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Abstract: Traditional methods for predicting remaining useful life (RUL) ignore the correlation
between physical world data and virtual world data, leading to the low prediction accuracy of RUL
and affecting the normal working of rolling element bearing (REB). To solve the above problem, we
propose a hybrid method based on digital twin (DT) and long short-term memory (LSTM). The hybrid
method combines the high simulation capabilities of DT and the strong data processing capabilities
of LSTM. Firstly, we develop a DT system for the life characteristics analysis of an REB. When the DT
system is implemented, we can obtain the theoretical value of RUL. Then, the experimental data is
used to train the LSTM model. The output of LSTM is the actual value of RUL. Finally, the particle
swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of
LSTM. The case study demonstrates that the prediction accuracy of the hybrid method is greater
than 97.5%, which improves the prediction performance and robustness of RUL. Therefore, the
hybrid method is an important technology of REB prediction and health management (PHM). It
realizes the early intervention and maintenance of mechanical equipment and ensures the safety of
enterprises’ production.

Keywords: digital twin; remaining useful life; rolling element bearing; LSTM

1. Introduction

With the progress and development of industrial technology, mechanical equipment is
constantly developing towards high-speed, efficient, complex, and large-scale automation.
Meanwhile, it faces more harsh working and operating environments [1]. Once a key
component of the equipment fails, the performance and normal operation of the equipment
can be affected. If the equipment is damaged, it will result in significant economic losses
and personnel casualties. The most commonly used and critical component in mechanical
equipment is REB. REB is a relatively inexpensive component compared to the entire
mechanical equipment. However, the failure rate of REB is high. If the remaining useful
life of rolling element bearing can be accurately predicted, we can carry out the appropriate
maintenance of mechanical equipment to prevent accidents [2]. Therefore, the remaining
useful life prediction of rolling element bearing is important for the health management
decision-making of mechanical equipment.

Generally speaking, the RUL prediction methods are divided into four categories:
expert knowledge base-based method, data-driven method, physical model-based method,
and hybrid prediction method [3]. To identify the degradation status of the monitoring
object, the expert knowledge base-based method compares the observed data with the
previously defined fault database through an expert system [4]. This method requires pro-
fessional knowledge about the fault information, which is not conducive to the promotion
of enterprises and companies. The data-driven method utilizes the historical state data
to extract the feature information about the state changes of the monitored object. It uses
techniques (e.g., statistical analysis, pattern recognition, and machine learning) to establish

Machines 2023, 11, 678. https://doi.org/10.3390/machines11070678 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11070678
https://doi.org/10.3390/machines11070678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-0941-4835
https://doi.org/10.3390/machines11070678
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11070678?type=check_update&version=3


Machines 2023, 11, 678 2 of 20

a fuzzy function relationship between the sensor data and the state of the monitored ob-
ject, which achieves the state evaluation and the RUL prediction of the monitored object.
Because the data-driven method is not limited by the professional knowledge of physical
objects, it is widely used in degradation modeling and RUL prediction. However, this
method requires the establishment of a characterization function for the monitoring object’s
state. As the prediction time span gradually increases, the tracking ability of the model
is weakened, and the accuracy of the RUL prediction decreases. Machine learning-based
methods require many high-quality training data, which are often lacking in practice [5].
The physical model-based method utilizes mathematical functions of physical behavior to
characterize the degradation status of monitoring objects [6]. Although this method has
high prediction accuracy, it requires a deep understanding of the physical characteristics
of the monitored object. The accuracy of the prognosis largely depends on the accuracy
of the used physical model. The hybrid prediction method is a combination of physical
models and data-driven methods, which has good estimation and prediction performance.
Moreover, it can effectively simulate the uncertainty of monitoring object degradation [7].
However, the hybrid prediction method may make the algorithm complex and be limited
by the physical modeling requirements.

Although the above methods have achieved good results in predicting the remaining
useful life of rolling element bearing, they do not consider the real-time changes in the
operating conditions of REB (e.g., the REB load, number of shutdowns, environmental
temperature, humidity, vibration, and operating speed). The remaining useful life of
rolling element bearings is related to their working conditions [8,9]. A prediction model
considering real-time operating conditions can accurately describe its degradation trend.
Furthermore, we can obtain accurate prediction results. In addition, due to the noise,
interference, and instrument irrationality impacts on the measurement data, it is impossible
to accurately measure the actual degradation state of REB [10]. Therefore, we propose
an RUL prediction method for REB that considers the real-time operating conditions and
measurement errors.

Digital Twin is used to create a virtual model of a physical entity in digital form. It uses
twin data to simulate the behavior of a physical entity and realizes the interaction between
the entity and the virtual model [11]. Because DT has the characteristics of mapping and
interactive fusion, it can reflect the working condition of the physical entity to the virtual
model in real time.

We propose a hybrid RUL prediction method based on DT and LSTM. The hybrid
method improves the real-time, accuracy, and robustness of the RUL prediction for the
REB system. The rest of the paper is organized as follows. Section 2 reviews the studies
on LSTM-based RUL prediction and DT-based RUL modeling. Section 3 presents a hybrid
RUL prediction method based on DT. Section 4 shows a case study of how to predict the
RUL based on DT. Finally, conclusions are drawn in Section 5.

2. Related Works
2.1. LSTM-Based RUL Prediction

Ma et al. proposed an LSTM model based on deep convolution to predict RUL [12].
Shi et al. designed a dual-LSTM model to detect change points and predict the RUL of
turbofan engines [13]. Park et al. proposed an LSTM-based prediction method to predict the
RUL of a battery [14]. Ren et al. developed a CNN-LSTM method for the RUL prediction of
battery [15]. Liu et al. fused clustering and LSTM to predict the RUL of an aero-engine [16].
Zhao et al. designed a new LSTM method for RUL prediction [17]. Liu et al. established an
LSTM RNN model for RUL prediction of supercapacitors [18]. Fu et al. designed a deep
residual LSTM model to predict RUL [19].

A data-based model with high prediction performance is established when it obtains
sufficient input and output data. If the obtained data is not comprehensive enough, the
established model will be difficult to adapt to various situations. Poor robustness is an
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inherent characteristic of data-based modeling. To realize the RUL control, the data-based
error prediction model should be embedded into the DT system.

2.2. DT-Based RUL Modeling

Some scholars designed a DT system for the RUL prediction. Guo et al. designed
a DT system for the RUL prediction of functional parts [20]. He et al. reviewed DT-
driven RUL prediction of gear performance degradation [21]. Meraghni et al. applied
a data-driven DT model for RUL prediction [22]. Zhang et al. researched a DT-based
prediction approach for REB [23]. Moghadam et al. used a DT model to estimate the RUL
of floating wind turbines [24]. Qu et al. developed a DT model to evaluate the degradation
performance of batteries [25]. Xiong et al. designed a DT-driven approach for the RUL
of an aero-engine [26]. Aivaliotis et al. developed a DT system to calculate the RUL of
equipment [27].

The DT model based on hypothetical operating conditions is inconsistent with the
actual operating conditions of the equipment, which leads to inconsistent models and low
prediction accuracy. Therefore, we use LSTM-based models to correct DT simulation data.
This improves the prediction accuracy of RULs and the processing precision of REB.

3. Hybrid Method Based on DT
3.1. DT

DT is used to create virtual models of real objects. DT combines models, data, and inte-
gration technologies. It achieves the coverage of the entire product lifecycle process and the
connectivity and interaction between physical space and information space [28]. Grieves
first proposed the concept of DT and defined the 3D model of DT (e.g., physical product,
virtual product, and connection) [29]. NASA has successfully applied DT to aircraft health
management. Tao et al. introduced DT into the field of intelligent manufacturing and
presented the concept of a DT workshop [11], which promoted the research and develop-
ment of DT. The evolution characteristics of the rolling element bearing DT system are
complex, dynamic, and stochastic. Therefore, we detect and correct the thermal boundary
of physical equipment and map it to virtual entities. The actual thermal characteristic of
physical equipment is obtained by finite element simulation, which improves the accuracy
of the thermal characteristic.

3.2. LSTM

LSTM is a time cycle network. When there is a time series relationship between the
processed task and time, LSTM has excellent processing and prediction performance. The
rolling element bearing thermal deformation has a time series characteristic. Therefore,
LSTM is suitable for the remaining useful life prediction of rolling element bearing.

LSTM has the forget gate, input gate, and output gate [30]. At the previous time, the
preservation degree of the unit state at the previous time is determined by the forget gate.
At the current time, the preservation degree of the unit state is determined by the input
gate. The output gate determines the output degree of the unit state to the current output
value. Figure 1 shows the network structure of LSTM.

The forget gate is given by [31]:

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

where ft denotes the forget gate; σ represents the sigmoid function; W f represents the
weight coefficient; ht−1 represents the last moment output; xt represents the input at the
time t; b f represents the offset.

The input gate is given by [31]:

it = σ(Wi · [ht−1, xt] + bi) (2)
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C̃ = tanh(Wc · [ht−1, xt] + bC) (3)

where it and C̃t denote the input information; Wi and WC represent the weight coefficient;
bi and bC represent the offset.
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The updated cell information is given by [31]:

Ct = ft · Ct−1 + it · C̃t (4)

where Ct−1 is the old cell information.
The output formula of LSTM is given by [31]:

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot · tanh(Ct) (6)

where Wo denotes the weight coefficient; bo denotes the offset; ht denotes the current
moment output.

3.3. Hybrid Method Base on DT
3.3.1. Framework

Figure 2 shows the framework of the hybrid method. The hybrid method combines
LSTM and DT to obtain high prediction accuracy. Based on material characteristics and
operating conditions, a multi-domain DT model for rolling element bearing is established.
The temperature field is simulated using the working condition mapping of REB. The
internal temperature state of REB is calculated as a virtual sensing signal. Then, the RUL
prediction using LSTM is performed on the actual signal. Finally, the PSO algorithm is used
to combine a theoretical value and an actual value. The LSTM observation result modifies
the DT simulation result.

3.3.2. Implementation
The Implementation of the DT Model

Figure 3 shows the DT model implementation. During DT model building, multi-
domain knowledge (e.g., structural parameters, material properties, and service conditions)
must be considered simultaneously. Multi-domain modeling software contains ANSYS
and UG. Therefore, object models from the REB system can be constructed and embedded
into a unified multi-domain model.
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(1) REB heat calculation

The heat of REB is generated by internal friction. The friction torque plays a decisive
role in the heat generation of REB. The heat calculation is the foundation of the REB thermal
analysis. Based on the measurement results of the REB friction torque, we divide the REB
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friction torque into the load friction torque and the viscous friction torque. The calculation
formulas for the load friction torque and the viscous friction torque are given by [32]:

M f = Ml + Mv
Ml = f1P1Dm

Mv =

{
103 f0(vn)

2
3 D3

m
16 f0D3

m

(7)

where M f represents the total friction torque; Ml represents the friction torque related to a
load; Mv represents the friction torque related to lubricating oil properties; n represents
the REB speed; v represents the kinematic viscosity of the lubricating oil; f0 and f1 are the
correlation coefficient; P1 represents the calculated load. The heat generation of REB can be
expressed as the product of the friction torque and the REB angular velocity [32]:

Hbear =
πnM f

30
(8)

Convective heat transfer is the most important heat transfer method of REB. It is
also the most difficult form of heat transfer to quantitatively calculate. When the low-
temperature lubricating oil flows through the inner and outer raceway surfaces, rolling
element (RB) surfaces, and cage surfaces of the high-temperature REB, the heat generated
by REB friction is transferred to the lubricating oil through the convective heat transfer.
Then, the lubricating oil transfers the heat to other components of REB. The convective heat
transfer coefficient is given by [32]:

α = 0.332
k

Dm
P

1
3

r R
1
2
e (9)

where k is the thermal conductivity; Pr is the Ludwig Prandtl number; Re represents the
Reynolds number, Re = vx/v0; v0 is the kinematic viscosity. When the REB transfers heat
to the lubricating oil, x = Dm, v represents the surface velocity of the cage; when the inner
wall of the REB cavity transfers heat to the lubricating oil, x = Dh, v is taken as 1/3 of the
cage surface velocity.

The heat transfer coefficient between the REB surface and the air is given by [32]:

α =

{
0.3(T − Ta), Natural convection
0.3 ka

Dh
R0.57

e , Forced convection

Re =
vDh
va

(10)

where Ta is the ambient temperature around the casing; Dh is the diameter of the casing; ka is
the thermal conductivity of air; v is the airflow velocity; va is the kinematic viscosity of air.

After calculating the REB heat generation and the convective heat transfer coefficient,
the steady-state thermal analysis module of ANSYS Workbench performs the thermal
analysis of REB. First, we set the basic properties of REB, and then we divide the mesh. Due
to the mesh division’s impact on the solution accuracy, we refine the mesh of the contact
area. Finally, the boundary condition setting is analyzed by two types of constraints. One
is the loading heat flux on the surface of the RBs in contact with the raceway. The other is
the load thermal convection on the surface of the inner and outer rings and the RBs.

(2) REB load distribution

The centrifugal force and the gyroscopic moment generated by the RB are small.
The influence of these factors can be ignored when we calculate and analyze the load
distribution. The RB load can be analyzed statically, and the contact angle between the RB
and the inner and outer rings is assumed to be equal. When the REB only bears the radial
load Fr, the upper half RBs of the REB are not loaded. However, the lower half RB of the
REB is loaded. Figure 4 shows the load distribution of REB. Under the action of the radial
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load Fr. The inner and outer rings move radially by a distance of δr. The RB located on
the external force line is the most loaded, and the maximum contact deformation is given
by [32]:

δmax = δr −
Gr

2
(11)

where δmax represents the elastic deformation at the RB maximum load; δr represents the
radial deformation; Gr represents the working clearance.
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According to the deformation coordination conditions, the deformation amount at the
contact between each RB and the raceway is given by [32]:

δΨ = δr cos Ψ− Gr

2
= δmax

(
1− 1− cos Ψ

2δmax
2δmax+Gr

)
(12)

where Ψ represents the angle between the center of each RB and the maximum load of RB;
δΨ is the elastic deformation at the RB maximum load. ε is given by [32]:

ε =
1
2

(
1− Gr

2δmax + Gr

)
(13)

where ε represents the load distribution parameter of REB. It is the size of the load zone
range of REB.

According to the Hertz contact theory, the RB load at any position is given by [32]:

QΨ = Qmax

[
1− 1

2ε
(1− cos Ψ)

]t
(14)

(3) RUL mathematical model of REB

The REB fatigue life is given by [32]:

L10 = (C/P)p (15)

where L10 represents that the REB can meet the predetermined load within 90% of its
service life; C represents the basic dynamic load capacity; P represents the actual load;
p represents the Exponent constant.
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The remaining useful life of rolling element bearing is given by [32]:

RUL = (L10− L)/L10 × 100% (16)

where RUL represents the percentage of remaining useful life; L10 represents the fatigue
life of REB; L represents the actual service life. By Equation (16), the remaining useful life of
rolling element bearing can be estimated. We can plan the replacement of REB and avoid
the losses caused by the REB failure.

The Implementation of the LSTM Model

Figure 5 shows the specific implementation process of the RUL prediction model based
on LSTM. The inputs of the RUL model are the REB full life cycle signal data. First, it is
necessary to preprocess the data. Then, the preprocessed data is separated into the training
group and the test group. Next, we normalize the feature data. Finally, an LSTM network
is constructed and trained to obtain the predicted RUL value.
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The Implementation of the Hybrid Method

Using the fusion method, the predicted RUL of LSTM is taken as the systematic
observation value to correct the theoretical and empirical derivation results driven by the
DT model. PSO used in this paper is a fusion algorithm. The steps of the hybrid method
are shown in Figure 6.

(1) Establish an LSTM model for the REB system and use the predicted RUL value
obtained from the model as an observation value.

(2) According to the RUL variation rules of the DT model, it is converted into an RUL
space model for initialization based on the PSO algorithm, and the internal state of
the system is calculated using model simulation.

(3) Initialize the PSO algorithm based on the RUL space model and use the observed
values to modify the theoretical values obtained from the system model simulation
and reasoning. We can obtain more accurate RUL prediction values.

(4) Judge whether the predicted value of the RUL reaches the threshold value based on
the analysis results of the PSO algorithm. If the predicted value of the RUL reaches
the threshold value, we should make appropriate maintenance. Otherwise, return to
(2) to repeat the iteration.



Machines 2023, 11, 678 9 of 20

Machines 2023, 11, 678 9 of 21 
 

 

The Implementation of the LSTM Model  
Figure 5 shows the specific implementation process of the RUL prediction model 

based on LSTM. The inputs of the RUL model are the REB full life cycle signal data. First, 
it is necessary to preprocess the data. Then, the preprocessed data is separated into the 
training group and the test group. Next, we normalize the feature data. Finally, an LSTM 
network is constructed and trained to obtain the predicted RUL value. 

 
Figure 5. The implementation process of the LSTM model. 

The Implementation of the Hybrid Method 
Using the fusion method, the predicted RUL of LSTM is taken as the systematic ob-

servation value to correct the theoretical and empirical derivation results driven by the 
DT model. PSO used in this paper is a fusion algorithm. The steps of the hybrid method 
are shown in Figure 6. 

 
Figure 6. The steps of the hybrid method. Figure 6. The steps of the hybrid method.

Take PSO for example, the state equation of the system is given by [33].

xk = fk(xk−1, vk−1) (17)

where x represents the system state, f represents the system state transition function, and
v represents the system noise. The measurement equation of the system is shown as
Equation (18), in which y represents the measured system state, h represents the measure-
ment function, and n represents the measurement noise.

yk = hk(xk, nk) (18)

PSO includes two processes: prediction and updating. In the prediction process,
Bayesian calculation as used in Equations (19)–(21) is used to estimate the next state
according to the prior probability density of the system, and the updating process uses the
measured data to modify the prediction results.

p(xk|xk ) =
p(y1:k|xk )p(xk|y1:k−1 )

p(y1:k)
(19)

p(xk|y1:k−1 ) =
∫

p(xk, xk−1|y1:k−1 )dxk−1
p(xk|y1:k−1 ) =

∫
p(xk, xk−1)p(xk−1|y1:k−1 )dxk−1

(20)

p(y1:k) =
∫

p(yk|x k)p(xk|y1:k−1 )dxk (21)
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The integration of Equation (21) in Bayesian calculation is replaced by Monte Carlo
sampling as Equation (22) and the average value of the sampled particles is calculated to
get the expected value.

E[ f (xn)] ≈
1
N

N

∑
i=1

f
(

x(i)n

)
(22)

PSO refers to the process of approximating the probability density function by finding
a set of random samples propagating in the state space and replacing the integral operation
with the sample mean to obtain the minimum variance distribution of the state. When
the number of particles N → ∞ , it can approach any form of probability density distribu-
tion. Therefore, the prediction result is more accurate than the theoretical derivation and
observation value.

The Hybrid Method in the PHM System

As an indispensable key component in industrial machinery and equipment, REBs
are related to the safety and stability of the equipment. As an important technology
of rolling element bearing prediction and health management, the RUL prediction can
effectively estimate their remaining life, so as to realize early intervention and maintenance
of mechanical equipment and ensure the safety of enterprises’ production [34]. In this
paper, REB is diagnosed, predicted, and optimized using the hybrid method separately
and it is assigned different weights to make up the whole predictive maintenance.

4. Case Study
4.1. Experiment Platform and Database

Figure 7 shows the testing platform for the REB accelerated life test. These data are
collected from one REB vibration signal at a speed of 2100 r/min and a radial load of
12 kN. We set the sampling frequency at 25.6 kHz, the sampling duration at 1.28 s, and
the sampling interval at 1 min. Under this working condition, the total lifespan of REB
is around 2 h and 30 min. The REB has an outer ring fault. One temperature sensor
is arranged on the REB system to measure the temperature changes. One strain gauge
load sensor is applied to measure the load changes. One vertical accelerometer and one
horizontal accelerometer are installed on the REB system to measure the vibration signal.
We divide the dataset of the full life cycle vibration signals of the bearing. A total of 70% of
the bearing data is divided into a training set by proportional sampling, and 30% of the
bearing data is divided into a testing set to test the LSTM model. The data information
used in the experiment is shown in Table 1.
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4.2. DT-Based Hybrid RUL Prediction Approach for REB
4.2.1. The Realization of the DT Model

To construct a DT model, Tables 2 and 3 show the material and structure parameters
of REB, respectively.

Table 2. The material parameters of REB.

Part REB

Material GCr15
Density/(g/m2) 7.83

Modulus of elasticity E/GPa 2.19
Poisson’s ratio µ 0.3

Thermal conductivity/(W/m◦C) 49
Coefficient of thermal expansion/(◦C−1) 13.5 × 10−6

Table 3. The structure parameters of REB.

Number Parameter Name Value

1 Inner diameter 30 mm
2 Outer diameter 62 mm
3 Pitch diameter 46 mm
4 Ball diameter 9.25 mm
5 REB width 16 mm
6 Number of balls 8
7 Coefficient of curvature radius of inner groove 0.515
8 Coefficient of curvature radius of external groove 0.52

To facilitate the DT model establishment of REB, we use UG software to appropriately
simplify the three-dimensional model of REB. The simplified model is imported into
Workbench software. Then, in order to simplify the calculation process, a two-dimensional
axisymmetric model is drawn based on the cross-sectional dimensions. Finally, to ensure
the convergence of the entire model and the accuracy of the temperature distribution results,
the grid division of the heat transfer concentration area near the REB is relatively dense, and
the grid division of the inner cavity and outer surface edge areas of REB is relatively sparse.
After adding the temperature measuring point and the load measuring point, the DT system
starts to measure the REB temperature and correct the thermal boundary. The temperature
field of REB is shown in Figure 8. Rolling element bearing contains RBs, an inner ring, an
outer ring, and a cage. The overall introduction structure is too complex, which affects the
calculation speed and makes the calculation results inaccurate. Considering the symmetry
characteristics of REB, we use a single RB and a combination of inner and outer rings as
the analysis unit. The entire structure analysis can be achieved by the cyclic symmetry
constraints. The RB thermal stress nephogram is shown in Figure 9.

Figure 10 shows the comparison between the simulated vibration signal and the actual
vibration signal of REB. Figure 11 shows a comparison between the simulated REB load
and the actual REB load. The experimental results show that the simulated vibration signal
accuracy of DT is above 97.8%, and the simulated load distribution accuracy is up to 96.5%.
This proves that the proposed DT model can reflect the actual thermal characteristics.

4.2.2. The Realization of the LSTM Model

First, we smoothed the collected data. Taking the horizontal vibration signal as an
example, Figure 12 is the collected vibration signal data. The curve has a lot of noise.
Therefore, it needs to be smoothed. To reduce the computational complexity, we adopted
the moving average filtering method. The smoothing result is shown in Figure 13. After
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noise elimination, we chose 70% for the training group and 30% for the test group. The
normalization formula is given by [35]:

x′i =
xi − xmin

xmax − xmin
(23)
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This paper builds an LSTM neural network based on the Python framework. Due
to the complexity and depth of the model structure, it is necessary to simplify the model
structure. To select a suitable model structure, we conducted the relevant experiments. As
shown in Table 4, we can obtain the maximum residual value of the RUL prediction by
setting different LSTM layers and hidden node numbers. The maximum residual error
of the LSTM with two layers and twelve hidden nodes is the smallest, which has the
highest accuracy.

Table 4. The maximum residual error corresponding to different LSTM layers and hidden node numbers.

Model Structure LSTM Two-Layer Maximum
Residual Error (µm)

LSTM Three-Layer Maximum
Residual Error (µm)

LSTM Four-Layer Maximum
Residual Error (µm)

eight hidden nodes 11.6 8 17
twelve hidden nodes 7 10.4 20
sixteen hidden nodes 9 12.6 25.3
twenty hidden nodes 10.3 11 17.6

After repeated experiments, we chose the LSTM structure with four layers, which
include one input layer, two hidden layers, one output layer, six input layer nodes,
twelve hidden layer nodes, and two output layer nodes. We used the gradient descent
method to find the optimal solution, and the training results display the maximum residu-
als of the predicted value. We set the number of iterations as 1000 and the learning rate as
0.1. The model parameters are randomly initialized. The root mean square error (RMSE)
convergence curve during training is shown in Figure 14.
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4.2.3. The Realization of the Hybrid Method

In this research, theoretical values with DT and LSTM-driven RUL predicted values
are fused in the PSO algorithm. The RUL prediction from the LSTM-driven method is
taken as the observation value of the PSO algorithm to adjust the theoretical value of
RUL. Equation (16) shows the RUL theoretical value of REB, which is used as the system
state equation of PSO to initialize the algorithm. Meanwhile, the actual value of the RUL
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obtained by LSTM is shown in Equation (6), which is used as the system observation value
of PSO. The number of particles is set to 150. The Algorithm 1 is shown below.

Algorithm 1: The Hybrid Method for the RUL Prediction of REB

Input: The theoretical prediction value of DT and the actual prediction value of LSTM
Output: The particles prediction value

(1) Initialize the parameters and particles
(2) RUL = (L10− L)/L10 × 100%

(3) ht = ot · tanh(Ct)
for 1 = 1:150

(4) Sample from (2)
(5) Calculate the RUL prediction value hti of particles by (3)

(6) Calculate the weight RUL(i) of each particle
end

(7) Normalize the weight
(8) Resample according to the normalized weight

(9) Output the RUL prediction value h f of REB

The h f value is the final RUL predicted by the hybrid approach. REB maintenance is
conducted if h f has reached the threshold; otherwise, the RUL is predicted by the hybrid
approach again [33].

Table 5 shows the robustness evaluation of different methods. Therefore, compared
with DT and LSTM, the hybrid method has strong robustness. The robustness is given
by [36].

Rob(X) =
1
n

n

∑
i=1

(
−
∣∣∣∣ xi − x̃

xi

∣∣∣∣) (24)

where xi represents the remaining useful life value of remaining useful life. x̃ represents
the mean value of xi.

Table 5. The robustness evaluation of different methods.

Method Robustness

DT 0.754
LSTM 0.841

Hybrid Method 0.96

4.3. The Analysis of Experimental Results

The RUL prediction result of REB is shown in Figure 15. Well-known hybrid algorithms
are Karman Filter, PSO, and Ensemble Learning. We compared the three hybrid algorithms
in Figure 16. It indicated that the PSO algorithm has the best prediction performance. When
we use single prediction methods (e.g., DT and LSTM), there is a significant error between
the predicted value and the actual value. When we use a hybrid method based on DT,
the predicted value is closer to the actual value, and the prediction accuracy is improved.
The hybrid method overcomes the model inconsistency of DT and the poor adaptability of
LSTM. The prediction accuracy of the hybrid method is greater than 97.5%, which improves
the prediction accuracy and robustness of RUL.

Figure 15 shows the RUL prediction value of different methods. When we use single
prediction methods (e.g., DT and LSTM), there is a significant error between the predicted
value curve and the actual curve. When we use the hybrid method, the predicted curve
is close to the actual curve, and the prediction accuracy is improved. The hybrid method
overcomes the model inconsistency of DT and the poor adaptability of LSTM. The hybrid
method has a higher accuracy than the single method by nearly 11.5%, which improves the
prediction performance and robustness of RUL. Table 6 shows the quantitative evaluation
of different methods. Table 7 shows the accuracy comparison of different methods. The
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result indicates that the hybrid method has higher accuracy at all stages compared with DT
and LSTM. The average accuracy of LSTM is 97.5%. Meanwhile, the hybrid method shows
better prediction performance compared with the other method.
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Table 6. The quantitative evaluation of different methods.

Method Start Stage Accuracy Middle Stage Accuracy End Stage Accuracy Average Accuracy

DT 90% 87% 81% 86%
LSTM 97.5% 89.5% 84.5% 90.5%

Hybrid Method 100% 97.5% 95% 97.5%

Table 7. The accuracy comparison of different methods.

Method Accuracy

MMA-BiLSTM [23] 90.33%

Co-Simulation-Based DT [37] 92.39%
Linear Mapping Method [38] 96.86%

Hybrid Method 97.5%

5. Conclusions

To enhance the RUL prediction accuracy of REB, we propose a novel RUL prediction
method based on DT. Firstly, we established a DT system to simulate the thermal charac-
teristics and the load distribution of REB. Based on the simulated result, we can obtain
the theoretical value of RUL. Then, LSTM was constructed to analyze the experimental
data. The output of LSTM is the actual value of RUL. Finally, we used the PSO algorithm to
fuse the theoretical values of DT with the actual values of LSTM. The hybrid method was
compared with the single method, and the accuracy of the hybrid method was greater than
97.5%. Therefore, the hybrid method can predict the remaining useful life of rolling element
bearing effectively and provide a theoretical basis for the RUL warning of REB. This paper
only verifies the method for REB. In the future, the hybrid method will be applied to the
other components. Real time is a crucial aspect of RUL prediction. The simulation of the DT
physical performance model consumes much computing resources and time. In the future,
we will improve the real-time performance and computational efficiency of DT simulation.

Author Contributions: Methodology, Q.L.; validation, M.L.; formal analysis, Q.L.; investigation,
M.L.; resources, Q.L.; writing—original draft preparation, Q.L.; writing—review and editing, M.L.;
funding acquisition, Q.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Hebei University Science and technology research project
“Intelligent maintenance of production line based on digital twin and deep learning” Under Grant
QN2022201 and the 2023 Graduate Innovation Fund Project of China University of Geosciences,
Beijing Under Grant ZD2023YC041.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deng, F.; Chen, Z.; Liu, Y.; Yang, S.; Hao, R.; Lyu, L. A novel combination neural network based on ConvLSTM-Transformer for

bearing remaining useful life prediction. Machines 2022, 10, 1226. [CrossRef]
2. Li, X.; An, S.; Shi, Y.; Huang, Y. Remaining useful life estimation of rolling bearing based on SOA-SVM algorithm. Machines 2022,

10, 729. [CrossRef]
3. Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL

prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [CrossRef]
4. Zimmermann, N.; Lang, S.; Blaser, P.; Mayr, J. Adaptive input selection for RUL compensation models. CIRP Ann. 2020, 69,

485–488. [CrossRef]
5. Liang, Y.C.; Li, W.D.; Lou, P.; Hu, J.M. RUL prediction for heavy-duty CNC machines enabled by long short-term memory

networks and fog-cloud architecture. J. Manuf. Syst. 2022, 62, 950–963. [CrossRef]

https://doi.org/10.3390/machines10121226
https://doi.org/10.3390/machines10090729
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/j.cirp.2020.03.017
https://doi.org/10.1016/j.jmsy.2020.10.008


Machines 2023, 11, 678 19 of 20

6. Srikanth, I.; Arockiasamy, M. Deterioration models for prediction of remaining useful life of timber and concrete bridges: A
review. J. Traffic Transp. Eng. 2020, 7, 152–173. [CrossRef]

7. Yan, M.; Wang, X.; Wang, B.; Chang, M.; Muhammad, I. Bearing remaining useful life prediction using support vector machine
and hybrid degradation tracking model. ISA Trans. 2020, 98, 471–482. [CrossRef]

8. Li, X.; Cheng, J.; Shao, H.; Liu, K.; Cai, B. A fusion CWSMM-based framework for rotating machinery fault diagnosis under
strong interference and imbalanced case. IEEE T. Ind. Inform. 2021, 18, 5180–5189. [CrossRef]

9. Yan, X.; She, D.; Xu, Y.; Jia, M. Deep regularized variational autoencoder for intelligent fault diagnosis of rotor-bearing system
within entire life-cycle process. Knowl.-Based Syst. 2021, 226, 107142. [CrossRef]

10. Li, Y.; Huang, X.; Ding, P.; Zhao, C. Wiener-based remaining useful life prediction of rolling bearings using improved Kalman
filtering and adaptive modification. Measurement 2021, 182, 109706. [CrossRef]

11. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE T. Ind. Inform. 2018, 15, 2405–2415. [CrossRef]
12. Ma, M.; Mao, Z. Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Trans. Ind. Inform. 2020, 17,

1658–1667. [CrossRef]
13. Shi, Z.; Chehade, A. A dual-LSTM framework combining change point detection and remaining useful life prediction. Reliab. Eng.

Syst. Saf. 2021, 205, 107257. [CrossRef]
14. Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.Y.; Kim, H. LSTM-based battery remaining useful life prediction with multi-channel charging

profiles. IEEE Access 2020, 8, 20786–20798. [CrossRef]
15. Ren, L.; Dong, J.; Wang, X.; Meng, Z.; Zhao, L.; Deen, M.J. A data-driven auto-CNN-LSTM prediction model for lithium-ion

battery remaining useful life. IEEE Trans. Ind. Inform. 2020, 17, 3478–3487. [CrossRef]
16. Liu, J.; Lei, F.; Pan, C.; Hu, D.; Zuo, H. Prediction of remaining useful life of multi-stage aero-engine based on clustering and

LSTM fusion. Reliab. Eng. Syst. Saf. 2021, 214, 107807. [CrossRef]
17. Zhao, C.; Huang, X.; Li, Y.; Li, S. A novel cap-LSTM model for remaining useful life prediction. IEEE Sens. J. 2021, 21, 23498–23509.

[CrossRef]
18. Liu, C.; Zhang, Y.; Sun, J.; Cui, Z.; Wang, K. Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor.

Int. J. Energy Res. 2022, 46, 3034–3043. [CrossRef]
19. Fu, S.; Zhang, Y.; Lin, L.; Zhao, M.; Zhong, S.S. Deep residual LSTM with domain-invariance for remaining useful life prediction

across domains. Reliab. Eng. Syst. Saf. 2021, 216, 108012. [CrossRef]
20. Guo, J.; Yang, Z.; Chen, C.; Luo, W.; Hu, W. Real-time prediction of remaining useful life and preventive maintenance strategy

based on digital twin. J. Comput. Inf. Sci. Eng. 2021, 21, 031003–031017. [CrossRef]
21. He, B.; Liu, L.; Zhang, D. Digital twin-driven remaining useful life prediction for gear performance degradation: A review.

J. Comput. Inf. Sci. Eng. 2021, 21, 030801. [CrossRef]
22. Meraghni, S.; Terrissa, L.S.; Yue, M.; Ma, J.; Jemei, S.; Zerhouni, N. A data-driven digital-twin prognostics method for proton

exchange membrane fuel cell remaining useful life prediction. Int. J. Hydrog. Energy 2021, 46, 2555–2564. [CrossRef]
23. Zhang, R.; Zeng, Z.; Li, Y.; Liu, J.; Wang, Z. Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on

Digital Twin. Entropy 2022, 24, 1578. [CrossRef] [PubMed]
24. Moghadam, F.K.; Nejad, A.R. Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mech.

Syst. Signal Process. 2022, 162, 108087. [CrossRef]
25. Qu, X.; Song, Y.; Liu, D.; Cui, X.; Peng, Y. Lithium-ion battery performance degradation evaluation in dynamic operating

conditions based on a digital twin model. Microelectron. Reliab. 2020, 114, 113857. [CrossRef]
26. Xiong, M.; Wang, H.; Fu, Q.; Xu, Y. Digital twin-driven aero-engine intelligent predictive maintenance. Int. J. Adv. Manuf. Technol.

2021, 114, 3751–3761. [CrossRef]
27. Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J.

Comput. Integr. Manuf. 2019, 32, 1067–1080. [CrossRef]
28. Liu, R.J.; Li, H.S.; Lv, Z.H. Modeling methods of 3D model in digital twins. CMES-Comp. Model. Eng. 2023, 136, 985–1022.

[CrossRef]
29. Grieves, M.W. Product lifecycle management: The new paradigm for enterprises. Int. J. Prod. Dev. 2005, 2, 71–84. [CrossRef]
30. Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top.

2019, 228, 2313–2324. [CrossRef]
31. Korstanje, J. LSTM RNNs. In Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet,

and Amazon’s DeepAR; Apress: Berkeley, CA, USA, 2021; pp. 243–251.
32. Chen, Z.C.; Chen, Z.N. Termal Characteristics Foundation of Machine Tools; Machinery Industry Press: Beijing, China, 1989.
33. Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [CrossRef]
34. Vrignat, P.; Kratz, F.; Avila, M. Sustainable manufacturing, maintenance policies, prognostics and health management: A literature

review. Reliab. Eng. Syst. Saf. 2022, 218, 108140. [CrossRef]
35. Tang, X.; Liu, K.; Lu, J.; Liu, B.; Wang, X.; Gao, F. Battery incremental capacity curve extraction by a two-dimensional Luenberger-

Gaussian-moving-average filter. Appl. Energy 2020, 280, 115895. [CrossRef]
36. Baker, J.W.; Schubert, M.; Faber, M.H. On the assessment of robustness. Struct. Saf. 2008, 30, 253–267. [CrossRef]

https://doi.org/10.1016/j.jtte.2019.09.005
https://doi.org/10.1016/j.isatra.2019.08.058
https://doi.org/10.1109/TII.2021.3125385
https://doi.org/10.1016/j.knosys.2021.107142
https://doi.org/10.1016/j.measurement.2021.109706
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2020.2991796
https://doi.org/10.1016/j.ress.2020.107257
https://doi.org/10.1109/ACCESS.2020.2968939
https://doi.org/10.1109/TII.2020.3008223
https://doi.org/10.1016/j.ress.2021.107807
https://doi.org/10.1109/JSEN.2021.3109623
https://doi.org/10.1002/er.7360
https://doi.org/10.1016/j.ress.2021.108012
https://doi.org/10.1115/1.4049153
https://doi.org/10.1115/1.4049537
https://doi.org/10.1016/j.ijhydene.2020.10.108
https://doi.org/10.3390/e24111578
https://www.ncbi.nlm.nih.gov/pubmed/36359668
https://doi.org/10.1016/j.ymssp.2021.108087
https://doi.org/10.1016/j.microrel.2020.113857
https://doi.org/10.1007/s00170-021-06976-w
https://doi.org/10.1080/0951192X.2019.1686173
https://doi.org/10.32604/cmes.2023.023154
https://doi.org/10.1504/IJPD.2005.006669
https://doi.org/10.1140/epjst/e2019-900046-x
https://doi.org/10.1016/j.chemolab.2015.08.020
https://doi.org/10.1016/j.ress.2021.108140
https://doi.org/10.1016/j.apenergy.2020.115895
https://doi.org/10.1016/j.strusafe.2006.11.004


Machines 2023, 11, 678 20 of 20

37. Xia, M.; Li, T.; Shu, T.; Wan, J.; De Silva, C.W.; Wang, Z. A two-stage approach for the remaining useful life prediction of bearings
using deep neural networks. IEEE Trans. Ind. Inform. 2018, 15, 3703–3711. [CrossRef]

38. Wang, Q.; Xu, K.; Kong, X.; Huai, T. A linear mapping method for predicting accurately the RUL of rolling bearing. Measurement
2021, 176, 109127. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TII.2018.2868687
https://doi.org/10.1016/j.measurement.2021.109127

	Introduction 
	Related Works 
	LSTM-Based RUL Prediction 
	DT-Based RUL Modeling 

	Hybrid Method Based on DT 
	DT 
	LSTM 
	Hybrid Method Base on DT 
	Framework 
	Implementation 


	Case Study 
	Experiment Platform and Database 
	DT-Based Hybrid RUL Prediction Approach for REB 
	The Realization of the DT Model 
	The Realization of the LSTM Model 
	The Realization of the Hybrid Method 

	The Analysis of Experimental Results 

	Conclusions 
	References

