.

Images acquired from satellites provide a lot of information on wide areas that can be
employed to detect paths for UGV usage [10]. Moreover, UAVs can collaborate with UGVs
to acquire aerial photographs on site [11–13].

Semantic segmentation of aerial images represents a classic machine vision prob-
lem [14], which can be solved with supervised [15] and deep learning, mainly with convo-
lutional neural networks (CNNs) [16–19]. For urban areas, the output classes of the CNN
usually includes roads, buildings, cars, and trees [20].

Reliable CNN training requires a lot of images labelled pixel by pixel as input, which
can be available in public datasets [21,22]. Synthetic data are a relevant alternative for
training both traditional machine [23] and deep learning methods [24] because ground
truth data can be labelled automatically, which avoids tedious and error-prone manual or
assisted tagging [25].
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In this paper, it is proposed to extract paths from satellite imagery to facilitate UGV
navigation on outdoors. Its main contribution comes from the combination of the follow-
ing procedures:

• A CNN has been trained with automatically labelled synthetic data to extract possible
paths on natural terrain from a satellite image.

• Geo-referenced waypoints along the detected path from the current UGV location are
directly generated from the binarised image.

Figure 1 shows a general scheme of the proposed method. Once the satellite image
is captured from Google maps, its pixels are classified and geo-referenced. Then, a search
algorithm is used to calculate a list of distant waypoints that an UGV can follow.

Figure 1. Overview of the processing pipeline. Calculated waypoints on the detected path are
indicated with red dots.

This processing has been applied for outdoor navigation of the mobile robot Andabata,
using a three-dimensional (3D) light detection and ranging (LiDAR) sensor to follow
reactively the generated waypoints.

The rest of the paper is organized as follows. The next section describes satellite image
segmentation using a CNN which has been trained with synthetic data. Then, waypoint
generation from the binarised image is described in Section 3. Section 4 presents the
results of applying the proposed method. Finally, the paper ends with the conclusions and
the references.

2. Image Segmentation

In this section, the generation of synthetic aerial images with the robotic simulation
tool Gazebo is described first. Then, it is shown how these data can be automatically
labelled and employed for training a CNN for path detection. Finally, validation results are
presented with synthetic and real data.
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2.1. Natural Environment Modelling

Gazebo is an open-source 3D robotics simulator with integrated physics engine [26]
that allows the development of realistic models of complex environments [25]. In this way,
it has been used as a simulation environment for technological challenges [27].

The first step to model a natural environment with Gazebo is to build a
two-dimensional (2D) map that contains the variable-width paths. There is no need for
elevation maps for this purpose because it is assumed that images will be captured at
sufficient height.

The map consists of a square with 300 m side and a resolution of 27,000 × 27,000 pixels.
The terrain and path surfaces have been generated separately with the graphics software
Blender v3.3 LTS (https://www.blender.org, accessed on 20 June 2023). The terrain surface
contains gaps that exactly match the path surface (see Figure 2).

Figure 2. Terrain and path surfaces on the map represented in dark and light grey, respectively.

In addition, textures from real images have been employed to cover the terrain surface
and mimic the visual aspect of natural environments. Figure 3 shows the textures used,
which include diverse vegetation in sandy and rocky terrains. Similarly, three different
textures can cover the surface of the paths (see Figure 4).

All these textures have been composed in terrain and path patchworks with the same
square dimensions of the 2D map (see Figure 5). Then, these patchworks are stuck to their
corresponding surfaces in Gazebo.

Additionally, several trees have been incorporated directly to the virtual environment
(see Figure 6). These are the unique elements with height that can produce shadows.
The final aspect of the modelled natural environment can be observed in Figure 7.

(a) (b) (c)

(d) (e) (f)

Figure 3. Terrain textures: green high grass (a), loose sand (b), dry grass (c), dry bushes (d), rocky
terrain with grass (e) and hard sand with sparse bushes (f).

https://www.blender.org
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(a) (b) (c)

Figure 4. Path textures: reddish (a), brownish (b), and greyish (c).

(a) (b)

Figure 5. Texture patchworks for the terrain (a) and the paths (b).

Figure 6. The 3D Gazebo models of trees included in the environment.

Figure 7. Realistic model of a natural environment.

2.2. Annotated Aerial Images

A duplicate of the synthetic environment is used to obtain annotated images with its
pixels classified into the path and non-path categories in red and green colours, respectively
(see Figure 8). In the duplicate, textures have been replaced by flat colours and trees have
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been included into the non-path class. This map is very similar to the one shown in Figure 2,
but it is not exactly the same.

Figure 8. Flat colour map of the natural terrain in Gazebo.

The open-source Robot Operating System (ROS) [28] has been integrated into
Gazebo [29] to acquire aerial images of the environment and record them on bag files.
Concretely, photographs are obtained by simulating the camera provided by Gazebo with
a resolution of 480 × 480 pixels.

The camera is placed 60 m above the map on spots so that no borders appears in the
images. Two different photographs are acquired from the same location, one from the
realistic environment and the other from the two-colour version, having both images an
exact correspondence of pixels.

Figure 9 illustrates the image generation procedure with synthetic aerial photographs
that corresponds to a given camera location above the map. All in all, 567 pairs of images
(realistic and labelled) have been generated for training, and 115 pairs for validation. The
classes are unbalanced: the majority of pixels of the annotated images belongs to the
non-path class (87.7 %) and the rest (12.3 %) to the path class.

(a) (b)

Figure 9. Synthetic aerial images with realistic (a) and flat (b) colours.

2.3. The ResNet-50 CNN

A CNN is a type of neural network architecture commonly used in computer vision
tasks [30]. These networks implement in at least one of its layers a mathematical operation
called convolution that serves to extract relevant features.
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A ResNet (RESidual Neural NETwork) is the CNN chosen for path detection. It is
characterized by adding residual shortcuts through the network for gradient propagation
during training to avoid accuracy degradation [31]. The TensorFlow v2.9 library (https:
//www.tensorflow.org, accessed on 20 June 2023) [32], together with the Python interface
provided by Keras [33,34], have been employed for developing the ResNet.

Figure 10 shows the ResNet structure implemented in Keras (https://github.com/
divamgupta/image-segmentation-keras, accessed on 20 June 2023) for path detection
with 50 different layers, which includes convolutional, identity (ID), pooling, rectification
(RELU), batch normalization, flattening and fully connected blocks. The residual shortcuts
are inside the blocks of the three stages shown in Figure 10. The input and output images
of this ResNet have always a size of 480 × 480 pixels.

Resnet has been trained using 47 epochs and 10 steps per epoch. The selected CNN at
the 27 epoch achieves an overall accuracy of 0.98 and avoids overfitting both in the training
and validation data (see Figure 11).

Figure 10. The implemented ResNet-50 structure.

Figure 11. Accuracy evaluation of ResNet-50 during training and with validation data.

2.4. Validation

Four segmentation examples of synthetic images from the validation data are shown
in Figure 12, where purple and cyan colours represent the obtained non-path and path
classes, respectively.

https://www.tensorflow.org
https://www.tensorflow.org
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras


Machines 2023, 11, 807 7 of 17

(a) (b) (c) (d)

Figure 12. Semantic segmentation on four synthetic validation examples (a–d): realistic (top), labelled
(middle) and classified (bottom) images.

Table 1 contains the components of the confusion matrix for the synthetic validation
data of Figure 12 by considering negative and positive the non-path and path
classes, respectively.

Table 1. Components of the confusion matrices for synthetic and real validation data.

Component Synthetic Data Real Data

True Positive (TP) 105,141 64,608

True Negative (TN) 800,324 813,920

False Positive (FP) 2434 18,497

False Negative (FN) 13,701 24,575

The CNN has been also applied to satellite images of natural environments using
web mapping services. Satellite images are obtained through the Google maps API (https:
//developers.google.com/maps/documentation/maps-static, accessed on 20 June 2023)
using a zoom level of 19 that adjusts a square of 143 m side with 640 × 640 pixels. These
images are first rescaled to the size employed by ResNet-50 (480 × 480 pixels).

The four examples shown in Figure 13 have been manually labelled. In the first case,
it can be observed that the CNN classifies the roof of a farm and part of the sown field as a
path. In the others, there are path segments that are not detected. The components of the
confusion matrix for these real data can be found in Table 1.

https://developers.google.com/maps/documentation/maps-static
https://developers.google.com/maps/documentation/maps-static
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(a) (b) (c) (d)

Figure 13. Real (top), manually labelled (middle), and CNN-segmented (bottom) images from a
farmland (a), mountain pathway (b), forest trail (c) and urban park (d).

Performance metrics have been computed in Table 2 for both synthetic and real data,
where good classification results can be observed. Although the obtained accuracy with
real data is slightly worse than with synthetic data, the main paths remain well highlighted
in these examples.

Table 2. Validation metrics in synthetic and real data for path detection with ResNet-50.

Metric Formula Synthetic Data Real Data

Precision TP+TN
TP+TN+FP+FN 0.9824 0.9533

Recall (RE) TP
TP+FN 0.8847 0.7244

Specificity (SP) TN
TN+FP 0.9969 0.9778

Balanced Accuracy RE+SP
2 0.9408 0.8511

3. Waypoint Generation

In this section, the binarised pixels of the image are geo-referenced. Then, a search
algorithm is applied to generate an ordered list of waypoints towards a goal. Lastly,
a graphical user interface (GUI) for waypoint visualization is presented.

3.1. Pixel Geo-Referencing

Each pixel from a satellite image obtained through the Google maps API centred at
the current UGV geodetic position need to be geo-referenced. Google Maps tiles employs a
universal transverse Mercator (UTM) to assign coordinates to locations on the surface of
the Earth, ignoring their altitude.
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Binarised images are firstly rescaled to the original size (640 × 640 pixels). For a given
latitude in degrees, the meters per pixel factor can be calculated as:

Kpix =
cos(2 × π × R × latitude×π

180 )

256 × zoom
, (1)

where zoom = 19 is the selected map zoom and R = 6,378,137 m is the radius of the Earth.
Figure 14 shows the reference systems needed to assign UTM coordinates to every

pixel in the image. The centre of the image correspond to the current UGV position, with the
X and Y axes pointing to the east and to the north, respectively. Let u and v be the number
of pixels from the upper-left corner of the image in the X and Y directions, respectively.

Figure 14. Coordinate systems for the geo-referenced image.

Given the UTM coordinates of the centre of the image (north N0 and east E0 obtained
from the longitude and latitude coordinates of the UGV), it is possible to calculate the UTM
coordinate of each pixel as:

E = E0 + (u − 320)× Kpix, N = N0 + (320 − v)× Kpix, (2)

where 320 represents half of the image side.

3.2. Pixel Route

A standard A* algorithm [35] has been used to calculate a pixel route along the
detected path on the binarised image. The search is performed by connecting the pixels
that correspond to the centre of the image with the user-defined goal, assuming that both
fall inside the same path.

The output of the A* algorithm is a list of adjacent pixels. Waypoints are chosen every
70 pixels (approximately with a separation of 18 m). Finally, their corresponding UTM
positions for UGV navigation can be obtained with (2).

3.3. Developed GUI

A GUI has been programmed in order to indicate the goal of the UGV and to supervise
the whole process. The following buttons are available:

1. “Get Map” to obtain a satellite view centred on the current UGV position.
2. “Binarise” to segment the image using the trained CNN.
3. “Global Plan” to calculate waypoints to the selected goal.
4. “Toggle View” to alternate between the satellite view and the binarized one.
5. “Quit” to abandon the application.



Machines 2023, 11, 807 10 of 17

Figure 15 displays the appearance of the programmed interface. The cursor can be
employed to indicate the desired goal on the segmented image. It can be observed the UGV
location marked with a green dot and the available user buttons at the right.

Figure 15. Aspect of the developed GUI.

4. Experimental Results

In this section, the proposed method is checked on an intricate satellite image. Then, it
is tested for outdoor navigation of a mobile robot in an urban park.

4.1. Generating Waypoints

Figure 16 shows a satellite photograph where multiple paths are visible. Most of the
paths have been detected well in the segmented image, including the one where the UGV
is located.

(a) (b)

Figure 16. Satellite image with multiple visible paths (a) and segmentation result (b). The green dot
at the center indicates the UGV location.
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The pixel routes calculated by A* in opposite directions along the UGV path are shown
with red lines in Figure 17. It can be observed that they remain inside the inner part of the
curves. The chosen waypoints are indicated with red dots. These waypoints are generated
with a similar separation from the starting position with the exception of the distance
between the goal and the last waypoint that may be less.

The following times have been obtained on a computer with an Intel Core i7-9700
processor with eight cores at 3.6 GHz: 0.9 s for obtaining the image and 4 s for segmentation.
For generating the more complex and simpler pixel routes, it lasts 8.6 s and 6 s, respectively.

(a) (b)

(c) (d)

Figure 17. Waypoints generated in opposite path directions (a,c) and visualization on the satellite
image (b,d). Pixel route is indicated with a red line and waypoints with red dots.

4.2. Outdoor Navigation

The mobile robot Andabata consists of a wheeled skid-steer vehicle for outdoor
navigation (see Figure 18). This battery-operated UGV is 0.67 m long, 0.54 m wide, 0.81 m
in height, and weighs 41 kg. The local coordinate frame is placed at the centre of the wheel
contact points with the ground, with its local Xp, Yp, and Zp axes pointing forward, to the
left and upwards, respectively.

The computer of Andabata employs an inertial measurement unit (IMU), with incli-
nometers, gyroscopes, and a compass, and a global navigation satellite system (GNSS)
receiver with a horizontal resolution of 1 m included in its onboard smartphone for outdoor
localization [36]. The main exteroceptive sensor for navigation is a custom 3D LiDAR
sensor with 360° field of view built by rotating a 2D LiDAR [37].
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Figure 18. The mobile robot Andabata.

Although waypoints for the UGV are calculated in the detected paths, reactivity is still
necessary to avoid steep slopes and unexpected obstacles that are not visible on satellite
images. Local navigation between distant waypoints has been implemented on Andabata
with a previously developed actor–critic scheme, which was trained using reinforcement
and curriculum learning [36].

Basically, acquired 3D point clouds are employed to emulate a 2D traversability scan-
ner, which produces 32 virtual levelled ranges up to 10 m around the vehicle (see Figure 19).
These data, together with the heading error of the vehicle with respect to the current way-
point (pt), are employed by the actor neural network to directly produce steering speed
commands while moving at a constant longitudinal speed [36]. When the distance to the
current waypoint (dt) is less than 1 m, the next objective from the list is chosen.

Figure 19. Representation of a virtual 2D traversability scan for Andabata [36]. A nearby obstacle is
shown in grey.
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Figure 20 shows the five waypoints calculated from the binarised satellite image with
Andabata in an urban park. It can also be observed in this figure that streets and highways
above and below the park, respectively, are not detected as footpaths by the trained CNN.

(a) (b)

Figure 20. Waypoints generated on the park environment on the binarized (a) and satellite images (b).

Two navigation experiments were performed to track the generated waypoints starting
from the same position. In the first one, there were no unexpected obstacles. In the second
experiment, the UGV meets with two pedestrians at the beginning and at the end.

The paths followed by Andabata with a longitudinal speed of 0.55 m s−1, as obtained
by its GNSS receiver, are shown in Figure 21. In total, the UGV travelled 76.2 m and 78 m
during 142 s and 147 s, in the first and second cases, respectively.

Smooth heading changes and a sharp turn at the end of the first trajectory can be
observed in Figure 22. Additional heading changes are visible at the beginning and at the
end of the second trajectory. Figure 23 contains different views of the detected path from
the point of view of the mobile robot.

Figure 21. First and second paths followed by Andabata (red and blue lines, respectively) and
calculated waypoints (black circles). The initial position of the mobile robot is marked with an X.
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Figure 22. Heading of Andabata during the first and second experiments marked with red and blue
lines, respectively.

Figure 23. Park views along the tracked path from the camera of the onboard smartphone.

5. Conclusions

It is common to find footpaths on natural terrains that connect different places of
interest. These trails can be detected from aerial images and employed by UGVs to facilitate
their displacements.

The paper has presented a method for generating a list of waypoints from satellite
images for outdoor UGV navigation. The image is first binarized into two classes according
to the belonging of each pixel to a path or not using a CNN, which has been trained using
synthetic data automatically labelled with Gazebo and ROS. The binarized image is then
geo-referenced, and waypoints are calculated on the detected path between the current
UGV position and a user-defined goal.

The implemented ResNet has achieved high accuracy with synthetic data and good
results with real satellite data obtained from Google Maps tiles. Moreover, the proposed
procedure has been successfully tested on the mobile robot Andabata. For this purpose, it
was necessary to integrate waypoint tracking with reactive navigation based on its onboard
3D LiDAR to avoid steep slopes and unexpected obstacles.

Future work includes connecting together possible discontinuous segments of a de-
tected path. It is also of interest to complement satellite data with images from the UGV
camera to increase reliability in trail finding.
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2D Two-Dimensional
3D Three-Dimensional
CNN Convolutional Neural Network
FN False Negative
FP False Positive
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ID Identity
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging
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RELU REctified Linear Unit
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ROS Robot Operating System
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TN True Negative
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