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Abstract: Fault prediction is a vital task to decrease the costs of equipment maintenance and repair, as
well as to improve the quality level of products and production efficiency. Steel plates fault prediction
is a significant materials science problem that contributes to avoiding the progress of abnormal
events. The goal of this study is to precisely classify the surface defects in stainless steel plates during
industrial production. In this paper, a new machine learning approach, entitled logistic model tree
(LMT) forest, is proposed since the ensemble of classifiers generally perform better than a single
classifier. The proposed method uses the edited nearest neighbor (ENN) technique since the target
class distribution in fault prediction problems reveals an imbalanced dataset and the dataset may
contain noise. In the experiment that was conducted on a real-world dataset, the LMT forest method
demonstrated its superiority over the random forest method in terms of accuracy. Additionally,
the presented method achieved higher accuracy (86.655%) than the state-of-the-art methods on the
same dataset.

Keywords: fault prediction; machine learning; logistic model tree; classification; artificial intelligence;
steel plates

1. Introduction

A fault is defined as an unexpected, abnormal, and undesirable situation, behavior,
or imperfection at the equipment, component, or sub-system level which may cause a
failure. Faults influence the wear and corrosion resistance of the product, reduce the
production quality, and produce non-usable materials in the worst case. Such a physical
malfunction can lead to unavoidable crashes and stop the system from working properly.
Fault prediction is the process of identifying fault-prone components related to specific
domains based on predictive analytics. In other words, it predicts different deviations in
materials from their expected or normal states. Determining fault types in an effective
way can reduce unexpected waste, maintenance, repair, or replacement costs, as well as
improve the quality level of products and production efficiency. Fault prediction leads
to extend equipment lifetime and asset utilization in various industrial environments.
Moreover, it avoids long-term decline in total profits of the related system and also the
outflow of customer confidence. The higher level of quality a product requires, the better
fault prediction technique the industries should develop. In this context, intelligent systems,
derived from research on machine learning, have been established to handle this issue
correctly and quickly.

The steel industry has been shown to be one of the primary industries that requires
fault prediction to produce materials in the most meticulous way. From making machines
to beautiful artworks, steel plates are commonly used in a diverse range of applications,
namely in industrial machinery, building construction, automobile chassis construction,
bridge structures, and shipbuilding. Having such widespread applications, high-accuracy
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control of steel plate surfaces is important for meeting strict quality requirements. How-
ever, the difficulty of flat steel sheet manufacturing has always been considered in the
industry because of the deformation tendency which is often caused by the steel surface
coming in contact with different machines in manufacturing steps such as casting, drawing,
pressing, cutting, and folding. Consequently, this study aims to recognize the types of
defects that steel plates have. One of the traditional ways is the manual inspection of steel
plates by human experts to detect defects. However, this practice is very time-consuming,
inaccurate, and costly, which needs considerably more human effort and overlooked in-
vestigation. Therefore, automation of fault prediction is necessary to reduce costs and
minimize the time needed for monitoring. Here, machine learning plays an important role
by analyzing past data to find hidden patterns and then construct models to predict the
faults. Machine learning-based fault prediction methods contribute to facilitating precau-
tionary maintenance and avoiding quality problems of the materials by more accurate and
efficient decisions.

Machine learning (ML) draws inferences to predict future outcomes by finding patterns
from historic data. It provides computers with the ability to learn by utilizing different
algorithms and makes predictive models for artificial intelligent-enabled systems. As one
of the ML methods, the logistic model tree (LMT) [1] is a decision tree-based model, which
fits the logistic regression learning algorithm. The competitive advantages of LMT are the
efficient construction and the simplicity of its interpretation. LMT builds a single compact
tree by means of effective pruning mechanisms. In addition, the key features of the LMT
algorithm include working with numeric and binary values, nominal qualities, numeric
variables, and missing data, which all provide it with the information to achieve the best
result in many studies [2–7].

Although LMT usually provides high classification performance and strong gener-
alization ability [8–19], building a single tree classifier may not be enough and may lead
to less accurate predictions. On the other hand, in ensemble learning, the weakness of a
classifier can be overcome by the strengths of other classifiers. Although several classifiers
in the ensemble produce incorrect outputs, other classifiers may have the ability to correct
those errors. Therefore, in the current study, we present a novel ensemble method that
builds many LMT trees and combines them together to make a final prediction.

The main problem faced by researchers when doing steel fault prediction with ma-
chine learning is the imbalanced and noisy data. In practice, the distribution of fault
types is usually imbalanced, which means that the number of observations of a class is
extremely high when compared to another class in a dataset. Imbalanced data makes the
machine learning model seriously biased toward the majority class, thereby degrading
the performance of it on the minority class. In this study, our method provides a way to
prevent class imbalance and eliminate noise samples by using the edited nearest neighbor
(ENN) technique.

The novelty and main contributions of this study are summarized below:

(i) This article proposes a new ensemble technique, entitled the logistic model tree forest
(LMT forest).

(ii) Our work is original in the literature since it contributes to building decision trees
based on the LMT method to construct a forest for steel plate fault prediction.

(iii) The study is also original in that it applies the edited nearest neighbor under-sampling
approach to the dataset before detecting steel plate faults.

(iv) In the experiments, the proposed LMT forest method with an accuracy of 86.655% out-
performed the random forest method with an accuracy of 79.547% on the
same dataset.

(v) Our method achieved higher classification accuracy than the state-of-the-art meth-
ods [20–32] on the same steel plate fault dataset and demonstrated its superiority over
its counterparts.

The rest of the current paper is arranged as follows. The related works are explained
in Section 2. The proposed LMT forest method is described in detail in Section 3. The
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experiment results are provided in Section 4. Finally, the study is condensed and some
future works are suggested in Section 5.

2. Related Works

In the literature, common mechanical components that have been considered in fault
prediction systems include the bearing [33], gearbox [34], belt-pulley [35], shaft [36], and
induction motors [37] (i.e., stator and rotor). Moreover, surface defect prediction from
different aspects, i.e., texture, color, and shape features, is possible in industrial products
based on machine learning techniques [38]. Fault prediction is applied in different areas
such as manufacturing [39–41], health [42], transportation [43], seismology [44], power
systems [45], telecommunication networks [46], chemistry [47], electrical machines [48,49],
energy [50], and environmental work [51]. In this study, fault prediction is applied to
the manufacturing process, in which the accurate investigation of products is essentially
considered to reduce processing cost and time, and improve product design and quality.

2.1. Machine Learning-Based Fault Prediction

Machine learning-based fault prediction has been investigated with real-time mon-
itoring in manufacturing environments. In [52], random forest (RF) classification was
employed for the prediction of input data issues, and the NoSQL MongoDB as a big data
technique was applied to the collected environmental dataset from the Internet of Things
(IoT) sensors in an automotive manufacturing production line. Moreover, blockchain
technology was utilized for covering system security. In another work [53], the utilization
of machine learning models in the battery management system of a lithium-ion battery
for the prediction of faults in the remaining useful life (RUL), charge state, and health
state were presented by means of a neural network (NN) with a support vector machine
(SVM), genetic algorithm back propagation neural network (GA-BPNN), RF, Gaussian
process regression (GPR), logistic regression (LR), and long short-term memory recurrent
neural network (LSTM-RNN). In another study [54], the authors focused on a bearing fault
prediction method for electric motors by applying a medium Gaussian support vector
machine (MG-SVM) on a motor bearing dataset.

The application of deep learning methods to predict faults has been investigated
in various studies [55–58]. In [55], a fault prediction workflow by deep learning for
seismic data was developed, in which convolutional neural networks (CNNs) for image
recognition, U-Net architecture for image segmentation, random forest for identifying
the most important attributes, and GANs-based reconstruction approach for clarifying
fault locations were used on the seismic data. As a result, the highest importance for the
“discontinuity along dip” feature among seismic attributes was specified, and the prediction
accuracy of fault probability maps was improved. Similarly, in another work [56], the
authors proposed a structure-based data augmentation framework to boost the variety
of the semi-real-semi-synthetic seismic dataset collected from various work areas in the
Tarim Basin of China for improving fault prediction and identification on the basis of deep
neural networks and U-Net, respectively. In another work [57], fault prediction and cause
identification approaches based on deep learning in complex industrial processes were
reported. The authors utilized deep learning to predict the fault events, long short-term
memory (LSTM) to adapt to the branch structures, and an attention mechanism algorithm
for fault detection and cause identification on the sensor-based data in a production line
considering various fault types. Yang and Kim [58] detected recurrent and accumulative
fault situations and calculated the anomaly scores in the data by using the LSTM method.

Fault prediction in wind turbines has been investigated in previous studies [59,60]
since it is a critical issue for maintaining the reliability and safety of energy systems.
In [59], a novel solution for predictive maintenance in the generator of wind turbines
was developed by means of supervisory control and data acquisition (SCADA) systems to
control the state of operations in generators. Principal component analysis (PCA), SVM, NN,
K-nearest neighbors (KNN), and naive Bayes (NB) classifiers were used to discriminate
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the various statuses of wind turbine generators. The synthetic minority oversampling
technique (SMOTE) technique was applied to manage the imbalanced dataset for the wind
power plants consisting of numerous wind turbines located in China. Low deployment
costs were considered in the presented work by diagnosing the specific type of generator
faults with high accuracies. In another study [60], the authors focused on a stacking
gearbox fault prediction model for wind turbines on the basis of the SCADA data for wind
turbines in a wind farm. The applied main techniques were recursive feature elimination
(RFE) for selecting appropriate features, and RF, extreme gradient boosting (XGBoost), and
gradient boosting decision tree (GBDT) for describing the usual circumstances of the wind
turbines. The results revealed that RF, GBDT, and XGBoost approaches outperformed KNN,
SVM, decision tree (DT), and AdaBoost according to the high R2 scores, and the low mean
absolute error (MAE) and root mean square error (RMSE) metrics for various turbine types.

Wan et al. [61] presented a model based on the Dempster–Shafer (DS) evidence theory
and a quantum particle swarm optimization back-propagation (QPSO-BP) neural network
for the prediction of rolling bearing faults types under different operation conditions. They
found the optimal initial weights and thresholds of the neural network. The authors used
a rolling bearing dataset and achieved high-performance accuracy with the presented
method in comparison to SVM-DS, DT-DS, RF-DS, KNN-DS, and K-means-DS regarding
the macro area under curve (AUC) metric.

Yang and Li [62] developed a fault prediction method for wind energy conversion
systems to improve the performance of the fault prediction model, shorten the time of
fault prediction, and reduce the deviation between the actual fault value and the fault
prediction value. The outperformance of the presented method was proved based on the
kurtosis factor in comparison with the revealed results for fault prediction in different wind
energy conversion systems. In the other work [63], the performances of various machine
learning approaches were reported for forecasting heating appliance failures with the aim
of predictive maintenance. In the mentioned work, the necessary data were collected from
installed sensors of boiler appliances in homes. The results indicated that the LSTM models
achieved higher accuracy than DT, NN, and weighted NN models based on different
metrics for no fault, light fault, and severe fault states. In the other study [64], a smart
machinery monitoring system based on machine learning was implemented to simulate
the operating state of machinery for fault detection with a reduced volume of transmission
information in an industrial IoT. The obtained accuracy from the non-linear SVM algorithm
was higher than the results of the NB, RF, DT, KNN, and AdaBoost algorithms.

Syafrudin et al. [65] introduced a hybrid prediction model which includes a real-time
monitoring system for automotive manufacturing on the basis of IoT sensors and big
data processing. Various approaches, namely Apache Storm as a real-time processing
engine, Apache Kafka as a message queue, MongoDB for storage of the sensor data,
density-based spatial clustering of applications with noise (DBSCAN) for outlier detection,
and RF classification for removing outliers were used in the mentioned study. In the
other study [66], a fault prediction method was proposed to accelerate the speed of alarm
processing and to improve the accuracy in the energy management system of microgrids
via online monitoring, failure prejudging, and optimized SVM analysis. Early warning time
and the high success rate of the proposed method were the consequences of their study.
In another work [67], fault prediction of the in-orbit spacecraft was investigated based on
deep machine learning and the massive telemetry and fault data. The algorithms such
as least squares support vector regression (LS-SVR), auto-regressive integrated moving
average (ARIMA), and Wavelet NN were utilized to determine the best model regarding
normalized mean square error (NMSE).

Haneef and Venkataraman [68] employed LSTM, RNN, and a computation memory
and power (CRP) rule-based network policy for predicting fog device faults. They collected
related data by running the Internet of Things applications on different fog nodes. Their
proposed method outperformed the traditional LSTM, SVM, and LR methods in terms
of improved accuracy, lower processing time, minimal delay, and faster fault prediction
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rates. In the other work [69], the authors developed a machine learning-enabled method
for fault prediction in centrifugal pumps in the gas and oil industry through multi-layer
perceptron (MLP) and SVM techniques. They gathered the related data from the process
and equipment sensors of centrifugal pumps to generate fault prediction alerts properly in
decision support systems for operatives. In another study [70], the authors reported a fault
prediction model with the aim of real-time tracking of sensor data in an IoT-enabled cloud
environment for a hospital by machine learning. They applied the DT, KNN, NB, and RF
techniques for controlling unanticipated losses produced by different faults. In another
work [71], a real-time fault prediction recommendation model was developed by machine
learning for a sensor-based smart office environment by means of a fault dataset retrieved
from the sensors of office appliances. In their study, KNN, DT, NB, and RF were compared,
and as a result, the RF algorithm revealed the highest accuracy against the others.

2.2. Steel Plate Fault Prediction

In this study, we focused on steel plate fault prediction, which is an active field of
research in the science of metals because of its contribution to conquering the challenges
faced in industrial manufacturing. Here, fault prediction can aid in quickly determining
defects in products and then avoiding the probable costs. The process of detecting faults
can be conducted by human experts, which is not obviously suggested in the current
era of Industry 4.0. Such a time-consuming process may lead to imprecise decisions in
material production. On the other hand, the other way is the utilization of specific types of
machinery instead of human resources to capture faults in steel plates. If these faults are
not predicted early in the manufacturing process, undesired effects, namely product failure
and non-available materials, are highly probable. Therefore, it is essential to obtain hidden
patterns in related data and consequently make an accurate prediction for steel plate faults.
To achieve this objective, different machine learning techniques have been used in previ-
ous works, including support vector machines [20,25,29,30], neural networks [25,28,29],
decision trees [20,21,24,26], naive Bayes [24,27], K-nearest neighbors [24,26,27], random
forest [21,25,26,30,31], and AdaBoost [26,31,32]. In addition, deep learning approaches
have been utilized, including long short-term memory [21] and convolutional neural net-
works [72]. Different from these previous studies, a logistic-model-tree-based solution is
proposed in this paper.

2.3. The Application of the LMT Algorithm

LMT is a classification algorithm in the machine learning field that uses decision
tree and logistic regression approaches to build a classifier as a special tree by taking
advantage of both tree and regression concepts. In other words, it builds a tree with a
logistic regression model at the nodes. LMT has been considered as an effective alternative
for decision tree-enabled machine learning algorithms. The major benefits of LMT include
working with numeric and binary values, nominal qualities, numeric variables, and missing
data. In addition, LMT avoids data overfitting as a result of regression and classification
techniques. Despite the advantages of LMT, building a single tree classifier may not be
enough and may lead to less accuracy in the prediction. Therefore, in the current work, we
present an ensemble method, the logistic model tree forest, which builds many LMT trees
and combines them together to make a final prediction.

LMT has been applied in various fields such as health [5,6,14,15,17,18], forensic sci-
ence [19], environmental work [7], earthquake [3,8], agriculture [13], and transportation [16].
For example, in [11], flash flood susceptibility maps were analyzed by the use of different
machine learning algorithms, including LMT, multinomial NB, radial basis function classi-
fier (RBFC), and kernel LR for solving the flood problem in Vietnam. The dataset consisted
of flash flood features such as river density, land use, flow direction, and so on. The validity
of the methods was measured regarding AUC and the best performance achieved by the
LMT algorithm among the others. Their work was suggested for flash flood management
by relying on the high accuracy of the model to specify flood-susceptible fields.
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LMT was regarded as the best method among their counterparts in many
studies [2–19,73,74]. For example, in [9], a susceptible landslide detection model in the
Cameron highlands of Malaysia was reported, in which RF, LR, and LTM algorithms were
applied to various databases such as soil maps, digital elevation models, geological maps,
and satellite imagery. The results revealed the superiority of LMT over LR and RF based
on the AUC metric. In the other study [10], the authors constructed a trustworthy map
of shallow landslide susceptibility for Bijar City in Iran by different machine learning
algorithms, including LR, LMT, NB, SVM, and NN. The reliability of the models was tested
according to various metrics (i.e., MAE, RMSE). The outperformance of LMT was proved
in comparison with other mentioned algorithms. Thus, the authors recommended the
utilization of LMT in shallow landslide phenomena to reduce the related damages.

The LMT algorithm has been used in various studies to suggest solutions for machine
learning-based problems due to its high accuracy in terms of different evaluation metrics.
For example, in [13], the biochemical features of oil palm plants were monitored by using
the spectroradiometer, machine learning, SMOTE, and unmanned aerial vehicle (UAV)
techniques. In addition, three types of imbalanced datasets (leaf-raw band, canopy-VI, and
canopy-raw band) were utilized to analyze nutrients in plants optimally and ensure their
health and harvest. The outperformance of the LMT-SMOTEBoost was reported among
alternative ones. In another work [14], LMT was applied to the medical field to predict
miRNA-disease association (LMTRDA) by combining various information such as miRNA
functional similarity, miRNA sequences, disease semantic similarity, and known miRNA-
disease associations. Their model achieved a high accuracy regarding both sensitivity and
AUC metrics on the dataset.

Edited nearest neighbor (ENN) is a useful under-sampling technique focusing on
eliminating noise samples [75]. It aims the selection of a subset of data instances from the
training examples that belong to the majority class to make the classifier more robust and
improve computational efficiency [76]. The previous studies [77,78] showed that the ENN
method allowed for achieving an improvement in the classification performance in terms
of accuracy.

Our study is different from the previous works in several aspects. First, it proposes a
novel method, named LMT forest, for steel plate fault prediction. Second, it applies the
edited nearest neighbor (ENN) under-sampling technique to the dataset before detecting
steel plate faults to improve accuracy. Third, it contributes to representing a higher accuracy
than random forest and other state-of-the-art approaches on the same dataset.

3. Material and Methods
3.1. The Proposed Model Architecture

The main aim of the current study is to propose a machine learning-based fault
prediction model for steel plates. Figure 1 illustrates the architecture of this model. The
data about steel plates such as areas, edges, perimeters, and thickness are recorded by
utilizing a data acquisition system (DAS). DAS has the ability to observe data through
various processes, e.g., laboratory experiments, workstation operations, human–machine
interactions, maintenance treatments, fault diagnosis, and sensor signals. Afterward, the
collected raw data are stored in a data storage system and ready to be preprocessed for
formatting, cleaning, visualizing, and other preparation steps if they are needed. The
obtained data become balanced with the edited nearest neighbor (ENN) technique, and
then the balanced data are split into training and test sets for the purpose of machine
learning. After the training process, an evaluation is conducted by using the 10-fold cross-
validation technique. Here, the logistic model tree forest is generated for providing decision
making. Further, the LMT-forest-based fault prediction model can be used by decision
makers in steel production lines. The fault handling system will continuously keep records
and give a warning once the operation is wrong by triggering an alarm mechanism.
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3.2. The Proposed Method: LMT Forest

In this study, a novel machine learning method, called LMT forest, is proposed. The
aim of the study is to develop a new machine-learning approach for fault prediction of steel
plates relying on the ensembles of classifiers, which commonly have better performance
than a single classifier. LMT forest builds multiple decision trees based on the logistic
regression technique and then combines them in an ensemble manner to make a prediction.
Moreover, the edited nearest neighbor (ENN) under-sampling approach is applied to the
raw dataset to balance it due to a large difference in the number of specific fault classes.
Furthermore, noise data points are also eliminated by the ENN method.

Suppose D is a dataset with n data instances such that D = {di}n
i=1. A data instance

di involves an input vector xi and its related class yi in which di = (xi, yi). An input vector
xi includes m features . Hence, xi can be presented as xi =

(
x1

i , x2
i , . . . , xm

i
)
, where xj

i is
the specific value of the j-th element of i-th data instance. The true output yi is a value
of an attribute defined in a set of r independent class labels, e.g., yiεY = {c1, c2, . . . , cr}.
Namely, yi = cj means that the data instance di associates with the j-th class in the related
label set. Here, the number of samples in the class ci or majority class far outnumbers the
other class cj or minority class, in which

∣∣∣ci

∣∣∣� |c j

∣∣∣. For instance, the labels of the instances
are c1 = non-fault and c2 = fault in a binary classification for fault prediction application.
In multi-class classification, the instance labels are like this: c1 = pastry, c2 = z-scratch,
c3 = k-scratch, c4 = stains, c5 = dirtiness, c6 = bumps, and c7 = other faults. The aim of
the LMT forest method is to balance the dataset and eliminate noises based on the ENN
technique, learn a mapping function f : X → Y between the output and input spaces for
each classifier, combine the constructed trees in an ensemble manner, and then make fault
predictions using a voting mechanism.

The advantages of the LMT forest method are listed as follows:

• Since LMT forest is an ensemble learning approach, it tends to achieve a better accuracy
value than a single LMT model. Although some classifiers in the ensemble produce
incorrect outputs, other classifiers may have the ability to correct these errors.

• As it is known, imbalanced datasets refer to classes with unequal observations. In
other words, if the number of samples of a class is much higher than the others in a
dataset. Imbalanced data make fault prediction models biased toward the majority of
cases, resulting in the misclassification of the minority of cases. Our method provides
a way to prevent class imbalance by using ENN; thus, it can successfully learn from
cases belonging to all classes during the training stage.
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• Another advantage of LMT forest is that it can be easily parallelized when it is needed.
The algorithm is suitable for parallel and distributed environments.

• The other advantage of LMT forest is its implementation simplicity. It is mainly an
ensemble-learning approach that contains several decision trees in a special manner.

• Inspired by the appealing structure of decision tree-based and logistic regression-based
models, LMT forest is an interpretable and transparent approach, benefitting from
explainable artificial intelligence (XAI). On the other hand, a deep learning (DL) model
is difficult to interpret and explain because the composition of layers acts as a black
box. In addition, variable selection is not easily possible since DL models solve feature
engineering internally in a non-transparent way. Another drawback of DL is the high
computational cost required to efficiently learn models since it has a large number of
hyperparameters.

• One of the primary advantages of the presented method is that it is designed to apply
to any type of data that is appropriate for the classification task. It does not require
background or prior information about the given dataset. Therefore, it can be applied
to different areas such as health, education, environment, and transportation.

3.3. Theoretical Expression

In this section, the theoretical expression of the proposed method is explained in detail.
The LMT algorithm combines logistic regression and decision tree concepts to construct
a tree. This kind of tree is highly acceptable since it deals with different data types (i.e.,
binary, nominal, numeric) and missing data, which are the LMT’s main benefits. This
nonparametric method has the ability to predict class labels according to both qualitative
and quantitative predictors. Moreover, it is possible to extract a sequence of rules from the
tree regarding input values for the output predictions. In addition, LMT has been built
on the basis of the LogitBoost classification algorithm for producing logistic models at
each tree node and reducing probable outliers for improved performance. In LogitBoost
classification, the tree is pruned by the classification and regression tree (CART) algorithm,
which increases computational efficiency. One of the important advantages of LMT is the
integration of logistic regression and classification by considering a validation technique to
discover the number of LogitBoost iterations, and in this way, it prevents overfitting.

The algorithm uses a least-squares fit (LC(x)), as given in the theoretical expression
for each class c:

Lc(x) =
n

∑
i=1

βixi + β0 (1)

where βi is the coefficient of the i-th element in vector x for each (i = 1, 2, 3, . . . , n) and n is
the number of factors.

The algorithm also uses the logistic regression technique to calculate the posterior
possibilities of tree nodes, expressed in Equation (2):

p(c|x) = exp(Lc(x))
∑r

c′=1 exp(Lc′(x))
(2)

where r is the number of classes. This theoretical expression can be easily applicable for
parameterizing the prediction process in the machine learning models.

The ENN technique is used to eliminate noisy data belonging to the majority class, as a
common under-sampling approach. Different from an over-sampling algorithm, an under-
sampling algorithm makes the classes balanced by removing some majority samples. ENN
eliminates the samples of the majority class in accordance with the K-nearest neighbors
(KNN) predictions. Given the dataset D, there is a subset of minority instances N ⊂ D and
a subset of majority instances M ⊂ D such that M ∪ N = D and |M|�|N|. ENN aims to
balance dataset D, such as |M|∼=|N|. If a sample xi ∈ M has more neighbors of a different
class, this sample will be eliminated.
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A theoretical expression for ignoring noise samples is provided by the ENN technique.
Consider a majority sample xi ∈ M, search to find k nearest neighbors of xi, and then decide
the class of xi according to its neighbors, which is denoted by xik. If the actual class xi
differs from the predicted class of the KNN samples, then xi will be deleted (xi_delete) from
the dataset D, otherwise, the algorithm keeps xi. This theoretical expression is presented in
Equation (3).

xi_delete = I(Class(xi − xik)) (3)

The parameter k refers to the number of neighbors around xi belonging to the M
(majority) subset. This process will be repeated for every majority sample of M. In the case
of multiclass problems, the subset M can include instances from several majority classes.

Figure 2 illustrates an example of this technique. Assume that the number of neighbors
is defined as three (k = 3) and the Euclidean distance is used. Thus, the algorithm finds
the three closest neighbors of each sample in the green-triangle class. For example, the
sample x1 is included in the majority class and its classification result (blue-circle) is in
contrast to the original class (green-triangle); therefore, x1 will be deleted. The same
situation is also valid for the samples x2 and x3. The advantages of ENN are the removal of
borderline samples to enhance the decision boundary and the facilitation of a classification
algorithm to discriminate between minority and majority classes by eliminating noisy
observations. Besides the mentioned advantages, ENN also improves computational
efficiency by reducing the search space size.

Machines 2023, 11, x FOR PEER REVIEW 9 of 24 
 

 

under-sampling algorithm makes the classes balanced by removing some majority sam-
ples. ENN eliminates the samples of the majority class in accordance with the K-nearest 
neighbors (KNN) predictions. Given the dataset 𝐷, there is a subset of minority instances 

𝑁 ⊂ 𝐷  and a subset of majority instances 𝑀 ⊂ 𝐷  such that 𝑀 ∪ 𝑁 = 𝐷  and |𝑀| ≫ |𝑁| . 
ENN aims to balance dataset 𝐷, such as |𝑀| ≅ |𝑁|. If a sample 𝑥𝑖 ∈ 𝑀 has more neighbors 

of a different class, this sample will be eliminated.  
A theoretical expression for ignoring noise samples is provided by the ENN 

technique. Consider a majority sample 𝑥𝑖 ∈ 𝑀, search to find k nearest neighbors of 𝑥𝑖, 

and then decide the class of 𝑥𝑖 according to its neighbors, which is denoted by 𝑥𝑖𝑘. If the 
actual class 𝑥𝑖  differs from the predicted class of the KNN samples, then 𝑥𝑖  will be deleted 

(𝑥𝑖_𝑑𝑒𝑙𝑒𝑡𝑒) from the dataset 𝐷, otherwise, the algorithm keeps 𝑥𝑖. This theoretical expression 
is presented in Equation (3).  

𝑥𝑖_𝑑𝑒𝑙𝑒𝑡𝑒 = 𝐼(𝐶𝑙𝑎𝑠𝑠(𝑥𝑖 − 𝑥𝑖𝑘)) (3) 

The parameter 𝑘 refers to the number of neighbors around 𝑥𝑖 belonging to the 𝑀 
(majority) subset. This process will be repeated for every majority sample of 𝑀. In the 
case of multiclass problems, the subset 𝑀  can include instances from several majority 

classes. 
Figure 2 illustrates an example of this technique. Assume that the number of neigh-

bors is defined as three (𝑘 = 3) and the Euclidean distance is used. Thus, the algorithm 
finds the three closest neighbors of each sample in the green-triangle class. For example, 
the sample 𝑥1 is included in the majority class and its classification result (blue-circle) is 

in contrast to the original class (green-triangle); therefore, 𝑥1 will be deleted. The same 
situation is also valid for the samples 𝑥2 and 𝑥3. The advantages of ENN are the removal 

of borderline samples to enhance the decision boundary and the facilitation of a classifi-
cation algorithm to discriminate between minority and majority classes by eliminating 
noisy observations. Besides the mentioned advantages, ENN also improves computa-

tional efficiency by reducing the search space size. 

 

Figure 2. A sample simulation of the ENN method. 

The pseudo-code of the LMT forest method is given in Algorithm 1, regarding the 

input of the steel plate fault dataset and the output of fault types in steel plates as 𝐷 and 
𝐶, respectively. Moreover, the input parameters of 𝑒 (ensemble size), 𝑘 (the number of 

neighbors), and 𝑇 (the testing set for classification) are supposed. In the first loop, based 
on the ENN technique, the algorithm investigates each instance in the given dataset 𝐷 
separately. The k nearest neighbors are determined for each sample in the case of 

Figure 2. A sample simulation of the ENN method.

The pseudo-code of the LMT forest method is given in Algorithm 1, regarding the
input of the steel plate fault dataset and the output of fault types in steel plates as D
and C, respectively. Moreover, the input parameters of e (ensemble size), k (the number
of neighbors), and T (the testing set for classification) are supposed. In the first loop,
based on the ENN technique, the algorithm investigates each instance in the given dataset
D separately. The k nearest neighbors are determined for each sample in the case of
belonging to the majority class and added to the O list. On the other hand, the samples
of the minority class are directly added to this list without calculating their k-nearest
neighbors. In the second loop, multiple training sets Di for (i = 1, 2, 3, . . . , e) are created
by sampling the original dataset D with replacement using the bootstrap method, where e
is the ensemble size. After that, the bagging technique is applied to build a set of models
H = {H1, H2, . . . , He}. In the last loop, each LMT model classifies a previously unseen
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query instance x in the T test set. Afterward, the outputs of each model are aggregated
using the majority voting technique to obtain the final fault type prediction. Eventually, the
predicted fault class labels are gathered in the output list C.

Algorithm 1 Logistic Model Tree Forest.

Inputs:
D : the dataset D = {di}n

i=1
e: ensemble size
k: the number of neighbors
T: testing set for classification

Output:
C: predicted fault types

Begin:
O = Ø
for i = 1 to n do

if y ε M (majority class)
if KNN(xi) = yi

O.Insert(xi, yi)
end if

else
O.Insert(xi, yi)

end if
end for
for i = 1 to e do

Di = Bootstrap(O)
Hi = LMT(Di)

end for
C = Ø
foreach x in T

c = argmax
y∈Y

∑e
i:y=Hi(x) 1

C = C ∪ c
end foreach

End Algorithm

Time complexity of the LMT forest algorithm is O(T + L(n)*m), in which T denotes the
time needed for the ENN process, m is the ensemble size, and L(n) is the time required for
running the LMT method on n objects.

3.4. Dataset Description

In the current study, a steel plate faults dataset [79] was applied to determine the
efficiency of the proposed method. The dataset information is thoroughly listed in Table 1.
It is regarded as a multivariate dataset by the ability of classification tasks for training
machine learning models aiming to automatic recognition of fault patterns. It covers
attribute properties of integer and real values. Since 2010, this dataset has been widely
utilized in the literature for contributing to the analysis of various methods over steel plate
faults [20–32]. The dataset comprises 1941 records with different fault-type labels that can
occur on steel surfaces.

Table 1. Dataset information.

Dataset
Property

Attribute
Property Task Instance Feature Missing

Value Field Date Web Hit

Multivariate Integer,
Real Classification 1941 27 N/A Physical 2010 111,062
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The dataset contains 27 different features which are listed in Table 2 with their statistical
properties, including minimum, mean, maximum, mode, and standard deviation of each
one. The index features in the dataset are related to the quality of steel plates that include
mechanical properties such as strength, toughness, elongation, shape, dimensional accuracy,
appearance, and others.

Table 2. The statistical properties of the dataset features.

No Variable Name Min Mean Max Mode Standard
Deviation

1 X Maximum 4 617.9645 1713 212 497.6274
2 X Minimum 0 571.1360 1705 41 520.6907
3 Y Maximum 6724 1,650,738.7053 12,987,692 28,984 1,774,590
4 Y Minimum 6712 1,650,684.8681 12,987,661 1,803,992 1,774,578
5 Pixels Areas 2 1893.8784 152,655 52 5168.46
6 X Perimeter 2 111.8552 10,449 12 301.2092
7 Y Perimeter 1 82.9660 18,152 11 426.4829
8 Sum of Luminosity 250 206,312.1479 1,1591,414 7502 512,293.6

9 Maximum of
Luminosity 37 130.1937 253 127 18.69099

10 Minimum of
Luminosity 0 84.5487 203 101 32.13428

11 Length of Conveyer 1227 1459.1602 1794 1358 144.5778
12 Type of Steel (A300) 0 0.4003 1 0 0.490087
13 Type of Steel (A400) 0 0.5997 1 1 0.490087
14 Steel Plate Thickness 40 78.7378 300 40 55.08603
15 Empty Index 0 0.4142 0.9439 0.3333 0.137261
16 Edges Index 0 0.3317 0.9952 0.0604 0.299712
17 Square Index 0.0083 0.5708 1 1 0.271058
18 Outside X Index 0.0015 0.0334 0.8759 0.0059 0.058961
19 Edges X Index 0.0144 0.6105 1 1 0.243277
20 Edges Y Index 0.0484 0.8135 1 1 0.234274
21 Outside Global Index 0 0.5757 1 1 0.482352
22 Log of Areas 0.301 2.4924 5.1837 1.716 0.78893
23 Log X Index 0.301 1.3357 3.0741 0.9542 0.481612
24 Log Y Index 0 1.4033 4.2587 1.0792 0.454345
25 Luminosity Index −0.9989 −0.1313 0.6421 −0.1851 0.148767
26 Orientation Index −0.991 0.0833 0.9917 0 0.500868
27 Sigmoid of Areas 0.119 0.5854 1 1 0.339452

The types of faults and the related number of instances are presented in Table 3. As
can be seen, the faults of steel plates are categorized into 7 types, including pastry, z-scratch,
k-scratch, stains, dirtiness, bumps, and other faults. From the target class distribution in the
dataset, it is observed that the class “Other Faults” (fault 7) represented the majority by 673
observations. Moreover, fault type 7 is not a distinct kind of fault; instead, it is a combined
value of various faults that differs from faults 1 to 6. For this reason, specific treatment is
required for fault 7. The instances in this class do not share special features; on the other
hand, dominating predictors are not easy to obtain for training. In order to build a robust
fault prediction model and minimize the number of false negatives, we applied the edited
nearest neighbor technique to the dataset. This process can be approached by deleting
samples whose class is different from the class of the majority of their k nearest neighbors.
This data-preprocessing process is important since further classification is depending on
this initial treatment.
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Table 3. Fault types and the number of instances in the dataset.

No Fault Type Number of
Faults

Proportion of
Faults (%) Class Type

1 Pastry 158 8.14 Minority
2 Z-Scratch 190 9.79 Minority
3 K-Scratch 391 20.14 Moderate
4 Stains 72 3.71 Minority
5 Dirtiness 55 2.83 Minority
6 Bumps 402 20.71 Moderate
7 Other Faults 673 34.67 Majority

Total Number of Samples 1941

4. Experiments
4.1. Experimental Design

The main aim of this research was to correctly classify the surface defects in stainless
steel plates by seven types of faults through developing a machine learning-based model
for fault prediction. For this purpose, the LMT forest method was proposed and its
effectiveness was proved on a fault prediction dataset [79]. We developed our method
by C# language using the Weka library [80]. In the experiments, we used the 10-fold
cross-validation technique to train and test the classifiers. In this low-bias technique, the
dataset is randomly split into 10 folds or parts, and then 1 fold is reserved as a test set, and
the other 9 folds are considered as the training set. The validation process was repeated
10 times and the average classification rate was calculated. In addition, various types of
evaluation measures were utilized to experimentally prove the theoretical expression of
the proposed LMT forest model, including accuracy (ACC), recall (R), precision (PR), and
F-measure (FM), which are formulated in Equations (4) to (7), respectively.

ACC =
TP + TN

TP + TN + FP + FN
(4)

R =
TP

TP + FN
(5)

PR =
TP

TP + FP
(6)

FM =
2TP

2TP + FP + FN
(7)

where

• True positive (TP) defines the number of positive classes, which are predicted correctly
by the classifier.

• True negative (TN) defines the number of negative classes, which are predicted cor-
rectly by the classifier.

• False positive (FP) defines the number of positive classes, which are predicted incor-
rectly by the classifier.

• False negative (FN) defines the number of negative classes, which are predicted
incorrectly by the classifier.

4.2. Experimental Results

The balanced dataset was divided as a training set and test set through the 10-fold
cross-validation technique with the aim of applying the proposed LMT forest method to it.
According to this approach, the results of each fold are separately given in Table 4. As can
be seen, our proposed model outperformed the well-known random forest method [81]
in terms of classification accuracy. On average, LMT forest (86.655%) achieved higher
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accuracy than random forest (79.547%) with an improvement of over 7%. Therefore, our
model can be effectively used in steel production lines.

Table 4. The comparison of random forest and the proposed LMT forest in terms of accuracy.

Fold Number
Accuracy (%)

Random Forest [81] LMT Forest (Proposed)

1 77.9487 85.4545
2 79.8969 85.3659
3 78.8660 88.4146
4 81.9588 88.4146
5 82.4742 85.9756
6 80.4124 90.2439
7 80.4124 87.1951
8 77.3196 84.7561
9 78.8660 85.9756
10 77.3196 84.7561

Average 79.547 86.655

The main reason behind this improvement is that our method takes into consideration
the distribution of class instances and makes the dataset balanced. The steel plate faults
dataset was regarded as an imbalanced dataset since the proportion of a class is highly
skewed to the total number of instances. The ratio of the majority class was 35%, while
the proportions of the other six minority classes were low. Furthermore, the class “Other
Faults” could contain noisy samples since it did not have a single special kind of fault;
instead, it is a combination of several faults that differ from other faults. To overcome this
problem, we applied the ENN method to the dataset by setting the parameter k to 3 and
obtained balanced and noise-free data. As a result, the number of instances decreased from
1941 to 1641 after the balancing approach.

The comparison of LMT forest and random forest models is given in Figure 3 in terms
of several evaluation metrics such as precision, recall, F-measure, Matthews correlation
coefficient (MCC), receiver operating characteristic (ROC) area, and precision–recall (PRC)
area. Our method improved performance according to the all mentioned metrics, compared
to the existing method [81]. The key reason for low precision and recall of classification is
the use of an unbalanced and noisy training dataset. Our method solves these problems by
applying the ENN technique.

The most significant input parameter of the LMT forest method is the number of
trees. Parameter tuning was performed by implementing it with from 1 to 100 trees with
increments of 10 to gain the highest accuracy of the method. The results are presented in
Table 5. It should be addressed that these outputs are calculated by averaging the results of
the 10 folds. The evaluations revealed that the LMT forest with 60 trees had the highest
accuracy of 86.655% in comparison with the other number of trees. While there was an
increase up to the peak (60 trees), from that point on, the accuracy dropped slightly. The
main reason behind this pattern can be explained by considering the tradeoff between
generalization ability and overfitting. When a small number of trees are included, the
likelihood of misclassification increases due to instability like with a single decision tree.
Once the ensemble size is small, each classifier will have a big effect on the final prediction.
In addition, if the qualities of ensemble members are poor, the overall performance is
influenced accordingly. Therefore, it is required to increase the number of trees in the
ensemble to reduce the influence of members that are of low quality. On the other hand,
when a large number of trees are available, the algorithm is at risk of overfitting. Increasing
the ensemble size may not significantly increase performance even it brings higher compu-
tational costs. Therefore, a large number of classifiers cannot guarantee a remarkably more
satisfying result.
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Table 5. The accuracy rates obtained by LMT forest for different numbers of trees.

Number of Trees Accuracy (%)

1 74.858
10 84.887
20 86.106
30 86.106
40 86.472
50 86.472
60 86.655
70 86.533
80 86.594
90 86.289

100 86.228

The confusion matrix obtained by the LMT forest method is presented in Table 6 for
all fault classes separately. In this matrix, steel fault classes including pastry, z-scratch,
k-scratch, stains, dirtiness, bumps, and other faults are represented by A to G, respectively.
The matrix summarizes the correct and incorrect predictions of the LMT forest model with
the count values. The robustness of the model for predicting steel plate faults was firmly
confirmed with the high diagonal elements of the matrix (107, 176, 376, 66, 49, 334, and 314)
for each class and with low off-diagonal elements. It is clear that the constructed model
generally had no trouble in classifying all fault types. For example, 376 out of 391 k-scratch
faults were predicted accurately; however, only 15 of them were misclassified by the model.
Even though each fault type was distinguished with high accuracy, the algorithm slightly
confused the pastry fault with other fault types. This is probably because of the fact that the
behavior of this fault is a little bit similar to the other fault types, especially bump faults.

The importance scores of features for the balanced steel plate faults dataset are given
in Table 7. Importance scores of features contribute to having a better understanding of the
effect of features on the prediction results. Here, we applied the Pearson correlation method
over the steel plate faults to investigate the most significant features in the occurrence of
steel plate faults. The Pearson correlation method is one of the common covariance-based
approaches to utilize for numeric values with the objective of determining the linear
relationship between those variables, and thus revealing their importance compared to
each other through measuring the linear correlation. The Pearson correlation score is a
number in the range from −1 to +1, demonstrating the direction and strength of features in
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a dataset, in which 0 means no correlation, and where −1 and +1 show the totally negative
and positive correlations, respectively. In addition, the direction from 0 to −1 increases
negativity, and vice versa, the direction from 0 to +1 increases positivity. Interpretation
of the Pearson correlation method is uncomplicated and its produced data have better
statistical properties, along with the magnitude of the correlation, association, and direction
of relations [82–86]. According to the results given in Table 7, the predictor importance of
the “Log X Index” and “Log of Areas” with the values of 0.3046 and 0.3020 are the highest
ones. In addition, the prediction importance of the “Y Minimum” and “Y Maximum” with
the value of 0.0857 is the lowest one.

Table 6. The confusion matrix that was obtained by LMT forest.

A B C D E F G

A 107 0 0 0 2 30 19
B 0 176 2 0 0 7 5
C 0 0 376 2 0 5 8
D 0 0 0 66 0 3 3
E 2 0 0 0 49 3 1
F 20 4 3 3 6 334 32
G 13 2 6 1 1 36 314

Table 7. Importance of features obtained by the Pearson correlation method.

Feature Score Feature Score Feature Score

Log X Index 0.3064 Log Y Index 0.2359 Orientation Index 0.1678

Log of Areas 0.3020 Minimum of
Luminosity 0.2246 Empty Index 0.1569

Type of Steel
(A300) 0.2819 X Maximum 0.2190 Outside Global

Index 0.1368

Type of Steel
(A400) 0.2819 Length of

Conveyer 0.2144 Edges X Index 0.1326

Edges Y Index 0.2772 Sigmoid of Areas 0.2140 Maximum of
Luminosity 0.1138

Sum of Luminosity 0.2699 Edges Index 0.2009 Luminosity Index 0.1065
Outside X Index 0.2655 X Perimeter 0.1938 Y Perimeter 0.0868

X Minimum 0.2475 Steel Plate
Thickness 0.1823 Y Maximum 0.0857

Pixels Areas 0.2430 Square Index 0.1762 Y Minimum 0.0857

The structure of the logistic model tree with 41 nodes and 21 leaves is illustrated in
Figure 4. It is possible to extract rules from this tree by tracing each branch from root to
leaf. For example, at the second level of the tree, if the value of the “Pixels Areas” feature
is greater than 26, then the sub-tree of the “Type of Steel (A300)” node will be followed,
or else a decision is made since the leaf node is reached. Compared with features in the
tree branches, the feature in the root of the tree has a stronger effect on predicting the
output. Therefore, the tree indicates that the “Log of Areas” feature has a high impact on
decision making.
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4.3. Comparison with the State-of-the-Art Methods

In this section, the proposed LMT forest method is compared with the state-of-the-
art methods [20–32]. The results of previous studies on the same dataset are given in
Table 8. These results were directly taken from the articles investigated by authors on the
same dataset [79] as our work for the prediction of steel plate faults. In the table, various
machine learning methods (e.g., KNN, SVM, ANN, etc.) are included to compare them
with our method. For instance, LMT forest (86.655%) outperformed KNN (71.80%) [24],
SVM (73.60%) [25], NN (77.28%) [29], and naive Bayes (66.70%) [27] methods. The reason
behind this improvement is probably because of the fact that these standard methods
build a single classifier, while our method constructs multiple classifiers in an ensemble
manner. In addition, LMT forest performed better than other tree-based machine-learning
approaches in terms of accuracy metrics. For example, LMT forest (86.655%) validated its
outperformance over RF (77.80%) [25], DT (76.04%) [26], and CART (79.08%) [29] on the
same steel plate faults dataset. A possible reason behind this is that LMT builds a different
type of tree, which is a classification tree with logistic regression functions at the leaves.
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Table 8. The comparison of LMT forest with the state-of-the-art methods on the same dataset.

Reference Year Method Accuracy (%)

Shu et al. [20] 2023

Support vector machines with extended decision
label annotation (ELA) 77.53

C4.5 with extended decision label
annotation (ELA) 75.42

Agrawal and Adane [21] 2022

Long short-term memory (LSTM) 75.62
Random forest (RF) 76.11
Principal component analysis-based decision tree
forest (PDTF) 75.19

Improved PDTF (I-PDTF) 76.09

Ju et al. [22] 2022

Radial base function-based support vector
machine (RBF-SVM) 62.80

Classification and regression trees (CARTs) 62.99
Neighborhood classifier (NEC) 65.68

Zhang et al. [23] 2022

Bi-selection method based on fuzzy rough
sets (BSFRSs) 69.18

Central density-based instance selection MQRWA
(CDIS-MQRWA) 71.14

Edited nearest neighbor MQRWA (ENN-MQRWA) 73.72

Mohamed and Samsudin [24] 2021
Naive Bayes 69.20
K-nearest neighbors (KNNs) 71.80
Decision tree (DT) 75.10

Nkonyana et al. [25] 2019
Random forest 77.80
Support vector machines (SVMs) 73.60
Artificial neural network (ANN) 69.60

Srivastava [26] 2019

Decision tree 76.04
Random forest 79.39
AdaBoost 78.41
K-nearest neighbors 71.35
Support vector machines 74.90

Mohamed et al. [27] 2019
Naive Bayes + information gain (IGO) 66.70
K-nearest neighbor (KNN) + hybrid bat
algorithm (BkMDFS) 72.40

Mary [28] 2018 Back-propagation neural network 75.27

Zhang et al. [29] 2018

Neural network (NN) 77.28
Classification and regression trees (CARTs) 79.08
Linear support vector machine 72.08
Minimal-redundancy-maximal-relevance
(mRMR)-Wrapper + CART 79.34

Thirukovalluru et al. [30] 2016
Support vector machine 75.27
Random forest 78.11

Halawani [31] 2014
AdaBoost.M1 81.92
Random forest 79.96

Buscema et al. [32] 2010

Meta-consensus 77.00
ArcX4 80.35
AdaBoost.M1 79.31
Quadratic Bayesian classifier (QDC) 77.20
Naive Bayesian combiner (BayesComb) 71.95
Bayesian linear classifier (LDC) 74.25
Sine network (SN) 74.16
Dempster–Shafer combination 80.58
Direct KNN decision dependent
(DynDdDirectKnn) 77.40

Proposed Method Logistic model tree forest 86.655
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The LMT forest model achieved higher accuracy compared to many other techniques,
e.g., BSFRS (69.18%) [23], IGO (66.70%) [27], and SN (74.16%) [32]. The accuracy of the
proposed model is also the highest in comparison with deep learning models such as
LSTM (75.62%) [21]. In brief, all these evaluations indicate the outperformance of LMT
forest. Therefore, our presented model can be efficiently utilized for the fault prediction of
steel plates.

The main reason behind the superiority of our method over the aforementioned
methods is that it takes into consideration the distribution of class instances and makes
the dataset balanced. Note that in a standard machine learning model, imbalanced data
ignore beneficial information about the dataset itself that is essential for the construction of
classifiers. Additionally, in an ensemble method, the sampled instances from an imbalanced
dataset are most likely biased instances that lead to an inaccurate representation of the
dataset. The steel plate faults dataset was regarded as an imbalanced dataset since the
proportion of a class is highly skewed to the total number of instances. The ratio of the
majority class was 35%, while the proportions of the other six minority classes were low.
Furthermore, the class “Other Faults” could contain noisy samples since it did not have
a single special kind of fault; instead, it is a combination of several faults that differ from
other faults. To overcome this problem, we applied the ENN technique to the dataset and
obtained class-balanced and noise-free data. As a result, the performance was improved in
terms of accuracy.

The results show the superiority of LMT forest with an accuracy of 86.655% over the
best existing method, namely AdaBoost.M1 [31], with an accuracy of 81.92%. Therefore,
the proposed method performed better with approximately 5% improvement compared
to the best method in Table 8. The best improvement (23.86%) achieved over the RBF-
SVM method [22]. Accordingly, the LMT forest model can be successfully utilized in steel
product manufacturing with the objective of fault prediction and thus making the necessary
arrangements to handle faults with regard to the high accuracy of our presented model.

5. Conclusions and Future Works

In this study, we proposed a novel machine learning method, entitled logistic model
tree forest (LMT forest), for predicting and identifying different types of steel plate faults.
In addition to the importance of faultless steel plate production, the automation of fault
prediction considerably contributes to reducing production costs and minimizing the
necessary time for monitoring. The results revealed that the developed model is appropri-
ately capable of being used during industrial production, and outstandingly contributes
to decision making for faults handling in the steel plate manufacturing process. Our
method is applicable to the steel plate manufacturing to improve the efficiency of industrial
steel products.

The key outcomes of our study are listed as follows:

• LMT forest integrates decision tree and logistic regression approaches to profit from
the benefits of both techniques.

• In this study, it was revealed that the ensemble of classifiers instead of a single classifier
could attain better performance.

• Different ensemble sizes of 1 to 100 with 10 intervals were tested, and finally, we
decided on 60 trees, since after that the accuracy began to decrease slightly.

• The confusion matrix showed that each fault type was distinguished with high ac-
curacy; however, the pastry fault was slightly confused with other fault types by
the algorithm.

• According to the results of the Pearson correlation method, the “Log X Index” and
“Log of Areas” variables are the most essential features in the decision-making process.

• The superiority of the proposed LMT forest method (86.65%) over the well-known
random forest method (79.547%) was approved on the same dataset.
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• The proposed model (86.65%) achieved higher performance when compared to the
state-of-the-art methods [20–32] in terms of accuracy. Improvements ranging from 5
to 24% were demonstrated compared to the aforementioned methods.

As a future work, the LMT forest method can be utilized for predictive maintenance
in IoT-based manufacturing. Our method can be efficiently applied to other datasets for
different purposes. In addition, it is possible to collect greater amounts of data from steel
production factories, which can include different fault classes.
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Abbreviations
The following abbreviations are used in this paper.

ANN Artificial neural networks
ARIMA Auto-regressive integrated moving average
AUC Area under curve
BSFRS Bi-selection method based on fuzzy rough sets
CART Classification and regression tree
CNN Convolutional neural networks
DAS Data acquisition system
DL Deep learning
DS Dempster–Shafer
ELA Extended decision label annotation
ENN Edited nearest neighbor
FCM-LSE Fuzzy c-means-least squares estimation
GA-BPNN Genetic algorithm back propagation neural network
GBDT Gradient boosting decision tree
GPR Gaussian process regression
IGO Information gain
IoT Internet of Things
KNN K-nearest neighbors
LMT Logistic model tree
LR Logistic regression
LS-SVR Least squares support vector regression
LSTM Long short-term memory
MAE Mean absolute error
MCC Matthews correlation coefficient
MG-SVM Medium Gaussian support vector machine
ML Machine learning
MLP Multilayer perceptron
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mRMR Minimal-redundancy-maximal-relevance
NB Naive Bayes
NEC Neighborhood classifier
NMSE Normalized mean square error
NN Neural network
OAO-SVM One-against-one strategy and support vector machines
PCA Principal component analysis
PDTF Principal component analysis-based decision tree forest
PRC Precision-recall
QDC Quadratic Bayesian classifier
QPSO-BP Quantum particle swarm optimization backpropagation
RBFC Radial basis function classifier
RF Random forest
RFE Recursive feature elimination
RMSE Root mean square error
RNN Recurrent neural networks
ROC Receiver operating characteristic
RSRE Robust sparse feature selection with redundancy elimination
RUL Remaining useful life
SCADA Supervisory control and data acquisition
SMOTE Synthetic minority oversampling technique
SN Sine network
SVM Support vector machine
UAV Unmanned aerial vehicle
WEKA Waikato environment for knowledge analysis
XAI Explainable artificial intelligence
XGBoost Extreme gradient boosting
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35. Pollak, A.; Temich, S.; Ptasiński, W.; Kucharczyk, J.; Gąsiorek, D. Prediction of Belt Drive Faults in Case of Predictive Maintenance
in Industry 4.0 Platform. Appl. Sci. 2021, 11, 10307. [CrossRef]

36. Glowacz, A. Thermographic Fault Diagnosis of Shaft of BLDC Motor. Sensors 2022, 22, 8537. [CrossRef] [PubMed]
37. Javed, M.R.; Shabbir, Z.; Asghar, F.; Amjad, W.; Mahmood, F.; Khan, M.O.; Virk, U.S.; Waleed, A.; Haider, Z.M. An Efficient Fault

Detection Method for Induction Motors Using Thermal Imaging and Machine Vision. Sustainability 2022, 14, 9060. [CrossRef]
38. Chen, Y.; Ding, Y.; Zhao, F.; Zhang, E.; Wu, Z.; Shao, L. Surface Defect Detection Methods for Industrial Products: A Review. Appl.

Sci. 2021, 11, 7657. [CrossRef]
39. Çınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine Learning in Predictive Maintenance

towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability 2020, 12, 8211. [CrossRef]

https://doi.org/10.3390/informatics1010032
https://doi.org/10.1016/j.compag.2021.106646
https://doi.org/10.1371/journal.pcbi.1006865
https://doi.org/10.1007/s40708-015-0030-2
https://www.ncbi.nlm.nih.gov/pubmed/27747604
https://doi.org/10.1371/journal.pone.0272956
https://www.ncbi.nlm.nih.gov/pubmed/35994471
https://doi.org/10.32604/cmes.2021.016817
https://doi.org/10.21817/indjcse/2023/v14i1/231401134
https://doi.org/10.1016/j.forsciint.2023.111645
https://doi.org/10.1007/s10489-022-03770-3
https://doi.org/10.47164/ijngc.v13i5.901
https://doi.org/10.1016/j.ins.2022.09.006
https://doi.org/10.1109/TFUZZ.2022.3216990
https://doi.org/10.17762/turcomat.v12i3.1013
https://doi.org/10.1016/j.promfg.2019.06.004
https://doi.org/10.11591/ijeecs.v15.i3.pp1411-1418
https://doi.org/10.1016/j.knosys.2018.03.031
https://doi.org/10.1109/icphm.2016.7542865
https://doi.org/10.1109/NAFIPS.2010.5548298
https://doi.org/10.3390/machines10050342
https://doi.org/10.3390/s23083827
https://doi.org/10.3390/app112110307
https://doi.org/10.3390/s22218537
https://www.ncbi.nlm.nih.gov/pubmed/36366235
https://doi.org/10.3390/su14159060
https://doi.org/10.3390/app11167657
https://doi.org/10.3390/su12198211


Machines 2023, 11, 679 22 of 23

40. Shim, J.; Kang, S.; Cho, S. Active Inspection for Cost-Effective Fault Prediction in Manufacturing Process. J. Process Control 2021,
105, 250–258. [CrossRef]

41. Fernandes, M.; Corchado, J.M.; Marreiros, G. Machine Learning Techniques Applied to Mechanical Fault Diagnosis and Fault
Prognosis in the Context of Real Industrial Manufacturing Use-Cases: A Systematic Literature Review. Appl. Intell. 2022, 52,
14246–14280. [CrossRef] [PubMed]

42. Uppal, M.; Gupta, D.; Juneja, S.; Dhiman, G.; Kautish, S. Cloud-Based Fault Prediction Using IoT in Office Automation for
Improvisation of Health of Employees. J. Healthcare Eng. 2021, 2021, 8106467. [CrossRef]

43. Kosuru, V.S.R.; Kavasseri Venkitaraman, A. A Smart Battery Management System for Electric Vehicles Using Deep Learning-Based
Sensor Fault Detection. World Electr. Veh. J. 2023, 14, 101. [CrossRef]

44. Gong, L.; Liu, B.; Fu, X.; Jabbari, H.; Gao, S.; Yue, W.; Yuan, H.; Fu, R.; Wang, Z. Quantitative Prediction of Sub-Seismic Faults and
Their Impact on Waterflood Performance: Bozhong 34 Oilfield Case Study. J. Pet. Sci. Eng. 2019, 172, 60–69. [CrossRef]

45. Dashti, R.; Daisy, M.; Mirshekali, H.; Shaker, H.R.; Hosseini Aliabadi, M. A Survey of Fault Prediction and Location Methods in
Electrical Energy Distribution Networks. Measurement 2021, 184, 109947. [CrossRef]

46. Carrera, Á.; Alonso, E.; Iglesias, C.A. A Bayesian Argumentation Framework for Distributed Fault Diagnosis in Telecommunica-
tion Networks. Sensors 2019, 19, 3408. [CrossRef] [PubMed]

47. Bai, Y.; Zhao, J. A Novel Transformer-Based Multi-Variable Multi-Step Prediction Method for Chemical Process Fault Prognosis.
Process Saf. Environ. Prot. 2023, 169, 937–947. [CrossRef]

48. Zhang, P.; Cui, Z.; Wang, Y.; Ding, S. Application of BPNN Optimized by Chaotic Adaptive Gravity Search and Particle Swarm
Optimization Algorithms for Fault Diagnosis of Electrical Machine Drive System. Electr. Eng. 2021, 104, 819–831. [CrossRef]

49. Abro, J.H.; Li, C.; Shafiq, M.; Vishnukumar, A.; Mewada, S.; Malpani, K.; Osei-Owusu, J. Artificial Intelligence Enabled Effective
Fault Prediction Techniques in Cloud Computing Environment for Improving Resource Optimization. Sci. Program. 2022, 2022,
1–7. [CrossRef]

50. Doorwar, A.; Bhalja, B.R.; Malik, O.P. Novel Approach for Synchronous Generator Protection Using New Differential Component.
IEEE Trans. Energy Convers. 2022, 38, 180–191. [CrossRef]

51. Tsioumpri, E.; Stephen, B.; McArthur, S.D.J. Weather Related Fault Prediction in Minimally Monitored Distribution Networks.
Energies 2021, 14, 2053. [CrossRef]

52. Shahbazi, Z.; Byun, Y.-C. Smart Manufacturing Real-Time Analysis Based on Blockchain and Machine Learning Approaches.
Appl. Sci. 2021, 11, 3535. [CrossRef]

53. Samanta, A.; Chowdhuri, S.; Williamson, S.S. Machine Learning-Based Data-Driven Fault Detection/Diagnosis of Lithium-Ion
Battery: A Critical Review. Electronics 2021, 10, 1309. [CrossRef]

54. Lin, S.-L. Application of Machine Learning to a Medium Gaussian Support Vector Machine in the Diagnosis of Motor Bearing
Faults. Electronics 2021, 10, 2266. [CrossRef]

55. Jiang, F.; Norlund, P. Seismic attribute-guided automatic fault prediction by deep learning. In Proceedings of the EAGE 2020
Annual Conference Exhibition, Online, 8–11 December 2020; European Association of Geoscientists & Engineers: Utrecht, The
Netherlands, 2020; Volume 2020, pp. 1–5. [CrossRef]

56. Wang, S.; Si, X.; Cai, Z.; Cui, Y. Structural Augmentation in Seismic Data for Fault Prediction. Appl. Sci. 2022, 12, 9796. [CrossRef]
57. Li, Y. A Fault Prediction and Cause Identification Approach in Complex Industrial Processes Based on Deep Learning. Comput.

Intell. Neurosci. 2021, 2021, 6612342. [CrossRef]
58. Yang, H.-S.; Kim, Y.-S. Design and Implementation of Machine Learning-Based Fault Prediction System in Cloud Infrastructure.

Electronics 2022, 11, 3765. [CrossRef]
59. Zhao, Y.; Li, D.; Dong, A.; Kang, D.; Lv, Q.; Shang, L. Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA

Data. Energies 2017, 10, 1210. [CrossRef]
60. Yuan, T.; Sun, Z.; Ma, S. Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection.

Energies 2019, 12, 4224. [CrossRef]
61. Wan, L.; Li, H.; Chen, Y.; Li, C. Rolling Bearing Fault Prediction Method Based on QPSO-BP Neural Network and Dempster–Shafer

Evidence Theory. Energies 2020, 13, 1094. [CrossRef]
62. Yang, J.; Li, J.-D. Fault Prediction Algorithm for Offshore Wind Energy Conversion System Based on Machine Learning. In

Proceedings of the International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), Macau, China,
5–7 December 2021; pp. 291–296. [CrossRef]

63. Fernandes, S.; Antunes, M.; Santiago, A.R.; Barraca, J.P.; Gomes, D.; Aguiar, R.L. Forecasting Appliances Failures: A Machine-
Learning Approach to Predictive Maintenance. Information 2020, 11, 208. [CrossRef]

64. Tsai, M.-F.; Chu, Y.-C.; Li, M.-H.; Chen, L.-W. Smart Machinery Monitoring System with Reduced Information Transmission and
Fault Prediction Methods Using Industrial Internet of Things. Mathematics 2020, 9, 3. [CrossRef]

65. Syafrudin, M.; Alfian, G.; Fitriyani, N.; Rhee, J. Performance Analysis of IoT-Based Sensor, Big Data Processing, and Machine
Learning Model for Real-Time Monitoring System in Automotive Manufacturing. Sensors 2018, 18, 2946. [CrossRef]

66. Yuan, H.; Zhang, Z.; Yuan, P.; Wang, S.; Wang, L.; Yuan, Y. A Microgrid Alarm Processing Method Based on Equipment Fault
Prediction and Improved Support Vector Machine Learning. J. Phys. Conf. Ser. 2020, 1639, 012041. [CrossRef]

67. Zhang, X.; Wang, X.; Tian, H. Spacecraft in Orbit Fault Prediction Based on Deep Machine Learning. J. Phys. Conf. Ser. 2020,
1651, 012107. [CrossRef]

https://doi.org/10.1016/j.jprocont.2021.08.008
https://doi.org/10.1007/s10489-022-03344-3
https://www.ncbi.nlm.nih.gov/pubmed/35261480
https://doi.org/10.1155/2021/8106467
https://doi.org/10.3390/wevj14040101
https://doi.org/10.1016/j.petrol.2018.09.049
https://doi.org/10.1016/j.measurement.2021.109947
https://doi.org/10.3390/s19153408
https://www.ncbi.nlm.nih.gov/pubmed/31382603
https://doi.org/10.1016/j.psep.2022.11.062
https://doi.org/10.1007/s00202-021-01335-0
https://doi.org/10.1155/2022/7432949
https://doi.org/10.1109/TEC.2022.3196005
https://doi.org/10.3390/en14082053
https://doi.org/10.3390/app11083535
https://doi.org/10.3390/electronics10111309
https://doi.org/10.3390/electronics10182266
https://doi.org/10.3997/2214-4609.202010542
https://doi.org/10.3390/app12199796
https://doi.org/10.1155/2021/6612342
https://doi.org/10.3390/electronics11223765
https://doi.org/10.3390/en10081210
https://doi.org/10.3390/en12224224
https://doi.org/10.3390/en13051094
https://doi.org/10.1109/hpbdis53214.2021.9658478
https://doi.org/10.3390/info11040208
https://doi.org/10.3390/math9010003
https://doi.org/10.3390/s18092946
https://doi.org/10.1088/1742-6596/1639/1/012041
https://doi.org/10.1088/1742-6596/1651/1/012107


Machines 2023, 11, 679 23 of 23

68. Haneef, S.; Venkataraman, N. Proactive Fault Prediction of Fog Devices Using LSTM-CRP Conceptual Framework for IoT
Applications. Sensors 2023, 23, 2913. [CrossRef]

69. Orrù, P.F.; Zoccheddu, A.; Sassu, L.; Mattia, C.; Cozza, R.; Arena, S. Machine Learning Approach Using MLP and SVM Algorithms
for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry. Sustainability 2020, 12, 4776. [CrossRef]

70. Uppal, M.; Gupta, D.; Juneja, S.; Sulaiman, A.; Rajab, K.; Rajab, A.; Elmagzoub, M.A.; Shaikh, A. Elmagzoub; Luige Vladareanu.
Cloud-Based Fault Prediction for Real-Time Monitoring of Sensor Data in Hospital Environment Using Machine Learning.
Sustainability 2022, 14, 11667. [CrossRef]

71. Uppal, M.; Gupta, D.; Mahmoud, A.; Elmagzoub, M.A.; Sulaiman, A.; Reshan, M.S.A.; Shaikh, A.; Juneja, S. Fault Prediction
Recommender Model for IoT Enabled Sensors Based Workplace. Sustainability 2023, 15, 1060. [CrossRef]

72. Elanangai, V.; Vasanth, K. An Automated Steel Plates Fault Diagnosis System Using Adaptive Faster Region Convolutional
Neural Network. J. Intell. Fuzzy Syst. 2022, 43, 7067–7079. [CrossRef]

73. Colkesen, I.; Kavzoglu, T. The Use of Logistic Model Tree (LMT) for Pixel- and Object-Based Classifications Using High-Resolution
WorldView-2 Imagery. Geocarto Int. 2016, 32, 71–86. [CrossRef]

74. Nithya, R.; Santhi, B. Decision Tree Classifiers for Mass Classification. Int. J. Signal Imaging Syst. Eng. 2015, 8, 39. [CrossRef]
75. Wilson, D.L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Trans. Syst. Man Cybern. 1972, SMC-2,

408–421. [CrossRef]
76. Alejo, R.; Sotoca, J.M.; Valdovinos, R.M.; Toribio, P. Edited Nearest Neighbor Rule for Improving Neural Networks Classifications.

In Proceedings of the 7th International Symposium on Neural Networks (ISNN 2010), Shanghai, China, 6–9 June 2010; pp. 303–310.
[CrossRef]
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