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Abstract: Diesel engine failures are one reason for delays and breakdowns on the UK rail network,
resulting in significant fines and related financial penalties for a train operating company. Preventing
such failures is the ultimate goal, but forecasting or predicting future failures before they occur would
be highly desirable. In this study, we take real world Diesel Multiple Unit sensor data, recorded in
the form of event data, and repurpose it for the remote condition monitoring of critical diesel engine
operations. A methodology based on windowing of data is proposed that demonstrates the effective
processing of event data for predictive modelling. This study specifically looks at predicting engine
failures, and through this methodology, models trained on the processed data resulted in accuracies
of 88%. Explainable AI methods are then utilised to provide feature importance explanations for
the model’s performance. This information helps the end user understand specifically which sensor
data from the larger dataset is most relevant for predicting engine failures. The work presented is
useful to the railway industry, but more specifically to train operator companies who ideally want to
foresee failures before they occur to avoid significant financial costs. The methodology proposed is
applicable for the predictive maintenance of many systems, not just railway diesel engines.

Keywords: diesel multiple unit; remote condition monitoring; event data; predictive maintenance;
railway; decision trees; random forest; explainable AI

1. Introduction

Diesel Multiple Units (DMUs) are diesel powered passenger trains which consist
of a series of semi-permanently connected cars that are designed to run as a unit. Most
commonly, units are made up of between two and four cars, with at least one car containing
a diesel engine that provides tractive power (see Figure 1); units can either operate on
their own or be coupled together to form larger trains. Non-powered cars contained with
in each unit are referred to as trailer cars. Passenger trains are made up of a range of
integrated subsystems including traction and drive train, brakes, suspension and running
gear, carbody, doors, Heating Ventilation and Air Conditioning (HVAC), and Passenger
Information System [1]. For modern passenger vehicles, these subsystems are networked
to a range of sensing capabilities which enable continuous monitoring and data collection
of critical operations.

Whilst older trains are not typically equipped with sensors to continuously monitor
all subsystems there are examples of monitoring systems that can be useful for developing
predictive maintenance models on older trains; for example the fleet of mid-life DMUs
considered in this study (approximately 20 years old) are equipped with an onboard ’event
recording’ system. These systems have an event-driven architecture which is programmed
to efficiently record operational and fault diagnostics information rather than continuous
sensor data. Use of the information captured by these systems can vary, but it is typically
used to generate alarms when a component has already failed, and subsequently used for
failure diagnostics after a failure event. The information is then accessed retrospectively
when the vehicle is scheduled for maintenance action. However, if the data can be accessed
in real-time it could be feasible to predict an impending failure with sufficient response
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time to allow remedial action to be planned before the event becomes terminal. This paper
explores the opportunity to gain insight from event recording data by identifying precursor
signals and developing a model to predict failures in advance, with the diesel engine
selected as an initial example.

Figure 1. Diesel multiple unit containing 3 cars.

Valuable insights can be gained from monitoring on board train systems, not only to
understand system performance but to identify precursor signals that could be used to
predict potential future failures [2]. A robustly designed monitoring system that collects and
interprets data can hold significant benefits in maintenance support activities. Detecting
or predicting potential problems before they manifest into a breakdown or failure can
help minimise repair costs [3], prevent delays, reduce service cancellations, and avoid
fines. In extreme cases, accidents may be avoided through correct fault detection [4]. Such
knowledge can ultimately feed back into the design and implementation process, helping to
guide better product development with reduced wear and failure rates of components [2].

During routine operation a subsystem will undergo ageing and physical wear of its
components. For example, a diesel engine will incur wear on its pistons or degradation
of its engine oil. Degradation processes are primarily responsible for the majority of wear
accounted for in railway assets [3]. The precise cause of wear is often difficult to ascertain
but factors such as age, operating conditions, environmental conditions, carry load, and
traffic density are some contributing aspects [5]. This wear leads to an increased probability
of component and sub-system failure [6], but eliminating this failure can prove costly. It is
therefore common practice to undertake maintenance procedures that increase reliability,
whereby a set of technical tasks are carried out that provide some reassurance for failure
free operation.

Maintenance procedures can be classified into several types based on how the mainte-
nance actions are triggered. Corrective maintenance is a schedule that allows a component
to completely fail before it is replaced [7,8]. Preventative maintenance is based on a fixed
scheduling protocol (time or usage based), where the failure rate and age behaviour of
components is used to determine maintenance intervals [9]. These intervals tend to be fixed
and not adaptive to future changes in wear rates, this method therefore may not utilise
the entire life span of a component. Condition-based maintenance builds on preventative
maintenance, harnessing real time data to predict the lifespan of a component. For instance,
in the example of engine wear, it is feasible to obtain degradation data through sensor
technology, then employ data mining and machine learning algorithms to determine life
span and maintenance decisions [6,7,10]. Several reports in the literature discuss using
machine learning and statistical modelling to predict wear and failure [11], although work
specifically on engine failure rates is not so common, the reports discovered are briefly
discussed herein.

Engine reliability predictive models found in the literature mainly focus on time
series data, as this is the most likely source of information that would contain age and
wear related information, from which models can be built. A variety of machine learning
techniques including neural networks [12–14], and ARIMA (autoregressive integrated
moving average) [15] models have been successfully used for this purpose.

Studies have shown that a change in the power and fuel efficiency of an engine can
reflect the wear state of an engine [7,16]. Sensor readings pertaining to cylinder compression,
fuel supply angle, and vibration energy of the engine were identified as useful degradation
measurements to predict potential engine failure. Using Principal Component Analysis
(PCA) to transform these multiple parameters into one time series feature, neural networks
were then employed to predict the remaining life expectancy of the engines, based on
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the state of the selected degradation parameters [7,16]. Support vector machines (SVM)
have shown promise in engine reliability studies, in particular where limited data are
available. Using less than 100 records, SVM models were trained and shown to be good
alternatives to general regression neural networks and ARIMA models. The process of
structural risk minimisation in the functionality of SVMs makes them a good alternative
for engine reliability prediction models [17].

Oil analysis for modelling engine wear is another popular approach reported in
the literature. Oil samples taken at regular intervals during preventative maintenance
schedules were analysed for iron (Fe) and lead (Pb) content. It is suggested that these
elements come from engine kinematic parts such as bearings, spindles, pistons rings,
and cylinder walls. A correlation between the concentration of these elements and time
can provide significant insight into the degradation of these key components. Linear
regression models presented at the 95% confidence interval were used for setting the point
estimations for every instant of time. The models provided diagnostic measures for material
wear and and predicted failure occurrences through time distribution which represents
the critical limits for Fe and Pb particle concentrations. Life cycle costing, maintenance
optimisation, and in-service operation planning could also be improved from the outcome
of these models [18].

Chemical analysis of engine oil using analytical laboratories is a lengthy and expensive
process, but other reports have suggested using microscope image analysis and computer
vision models to assess engine degradation [13]. Analytical ferrography techniques are
used to identify and process wear particles found in the lubricating oil of the engines
studied. An artificial neural network with feed-forward backpropagation then predicted
outputs of interest such as form factor, convexity, aspect ratio, solidity, and roundness of
these particles which was correlated with engine wear and failure rates. Typical inputs
to these models included, engine oil temperature, engine running time, engine rpm, and
engine running hours.

Where real time analysis is required, oil sampling may not be feasible. Sampling
is an intrusive process and can involve service interruptions to collect samples prior to
processing and analysis. Instead, non-intrusive methods for analysis may be desirable.
Indirect measures, such as engine mission profiles (e.g., mileage, number of engine starts,
etc.) can reflect oil quality and could be used as a measure for wear prediction. Mission
profiles can be measured using sensors or on-vehicle computers without the need for
interruptions or costly sample extractions. Using PCA and regression models it is possible
to establish the relationship between indicators of engine mission profiles and oil quality
indicators [19]. Such models are useful tools in the predictive maintenance of engine oil
and by extension of engine degradation.

Other non-intrusive methods have used engine vibration data and exhaust temper-
ature data coupled with neural network models to accurately predict causes of engine
failures such as misfiring, cylinder leaks, shaft imbalance, and clogged intakes. The trained
neural network models were able to establish a relationship between exhaust temperature
and engine load. For example, when a cylinder in the engine is not working (misfiring)
the other cylinders become overloaded to reach the imposed load, making their tempera-
tures much higher than during error free operation. Conversely the misfiring cylinder is
much cooler [14].

In this study, we take existing data collected from various subsystems of a DMU fleet.
These subsystems provide on-board diagnostics, which continuously monitor and collect
data on critical operations. Although the data could be considered to provide condition
monitoring of systems, it has not been collected in the traditional sense of continuous logs.
Rather the data here is referred to as event based data and is described in more detail in
Section 2.1. The data is thus being repurposed for machine learning based prognostics
and for this study in particular the aim is to look at engine failure events. The primary
objective of this work is to evaluate the feasibility of using this pre-existing event data and
demonstrate a working methodology for the prognostics of not only engines but other
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critical systems too. Maintenance of units on a case by case basis is common practice, but
in this work we appropriate the behaviour observed at the unit level to draw conclusion at
the fleet level, and attempt to predict failure of comparable equipment.

The remainder of this paper includes the following sections. In Section 2, the data used
in this study is described in detail including the challenges faced with processing event
data for machine learning purposes. This section describes how the data was manipulated
to produce positive and negative failure examples for classification models. Section 3
describes the machine learning classification models used in this study and their parameter
settings. It also details the approaches to Explainable Artificial Intelligence (XAI) used
in this work. Section 4 is the results section and discusses the outcomes of the machine
learning models. Section 5, provides a discussion of the findings in the wider context of the
domain. Lastly Section 6 provides the concluding remarks of this study.

2. Materials and Methods
2.1. Data

The data used in this study have been provided by a ROlling Stock COmpany (ROSCO)
and collected from a fleet of DMU trains. The data covers a period from October 2019 to
October 2020 and comes in the form of event data. Event data are typically classified as data
collected to record a change at a point in time [20]. The severity of an event and/or how
safety critical the system is will dictate how the system records the data. The event data
is defined as a collection of data items containing at least a time-stamp and failure/event
code. Although the data is time-stamped it is defined separately to time series data. Event
data can be collected from multiple sources, sensors or devices and gathered to form a
compiled dataset. The on-board diagnostic system is an event-based monitoring system
which consists of a range of logical devices and sensors/actuators in order to collect and
transmit current faults/events and environment variables to a data logger via the multi-
function vehicle bus. Due to the wide range of vehicle systems being monitored, memory
and sensory data can be limited.

The event data of this study are considered sparse, i.e., events are not logged con-
tinuously for each sensor. Rather, many cells are empty, adding a level of complexity to
the analysis. Sparse data is not the same as missing data, although similar techniques to
handle these data are appropriate [21]. As an example of the event data used in this study, a
partial excerpt of the data is provided in Table 1. The table shows that data are not collected
continuously, but rather entries are made when specific criteria are met. These criteria are
often a threshold or when a change is detected [20].

The initial dataset contained 14,483,278 records and 379 features of mixed types. The
features within the dataset relate to all operating functions of a DMU passenger train, such
as the doors, HVAC, engine, and gearbox operations. Since the primary focus of this work
is engine failure prediction, attributes relating to the engine, gearbox, battery, or vehicle
speed were initially selected as features of interest. Additional to these features, other
attributes such as latitude, longitude, time stamp of event, carriage identification, and fault
description features were retained, resulting in 39 of the 379 features being used.

2.2. Preprocessing

To prepare the data for predictive modelling a significant amount of data cleansing
was undertaken. The primary objective of this study is to develop a methodology that
facilitates the use of event data for engine failure predictions. Event data are simply logs of
events, it does not contain positive and negative examples of engine failures, as required
for example, for classification modelling, therefore a methodology that generates this from
the data is the focus of this work. The R statistical programming language [22] and Knime
analytics platform [23] were used to mine, cleanse, and analyse all the data in this study.
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Table 1. Excerpt of the event data used in this study. Note the missing values (?) which is, inherent,
of event data.

Description Start Date End Date Engine Coolant
Temperature

Engine Coolant
Level

Engine Oil
Temperature

Departure datalog 2019-10-28T09:36:21 ? 75 ? 85
(Last) station passengerloadweigh 2019-10-28T09:36:26 2019-10-28T09:36:27 ? ? ?
WSP Spin Activity (15 s summary) 2019-10-28T09:36:52 2019-10-28T09:36:52 ? ? ?
S3—Combined Alarm Yellow 2019-10-28T09:37:05 2019-10-28T09:45:05 76 66.8 83
Departure datalog 2019-10-28T09:38:22 ? 75 ? 83
(Last) station passengerloadweigh 2019-10-28T09:39:19 2019-10-28T09:39:20 ? ? ?
Departure datalog 2019-10-28T09:39:59 ? 75 ? 84
Local Fault 2019-10-29T03:34:56 2019-10-29T03:34:56 ? ? ?
HVAC—interval error log 2019-10-29T03:36:35 ? ? ? ?
Engine power up interval log 2019-10-29T03:37:22 ? 72 65.6 77
HVAC—interval error log 2019-10-29T03:41:35 ? ? ? ?
Engine power up interval log 2019-10-29T03:42:22 2019-10-29T03:44:44 72 65.6 77
Cross Feed Active–Sender Vehicle 2019-10-29T03:44:08 2019-10-29T03:44:08 ? ? ?
S3—Engine Stopped by Transmission 2019-10-29T03:44:13 2019-10-29T03:44:14 72 65.6 77

To begin, genuine engine failures, known as ’Engine Stopped By Transmission’ (ESBT)
events, were identified. Any false ESBT events were removed from the data so that the
preprocessed data contained as little bias as possible. Information provided by the data
supplier proposed that genuine ESBT events were those that occurred during regular
operation of the DMU. False alarms were therefore stated as those ESBT events recorded
in the data that occurred (1) at the servicing depot, (2) when the train was not in motion,
or (3) when the data logger simply recorded multiple ESBT events successively with very
little or no time in between those entries.

To remove any false ESBT events that occurred in the servicing depot, a geofencing
polygon was first constructed around the servicing depot based on the WGS84 coordinate
system. The latitude and longitude coordinates in the data are used to identify any ESBT
events that fall within this geographical polygon. ESBT event alarms that occurred in the
servicing depot were triggered by testing and maintenance activities; they are therefore
classified as false alarms and so removed from the data.

To identify when the DMU was not in motion, the latitude and longitude values of an
ESBT event are compared to the entry immediately before it chronologically. The haversine
distance is calculated between the ESBT event and the entry immediately before it. If the
distance is zero, the train is deemed not to be in motion and these ESBT events are removed.
The haversine distance is a popular method used in geodesy, but since large distances
(thousands of kilometres) are not applicable, a Euclidean approximation would also be
appropriate [24], helping to reduce computational demand. Given the nature of event data
collection, it may be possible that a train in motion experiences an ESBT event but the event
is only logged after the train comes to a stop. This true positive event would effectively be
removed from the data using the haversine processing described above, however no such
occurrences were apparent from the data used in this study.

Lastly, to identify if the data logger has recorded multiple ESBT events successively,
the time difference between adjacent ESBT events is calculated. If a difference of ≤500 ms
is observed, those ESBT events are removed. Identifying and removing these false ESBT
events ensures the data are not biased prior to training, which could result in a high false
positive incidence.

While exploring the data during the preprocessing stage, it became evident that some
values recorded in the data were implausible. For example, the feature which records the
engine oil temperature would sometimes record a value of 32,767. This is unlikely to be
a true value for the engine oil temperature in degrees Celsius at any point during DMU
operation. After consultation with the data supplier it was understood that this error value
is actually the maximum value of a 16-bit signed integer (i.e., 215 − 1). The value appears
when the sensor reads beyond its capable range or is faulty and cannot record a meaningful
value. To navigate this, the data supplier provided a lookup file containing the minimum
and maximum values possible for each of the features in the data. When processing features
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in the data, a check was made, to ensure values were within the specified limits of the
accepted sensor range. Any values that fell beyond these limits were removed and replaced
with “null” prior to further processing of the data.

For classification models, it is necessary for the data to contain labels of positive and
negative examples (binary examples), prior to model training and testing. For this study,
those positive and negative examples would be ESBT and non-ESBT events, respectively;
however the raw data does not contain such labels and therefore these binary examples are
created from the raw data as described below.

2.2.1. Positive Examples

Positive examples are ESBT events that have been identified as genuine, i.e., those
ESBT events that remained in the data after the known false positives were removed, as
described above. The data contains chronological event logs of all the engines in the fleet
compiled into one large dataset. To extract data for a unique DMU engine, the “unit”
attribute in the data is utilised. Grouping data on the unit feature ensured all cars in the
unit are grouped together.

The first occurrence of an ESBT event in the data is found and the unit value associated
with it is used to filter the data on, effectively extracting all the data related to that unique
DMU engine. Every unique DMU engine in the data may therefore contain one or more gen-
uine ESBT event(s) across the entire period the data covers (October 2019 to October 2020).
Each ESBT event is then iterated over to produce positive examples as follows.

For a given unique DMU engine the first ESBT event is found and labelled T0h. From
this single data point all the data 3 h previous (T−3h) to this point are obtained. It was
hypothesised that any signal in the data which could act as a precursor to an ESBT event
would likely occur immediately prior to an ESBT event. Therefore in the first instance
an arbitrary 3 h window was chosen. Figure 2A demonstrates this graphically. An ESBT
event (blue) is shown and labelled T0h. From this point all data 3 h previous is filtered
for (labelled T−3h). This section of extracted data is referred to as a data block and is
subsequently divided into 15 min intervals (red curly braces). Note, the number of data
instance in these 15 min intervals is not uniform since the nature of event data is not to
collect in a continuous manner. Provided no other ESBT event is found between T−3h and
T0h, the mean and the standard deviation (SD) of the features contained within each 15 min
interval is calculated, resulting in 12 data instance (i.e., there are twelve 15 min intervals in
a 3 h window). If a second ESBT event is found within the 3 h window, then only 15 min
intervals between the first and second ESBT event are used to calculate the mean and
standard deviation, resulting in fewer than 12 data instances. These generated instances
containing the mean and standard deviation values of the available features are labelled as
the positive examples and considered to represent an ESBT event.

2.2.2. Negative Examples

For this study, negative examples were considered to be those sections of the data
whereby engine parameters were deemed to be under normal operation. Since positive
examples were created from data immediately prior to an ESBT event, negative examples
were therefore created from instances of data where an ESBT event is not found in the
immediate vicinity. Figure 2B graphically demonstrates the process undertaken. Data for
a unique DMU engine is extracted as described previously. Within this expanse of data
there are instances of ESBT events; however, for the majority of the data entries the engine
is considered to be working satisfactorily. A random point in the timeline of the data is
selected, labelled T0h, all the data ±3 h from this point is obtained. A check is made in this
6 h window (i.e., random point ±3 h) for any ESBT events. If an ESBT event is found, a
new random point is selected and the process repeated until no ESBT event is found in
the 6 h window. If no ESBT event is found, all the data between T−3h and T0h (the data
block) is taken and divided into 15 min intervals, and as previously described the mean and
standard deviation is calculated for each interval. For each unique unit in the dataset an
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arbitrary value of 3 was chosen as the number of iterations processed before moving onto
the next unit. These generated data instances containing the mean and standard deviation
values of the available features are labelled as the negative examples and represent no
occurrence of an ESBT event.

T0h (ESBT)

T-3h

T-1h

Data
Block15 min

intervals

A

T-2h

Random
point (T0h)

T-3h

T+3h

Data
Block

B

T-1h

15 min
intervals

T-2h

Timeline of
events

Figure 2. Three hour windowing, to produce positive (A) and negative (B) binary examples from the
event data.

2.2.3. Feature Reduction and Balanced Dataset

The data preprocessing described above (see Section 2.1), retained 39 features from the
dataset, which were available during the generation of the binary examples (positive and
negative examples). Since the positive and negative examples are generated independently,
there may be occurrences whereby the resulting available features differ between the binary
examples (this is a phenomenon analogous to the nature of the event data). To correct this,
prior to collating the binary instances together, the intersection of the available features
is taken. This process removes the disjunctive union of the features between the binary
examples. During negative example processing (see Section 2.2.2), selection of the random
point, T0h, means that the features which contain entries around that random point will
vary for each iteration. This can result in a different set of features being available for
classification per iteration and therefore must be corrected post-processing.

Due to the nature of event data and limited number of ESBT failures in the dataset,
the preprocessing described above generates many more negative examples than positive
examples. Using these instances would result in an unbalanced dataset that would bias
the training capability of the machine learning model and affect its ability to generalise. To
address this, a random sample of the negative examples which equates to the number of
available positive examples is taken. This produces a dataset that contains approximately
an equal number of positive and negative examples, which can then be used for training
and testing of classification models.

After concatenating the binary examples together, a final feature reduction step is
undertaken. A low variance filter is applied to remove features that contain constant values.
All but one of any two or more features that are highly correlated (Person’s correlation
coefficient ≥ 0.8) are removed using a linear correlation filter. An example of the correlating
features for the 3 h windowing models (−3 h to 0 h) is shown in Figure 3 as a heatmap.
These are the features available prior to removal with the linear correlation filter.
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Figure 3. Correlation heatmap of the available features during data preprocessing of the 3 h win-
dowing models (−3 h to 0 h). Highly correlating features (Person’s correlation coefficient ≥ 0.8)
are removed.

Finally, features which contained more than 50% missing entries are removed, and
data instances that contain a tuple of missing values are removed entirely. Removing
tuples may unbalance the dataset to a small extent but observations during data processing
showed this not to be of concern (see Table 2).

A workflow representation of the data preprocessing and generation of binary exam-
ples is demonstrated in Figure 4. The methodology described, uses a 3 h window (data
block) during the generation of binary examples. This 3 h window was chosen arbitrarily
during the development of the methodology but in essence any window size could be
chosen. To better understand the outcome of the machine learning models, we processed
our data using several different window sizes (data block size) as shown in Table 2.
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Table 2. Model results, reported as the mean values for accuracy and sums for True positive (TP), False positive (FP), True negative (TN), and False negative (FN)
values across 500 iterations.

Model Data Block
Size

No. of
Features

No. of
Instances

Class Split
(Pos/Neg)

Accuracy
(%)

Standard
Deviation TP FP TN FN F1-Score

DT −1 h to 0 h 15 45 23/22 0.59 0.13 2411 1650 1850 1089 0.64
RF −1 h to 0 h 15 45 23/22 0.65 0.11 2792 1406 2094 708 0.73
DT −3 h to 0 h 17 187 93/94 0.73 0.06 8805 5599 8901 5195 0.62
RF −3 h to 0 h 17 187 93/94 0.74 0.05 9443 4845 9655 4557 0.67
DT −5 h to 0 h 17 289 150/139 0.83 0.05 17,305 6219 14,739 5150 0.75
RF −5 h to 0 h 17 289 150/139 0.88 0.04 18,734 4775 16,225 3766 0.81
DT −12 h to 0 h 16 510 250/260 0.77 0.04 25,551 12,091 26,909 11,949 0.68
RF −12 h to 0 h 16 510 250/260 0.82 0.03 28,954 10,922 28,078 8546 0.75
DT −24 h to 0 h 17 1130 572/558 0.76 0.02 61,490 33,083 50,250 24,338 0.68
RF −24 h to 0 h 17 1130 572/558 0.78 0.02 66,396 26,154 57,346 19,604 0.74
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Figure 4. Flow diagram of the processing pipeline for event data, prior to machine learning model
training and testing.
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3. Classification Models

In this study, two machine learning methods were used for the classification tasks;
The C4.5 decision tree [25] and random forest [26], while both algorithms are robust to
missing values, the decision tree is a useful surrogacy model that can assist in providing
explainability for the random forest method.

The decision tree algorithm chooses attributes based on how effectively it can split the
data into their respective classes. Attributes which demonstrate the highest normalised
information gain become the split criterion at each level of the tree. C4.5 then repeats on
the smaller subset until all the data are processed. Pruning was not used during decision
tree training and the Gini index was chosen as the quality measure. Previous studies have
reported that no significant difference is observed in decision tree outcome when using the
Gini index compared to other popular methods such as Information gain [27,28].

The random forest is an ensemble method of many decision trees. An output prediction
is based on the mode of the classes of each individual tree. A subset of the training set,
known as the local set, is used to grow each individual tree, and the remaining samples are
used to estimate the goodness of fit. The local set used to grow each tree is split at each
node according to a random variable sampled independently from a subset of variables.
500 trees were chosen for the random forest models, with greater numbers showing no
improvement in prediction.

To test the robustness of the models, 500 iterations of the decision tree and random for-
est models were trained and tested. For each iteration a new random 70:30 training:testing
split was used.

Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) methods are techniques and approaches that
aim to provide explanations or justifications for the decisions made by AI models or
systems [29]. These methods play a crucial role in enhancing transparency, interpretability,
and trustworthiness in AI systems, especially in complex and black-box models. They
strive to explain how a model generates an output based on a given input.

The available XAI methods can be broadly categorised based on their functionality. For
instance, model-specific methods [30] are tailored for a specific type or class of algorithm,
whereas model-agnostic methods [31] can be applied to various machine-learning algo-
rithms. Naturally, XAI methods are particularly popular for so-called “black box” machine
learning algorithms like neural networks or random forests.

To gain insight into the outcomes of the random forest models, in this study three
different model-agnostic XAI methods are used: Skater [32], Sage [33], and Shap [31]. These
methods are particularly effective for datasets of reasonable size as they eliminate the need
for retraining separate models. However, it’s important to note that for extremely large
datasets, some of these methods may encounter computational complexities that limit
their applicability.

The aforementioned methods are classified as perturbation-based techniques since
they perturb feature values to simulate the absence of a particular feature and estimate its
contribution. The variation resulting from this perturbation affects any correlation between
the perturbed feature and the target variable; ultimately determining the influence of the
feature on the model’s predictions. Although all three methods employ perturbation, they
differ in their computational approaches, such as the number of features permuted or the
choice of loss function used to estimate the models’ performance.

These XAI methods can provide explanations at both the local and global levels.
Local explanations [34] offer insights into individual instances within the dataset, shed-
ding light on the decision-making process for specific cases. On the other hand, global
explanations [32] provide explainability for the entire dataset, giving a comprehensive
understanding of the model’s behaviour.

The Skater method employs a single feature perturbation to provide global expla-
nations. It measures feature importance by using the cross entropy/F1 score. On the
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other hand, the Sage and Shap methods compute the mean average from multiple feature
coalitions. They estimate feature importance using Shapley values [35], which are derived
from the Cooperative game theory approach. While Sage offers global explanations directly,
the Shap method combines all the local explanations to generate a global interpretation of
the model’s predictions.

For the processed data used in this study, it is desirable to have explanations that
describe the model’s overall decision behaviour. Therefore, a global explanation is sought.
This will help us understand how the features available to the random forest model
influenced its predictions. It will also provide insight into the usefulness of the features
originally selected for engine failure predictions from the unprocessed original dataset.

4. Results

Using the methodology discussed above, 500 iterations of the decision tree and random
forest models were tested. Five different data blocks of various size ranging from 1 h up to
24 h were tested. Table 2 shows the results of these models reported across the 500 iterations.
The accuracy represents the mean value of the 500 iterations, while the True positive, False
positive, True negative, and False negative values are the sums across the 500 iterations.
These model statistics have been reported in other similar studies [36] and were appropriate
for this work.

For all the data blocks tested, the available features for the models does not change
drastically, and all the models had between 15 and 17 features available during the training
process. The features available are determined by the processing of the positive and
negative examples as discussed in Section 2. As the data block size increases, so does the
number of instances in the final dataset prior to machine learning. The class imbalance
between the positive and negative examples for all the models tested does not differ by
more than 7% (−5 h to 0 h; 139/150 class split) and therefore the imbalanced dataset
problem was not of concern here.

Random forest models outperform the decision tree models, based on their accuracy
and F1 scores. This is somewhat expected since the random forest is an ensemble method
made up of many decision trees which helps reduce overfitting of the data [26]. This
becomes more pertinent when training dataset sizes are small. With respect to the data
block sizes tested, the −5 h to 0 h produces the best model results for both the decision tree
and random forest models with an accuracy of 83 and 88%, respectively. These models also
produce the highest F1 scores of 75 and 81% for the decision tree and random forest models,
respectively. The F1 score (2 × (Precision × Recall)/(Precision + Recall)) is preferable when
working with imbalanced datasets (note, the precision and recall metrics are discussed
below). This metric considers the prediction errors your model makes as well as the type of
errors that are made. Given the high scores achieved, suggests any class imbalance issues
were not present. Collectively, these results suggest the 5 h window used to extract data
from (see Section 2) contains the most signal for engine failures. A data block window
size much smaller (i.e., −1 h to 0 h or −3 h to 0 h) does not contain enough information
to discriminate between the positive and negative examples, while a window size much
larger (i.e., −12 h to 0 h or −24 h to 0 h) will contain the necessary information but it is
likely masked or diluted by the other data contained in the larger window size. The larger
window size models tested are therefore less able to discriminate between the positive and
negative examples in these cases. This provides some indication as to how far forward
engine failures can be reliably predicted.

Figure 5 plots the accuracies of the 500 iterations as boxplots for each of the different
data blocks tested in this study. From these plots, we can see the variability across the
500 iterations that were tested. The smaller data block size models (−1 h to 0 h) produce the
largest spread in terms of distribution of accuracies, suggesting that at this data processing
level, the models are highly variable. These models produced the largest standard deviation
values across the 500 iterations of 0.13 and 0.11 for decision tree and random forest models,
respectively. As the data block sizes increase (hence more data instances available for
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training and testing) the standard deviation across the 500 iterations of the models gets
smaller. With more data, the robustness of the models in terms of precision is much better.
The best-performing models (−5 h to 0 h) have standard deviations of 0.05 and 0.04 for the
decision tree and random forest models, respectively.

−1hr to 0hr −3hr to 0hr −5hr to 0hr −12hr to 0hr −24hr to 0hr

DT RF DT RF DT RF DT RF DT RF

0.00

0.25

0.50
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Figure 5. Boxplot showing the distribution of accuracies for all 500 iterations for all models tested.

The True positive, False Positive, True Negative, and False Negative columns of
Table 2 show the confusion matrix of the models, summed across the 500 iterations. From
this information we are able to calculate the precision and recall values of the models.
These measures help evaluate the performance of a classification model. The precision
(True positive/(True positive + False positive)) establishes what proportion of the positive
predictions are actually correct, i.e., what proportion of engine failures were accurately
predicted. The recall (True positive/(True positive + False negative)) measures the pro-
portion of actual positives that were predicted correctly [37,38]. Again, the −5 h to 0 h
models produce the best precision and recall values of all the models. The decision tree
models resulted in a precision value of 0.74 and a recall value of 0.77. The random forest
models produced a precision value of 0.80 and a recall value of 0.83. High precision and
recall values are desirable [38] although there may be a trade-off between the two measures.
Although the methodology described in this work involves balancing the dataset with posi-
tive and negative examples, in reality there are far fewer positive examples than negative
ones. The ability of a classifier to discriminate the positive examples is important and a
strong precision value is indicative of that. Precision and recall values for the other models
were also encouraging and demonstrate the strong predictive performance of the classifiers
(values not reported).

To better understand how the decision tree models made their choices the tree data
across all 500 iterations was extracted for the best performing model (−5 h to 0 h). Features
used at the split criterion for each node of every decision tree was extracted. A frequency
count of the features used was turned into a percentage value. Figure 6 plots this data
graphically as a bar chart. The −5 h to 0 h models had 17 features available for the
training process of the decision tree models (see Table 2). Of those 17 features only 16
were actively used (see Figure 6). Three of the features were used by the models 10% or
more times of the total usage. These features were related to the coolant level of the engine
(coolant_level_at_stop (Mean) and eng_coolant_temperature (Mean)) and the oil pressure
of the engine (eng_engine_oil_pressure (S.D)). The remaining 13 features were used across
the 500 iterations a total of less than 10% of the time. This information provides some
insight into the features that are actively used by the decision tree models to base their
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decisions on. A frequency count of the features used shows how often the decision tree
relies on those features at each split criterion in the decision tree, providing some insight
into the usefulness of the features.
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Figure 6. Percentage frequency of features used by the −5 h to 0 h decision tree models
(across 500 iterations).

To provide some element of explainability for the random forest models, three different
XAI methods were tested on the best performing models (−5 h to 0 h). Random forest
models trained and tested on data from the −5 h to 0 h data block window were run
alongside each XAI method. Figure 7 plots the magnitude values calculated by each
of these methods for each of the features available to the random forest model. As
with the decision tree models, the random forest models only used 16 of the 17 features
available to them. The significance of these features on the model’s predictive power is
given by the magnitude calculated by the Skater, Sage, and Shap methods (see Figure 7).
The greater the magnitude the greater the effect of that feature on the model’s outcome.
Although the different XAI methods produce slightly different results, due to the way
they calculate feature importance, there are some commonalities, which are useful for
explaining the random forest models’ decisions. For instance, when considering the
top five features with the greatest magnitudes for each of the XAI methods, we find
that three of the features are common between them; “coolant_level_at_stop (Mean)”,
“eng_charge_air_temperature (Mean)”, and “eng_coolant_temperature (Mean)”. Two
of these three features (“coolant_level_at_stop (Mean)” and “eng_coolant_temperature
(Mean)”) were also used 10% or more times by the decision tree models. The XAI methods
also demonstrate which features are least important in the model’s predictive outcome. For
all the XAI methods used, the same three features appear as the least important features and
in the same order. These are; eng_charge_air_temperature (S.D), “eng_s3b_fan_demand
(Mean)”, and “eng_s3b_fan_demand (S.D)”.

The outcome of the Shap XAI analysis can be further examined by means of a Shap
summary plot as shown in Figure 8 below. The Shap summary plot shows the features
available to the random forest model on the y-axis and lists them in order of importance.
The Shap value assigned to each instance in the test set are represented by the x-axis and the
gradient colour represents the original value for that feature. Note, that each feature in the
data was of a continuous numerical type. Each point on the plot represents an instance of
the test set. The feature which resulted in the largest magnitude using the Shap XAI method
(see Figure 7) was the “eng_s3b_engine_oil_level (Mean)”. The Shap summary plot shows
this feature at the top of the plot, also indicating it to be the most important. It additionally
shows instances of this feature which have a “high” value, predominantly prompts the
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random forest model towards a positive (ESBT) prediction, which is reflected by the positive
Shap value. Similarly, for the same feature, a “low” value, predominantly prompts the
random forest model towards a negative outcome (non EBT), which is reflected by a
negative Shap value. Likewise the feature “eng_engine_oil_pressure (Mean)” is the eighth
most important feature, but shows that a “low” value for this feature generally results in
positive Shap value which prompts the random forest towards a positive prediction (ESBT)
and conversely a “high” value for this feature generally results in a negative Shap value
which prompts the random forest towards a negative prediction (non-ESBT).
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Figure 7. Feature importance magnitudes produced by the Skater, Sage, and Shap explainable AI
(XAI) methods.
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Figure 8. Shap summary plot produced from the best performing random forest models (−5 h to 0 h).
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5. Discussion

In this study, a methodology capable of processing sparse event data for classification
modelling is proposed. Large volumes of real-world sensor data taken from a fleet of
diesel multiple units are processed to demonstrate how highly predictive machine learning
models can be trained. The best models resulted in high predictive accuracies of 83%
and 88% for decision trees and random forests, respectively, suggesting the windowing
method of processing the event data is a pragmatic choice. The proposed method takes
unclassified event data and produces classified examples that are used for machine learning
classification tasks. The event data used in this work was time-stamped, and therefore
various data block sizes could be processed as discussed in Section 2.

Processing the data using various data block window sizes helped identify the optimal
window size that produced the most accurate models. As the data block window became
larger from 1 h (−1 h to 0 h) up to 5 h (−5 h to 0 h) the accuracy of the models improved,
suggesting the strongest signal for engine failure in the data appears to be contained within
a 5 h window of the actual ESBT event. For this work specifically, the −5 h to 0 h data block
window repeatedly produced well-trained accurate models (across 500 iterations). Smaller
window sizes produced less accurate models, most likely due to the limited data available
to train the models. Other studies in the literature, however, have successfully used low
data volumes for predictive maintenance tasks [17]. Model accuracies were most variable
at the −1 h to 0 h data block size, and improved as the data block sizes became larger. Once
the data block window exceeded the 5 h size, a drop in the accuracies was observed (see
Figure 5 and Table 2).

The initial data curation of this study involved the manual selection of features deemed
relevant to engine failures (see Section 2). A total of 39 features were selected which
were further reduced through subsequent processing steps. The best performing mod-
els (−5 h to 0 h) had 17 features available during model training. Understanding which
features are important for a model’s decisions provides some useful insight into which
features are relevant for predicting engine failures. The resulting tree structures for the best
performing decision tree models (−5 h to 0 h) were analysed. Features relating to coolant
level, oil pressure and coolant temperature (see Figure 6) were frequently used across the
500 iterations of the decision trees. Similarly, three different XAI methods showed that
the random forest models heavily relied on features pertaining to coolant level, coolant
temperature, and engine air temperature as prominent features of importance, while XAI
methods are useful, they can produce a slight difference in results as shown in this study
(see Figure 7). Studies have attempted to consolidate the outputs of various XAI methods
with varying degrees of success [39]. Furthermore, for the Shap XAI method, the influence
each value of a feature has towards a positive or negative prediction can be visualised
using the Shap summary plot (see Figure 8). Such information helps provide explainability
behind a model’s performance.

The authors understand potential caveats in the work pipeline may exist and are
discussed herein. The dataset used in this study spanned the period of 1 year (October 2019
to October 2020). Although the volume of data was considerable (approx 14 M records),
the number of ESBT events in the dataset is infrequent. To circumvent issues of bias data
the methodology proposed equating the ESTB events (positive examples) with non-ESTB
events (negative examples). This ensured the data are not massively imbalanced prior to
model training. In practice, live data would likely be imbalanced and is a consideration
to take into account if deploying these models. A suggested solution could be to train the
models on a balanced dataset, ideally on more than 1 years worth of data, before deploying
into the real world. Using collected data that covers a longer period, means the models can
be trained with more certainty.

Since the event data was time-based, larger window (data block) sizes produced more
data to train and test the models on. For this study, the largest window size went as far
back as 24 h (−24 h to 0 h models), but all the data block sizes tested, had their end point
at the ESBT event (0 h). This was a constraint of the study due to the nature of the data
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that was used. In an ideal situation, the data block window that is processed should be a
window as far back on the timeline from the ESBT event as possible. For instance, if the
ESBT event is denoted T0h on the time line (i.e., 0 h) then an ideal 3 h data block window
could be taken from T−12h to T−9h. This can be interpreted as a data block window of 3 h in
size, taken from the event data time line, between 12 h and 9 h prior to an ESBT event. This
would be the preferred way to process the data and will be explored in our future work.
The limitation of the work in this study utilises data of different window sizes immediately
prior to the ESBT event. Additionally, to gain maximum benefit from a predictive tool it
would be useful to have a longer warning period for a potential engine failure. Future
work will also consider how far in advance it is possible to predict a likely engine failure
based on this type of event based data.

This study chose to focus on features thought to affect engine failure, these were
features related to the engine, gearbox, battery and vehicle speed. In essence there may
be other features in the dataset that could be useful but were removed at the processing
stage (see Section 2.1). These features could be explored as part of the processing and may
enhance the findings of this study.

The data sample size used in this study covered a period of one year. To corroborate the
models usefulness, it would be beneficial to use additional data as an external validation set.
This is a common practice in the domain of machine learning, but for this study additional
data was not available. It may have been possible to partition the data that was available
prior to any processing and hold back a sample as the external validation set. However,
this approach was not explored since the occurrences of ESBT events in the data are few.
Using all the data, therefore, ensured the models learned from as many diverse examples
as possible.

6. Conclusions

To summarise, this study successfully develops a methodology for the predictive
maintenance of diesel multiple unit engine failures. Detecting potential issues before they
manifest into failures helps minimise delays and service cancellations, while avoiding
major financial costs.

Using remote condition monitoring as a means of preventative maintenance is gaining
popularity and is common across industry 4.0 [40] and concepts of smart maintenance.
There is an increasing trend in the rail industry to collect larger and larger volumes of
data about asset condition. The challenge now is to turn that data into useful, actionable
information. The work presented in this study explores the opportunity to extract useful
information and gain insight from data that is already being collected on mid-life vehicles.
The methodology developed in this work is not restricted to engine failures and can readily
be adapted to other system failures.
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