
Citation: Chang, W.-J.; Su, C.-L.; Ku,

C.-C.; Sun, C.-C. Constrained Cost

Fuzzy Control via Decentralized

Design Approach for Nonlinear

Descriptor Interconnected Systems.

Machines 2023, 11, 666. https://

doi.org/10.3390/machines11060666

Academic Editor: Jan Awrejcewicz

Received: 14 May 2023

Revised: 5 June 2023

Accepted: 16 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Constrained Cost Fuzzy Control via Decentralized Design
Approach for Nonlinear Descriptor Interconnected Systems
Wen-Jer Chang 1,* , Che-Lun Su 1 , Cheung-Chieh Ku 2,* and Chein-Chung Sun 2

1 Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan;
20866005@mail.ntou.edu.tw

2 Department of Marine Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung 805301, Taiwan; cheinchungsun@nkust.edu.tw

* Correspondence: wjchang@mail.ntou.edu.tw (W.-J.C.); ccku7290@nkust.edu.tw (C.-C.K.);
Tel.: +886-2-24622192 (ext. 7110) (W.-J.C.); +886-7-81008882 (ext. 5238) (C.-C.K.)

Abstract: This paper proposes a decentralized robust constrained cost fuzzy controller (DRCCFC)
design for nonlinear descriptor interconnected systems (DIS) with uncertainties. The considered
nonlinear DIS is modeled using Takagi–Sugeno fuzzy model (T-S FM) with fuzzy rules and strong
interconnections. To derive sufficient stability conditions, the quadratic Lyapunov function (QLF)
and free-weighting function (FWF) are defined. In contrast to the existing control approaches, the
proportional–derivative feedback (PDF) control is introduced in this paper. Using the PDF control
techniques, the regular and causal problems of the system can be solved easily. Based on the PDF
control technique and constrained cost control (CCC) function, a set of fuzzy controllers are designed
to effectively control the Takagi–Sugeno descriptor interconnected systems (T-S DIS). Then, the
proposed sufficient conditions for the T-S DIS are derived in the form of linear matrix inequalities
using the Schur complement technique. Finally, two simulation examples are provided to demonstrate
the validity of the proposed control scheme.

Keywords: nonlinear descriptor interconnected systems; Takagi–Sugeno fuzzy model; constrained
cost fuzzy control

1. Introduction

The engineering and social systems that exist today are often described by high-
dimensional and complex mathematical models, such as communication networks, power
systems, and transportation. Describing and understanding these systems often necessitate
the use of sophisticated mathematical models. These high-dimensional models capture the
intricate interactions between various components and factors. Analyzing the stability of
such systems is a daunting challenge due to the enormous amount of information that needs
to be processed. To address this complexity, researchers have proposed an approach called
the interconnected systems (IS) [1,2]. By using IS, the complexity of message processing
can be effectively reduced. In recent years, many experts and researchers have made great
efforts toward the development of IS [3–5]. They explore various applications and domains
aiming to exploit the potential of this paradigm. For example, the application of disturbance
observer-based control in IS has been thoroughly studied [6]. In another study [7], the
authors delved into the analysis of wind farms using the IS method. Furthermore, the
detectability of cyber attacks in interconnected systems has been extensively studied [8].
To further improve the accuracy and completeness of physical modeling, the concept
of an interconnected system has been extended to include the descriptor interconnect
system (DIS). The use of descriptor systems allows for a more precise and comprehensive
description of bodily behavior [9]. However, it is important to note that analyzing the
stability of descriptor systems presents unique challenges, such as addressing regularity and
causality issues [10]. Despite these challenges, researchers have made remarkable progress
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in the field of DIS. Several important discoveries and contributions have been reported,
elucidating important aspects of stability and stability [11], sliding mode control [12], and
decentralized static output tracking control [13], among other important developments.

On the other hand, most physical systems are nonlinear forms, which brings great
difficulties in analyzing the stability of the system. Over the past few years, T-S FM [14,15]
has been considered to be one of the most effective techniques for effectively transforming a
nonlinear system into a set of linear subsystems. The T-S FM divides a complex system into
a set of smaller subsystems, with each subsystem represented by an if-then rule. These rules
consist of two parts: the antecedent, which describes the system inputs using fuzzy sets,
and the consequent, which represents the mathematical function of the system outputs. By
using fuzzy logic and fuzzy rules, the T-S fuzzy model can effectively capture the nonlinear
relationships and uncertainties present in real-world systems. Many important results of T-S
FM have been presented. For example, the authors of [16] studied the fuzzy tracking control
of unmanned surface vehicles. Fuzzy integral sliding mode control of multi-area power
systems was investigated in [17]. The swarm trajectory tracking control of the unmanned
aerial vehicle was considered in [18]. Moreover, the T-S DIS is proposed because it can not
only describe a physical model more accurately than the T-S fuzzy regular system but also
reduce the computational complexity of the method. The application of T-S DIS is diverse
and spans various industries, such as robotics, smart grids, autonomous vehicles, and
many other areas that involve complex and interconnected processes. The ability to model,
control, and optimize these systems using T-S fuzzy modeling and control techniques
opens up new possibilities for automation, efficiency, and performance improvement. In
addition, some results of the T-S DIS are given. For instance, the robust decentralized
static output-feedback control for a T-S DIS was investigated in [19]. The passive control
techniques for T-S DIS were proposed in [20]. Recently, decentralized multi-performance
control for T-S DIS was considered in [21].

Among all methods of controlling T-S DIS, one approach is through decentralized
control strategies. The decentralized control is a control paradigm that distributes the
decision-making authority among multiple components or subsystems in a system. Unlike
centralized control, where a single controller oversees the entire system, decentralized
control allows individual entities to make autonomous decisions based on local information
and objectives. The fundamental principle of decentralized control is local decision making.
Each component or subsystem is equipped with its own controller, which operates inde-
pendently based on local measurements and objectives. This autonomy enables individual
entities to respond to local changes and uncertainties without relying on a centralized au-
thority. However, decentralized control also presents challenges that need to be addressed.
One of the primary challenges is achieving coordination among decentralized controllers.
Since each controller operates independently, ensuring consistent and coherent actions
across the system requires effective coordination mechanisms. Decentralized control has
found applications in various domains. In robotics, decentralized control enables the
coordination of multiple robots to perform collaborative tasks efficiently. In manufacturing,
decentralized control optimizes production processes by allowing individual machines
or workstations to make local decisions while coordinating with neighboring entities. In
transportation, decentralized control can be applied to traffic management, autonomous
vehicles, and intelligent transportation systems to enhance safety and optimize traffic flow.

Another important aspect of control in T-S DIS is the limit of the descriptor matrix.
The descriptor matrix may cause regular and impulse-free problems in the system, which
can lead to systems that cannot effectively analyze stability issues. To tackle this problem,
a PDF control scheme was developed in [22]. The PDF control scheme is a widely used
control strategy that can effectively address both regular and impulse-free problems in
control systems. Regular problems in T-S DIS refer to situations in which the control system
exhibits steady-state errors or lacks sufficient stability. The proportional component of the
PDF control scheme plays a crucial role in solving regular problems by reducing steady-
state errors. It produces an output signal that is proportional to the error between the
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desired and actual states, driving the system toward the desired setpoint. The proportional
gain determines the strength of the response to the error. By appropriately tuning the pro-
portional gain, the steady-state error can be minimized or eliminated, resulting in improved
control accuracy and precision. Impulse-free problems in T-S DIS involve the elimination
of sudden or unexpected disturbances or impulses in the system. The PDF control scheme
is effective in addressing impulse-free problems due to its derivative action. The derivative
term enables the control system to respond to the rate of change in the error, allowing it to
quickly counteract sudden disturbances or impulses. By incorporating the derivative action,
the PDF control scheme can effectively dampen the impact of disturbances, minimizing
their effect on the system’s output and ensuring stability and accurate control in T-S DIS.
In the past few years, many efforts have been made to study PDF control problems for
descriptor systems [23,24]. In [25], a study on decentralized control with the PDF control
method for the T-S DIS was proposed.

In addition, CCC is a critical concept in the field of control theory aimed at optimiz-
ing the performance of dynamical systems while ensuring stability [26]. This approach
involves designing control strategies that minimize a predefined cost function, providing a
quantitative measure of system performance, while simultaneously guaranteeing specific
performance requirements. In many practical systems, cost optimization is a crucial consid-
eration. Whether it is minimizing energy consumption in a manufacturing plant, reducing
response time in a robotic system, or optimizing resource allocation in an economic model,
ensuring efficient performance is of paramount importance. However, solely focusing on
cost reduction may lead to instability or the violation of critical constraints. CCC addresses
this challenge by incorporating stability guarantees while optimizing the cost function. To
implement CCC, one must first define a suitable cost function that quantifies the desired
system performance. This cost function typically considers factors such as energy con-
sumption, control effort, error minimization, or other relevant system-specific objectives.
The next step is to identify performance requirements and constraints. These can include
bounds on the system states, control inputs, or other operational limitations. CCC finds
applications in various fields. In engineering, it is used to optimize the control of complex
systems, such as aircraft, power grids, and chemical processes, ensuring efficient opera-
tion while considering constraints. In robotics, CCC is employed to optimize the motion
planning, trajectory tracking, and energy efficiency of robotic systems. It is also extensively
used in economics and finance, where the control of economic models and investment
portfolios can benefit from performance optimization with stability guarantees [27,28].

The main contributions of this study are given as follows: (1) This study considers
nonlinear DIS with uncertainties expressed by T-S FM. (2) Based on the CCC method, the
decentralized control method, and the PDF control, the fuzzy controller can be designed for
T-S DIS. (3) The proposed conditions are expressed as linear matrix inequalities (LMIs), and
feedback gains can be obtained by solving the LMIs. (4) The proposed controller design
method is applied to the nonlinear tripled inverted pendulum (TIP) system to show that
the obtained results are valid and feasible.

The structure of the paper is outlined as follows. The problem formulation is presented
in Section 2. In Section 3, the DRCCFC is designed for T-S DIS. In Section 4, two examples
are provided to demonstrate the efficacy of the proposed control method. The conclusions
of this study can be found in Section 5.

Notations: ZT and Z−1 are the matrix transposition and matrix inversion of a matrix Z.
diag{Z} denotes diagonal matrix Z; Sym{Z} = Z+ZT; ∗ is the symmetric item in matrices.

2. Problem Formulations

The representation of N as nonlinear subsystem can be expressed using the T-S DIS
as follows:
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Plant Rule <l
i : IF zi1(k) is Xl

i1 and, · · · , zig(k) is Xl
ig, THEN

Ẽ
l
i

.
xi(t) = Ã

l
i xi(t) + B̃

l
iui(t) +

N

∑
h=1,h 6=i

Al
ihxh(t) (1)

where i = {1, 2, · · · , N}, l = {1, 2, · · · , ri}, and Xl
iφ(φ = 1, 2, . . . , g) are fuzzy sets;

zi1(k), zi2(k), . . . , zig(k) are the premise variables. For the i−th nonlinear subsystem, <l
i

denotes the l−th. Fuzzy inference ri is the number of inference rules. xi(k) ∈ <nxi

and ui(k) ∈ <nui are the system state and control input, respectively. In the matrices

Ẽ
l
i = El

i + ∆El
i , Ã

l
i = Al

i + ∆Al
i , and B̃

l
i = Bl

i + ∆Bl
i , Al

i and Bl
i denote the l−th local model;

El
i denotes the descriptor matrix. The descriptor matrix provides mathematical models that

explicitly capture non-generic behavior. Traditional models often fail to represent com-
plex systems accurately, as they assume generic behavior. The descriptor system models
incorporate singularities and non-generic behavior explicitly, enabling a more accurate

representation of complex system dynamics. Al
ih represents the interconnection matrix

between the nonlinear subsystems i−th and the h−th.
According to [25], for the matrices Hl

i , Rl
ei, Rl

ai and Rl
bi, the uncertainties of ∆El

i , ∆Al
i ,

and ∆Bl
i can be represented as follows:[

∆El
i ∆Al

i ∆Bl
i

]
= Hl

i∆
l
i(t)
[
Rl

ei Rl
ai Rl

bi
]

(2)

where ∆l
i(t) is a matrix with unknown time-varying elements that satisfy the following

inequality:
∆l

i
T(t)∆l

i(t) ≤ Is2 (3)

where I denotes the identity matrix with appropriate dimensions.
By applying a center average and the defuzzifier method [25], the overall model of the

DIS with uncertainties can be expressed as follows:

ri

∑
l=1

µl
iẼ

l
i

.
xi(t) =

ri

∑
l=1

µl
i

{
Ã

l
i xi(t) + B̃

l
iui(t) +

N

∑
h=1,h 6=i

Al
ih(µi)xh(t)

}
(4)

with µl
i = µl

i(zi(t)) = ∏
g
φ=1 µl

iφ
(
ziφ(t)

)
/∑ri

ς=1 ∏
g
φ=1 µ

ς
iφ
(
ziφ(t)

)
, where µl

iφ
(
ziφ(t)

)
denotes

the grade of membership of ziφ(t) in µl
iφ, and we know µl

i(zi(t)) ≥ 0,
ri
∑

l=1
µl

i(zi(t)) = 1.

Based on the decentralized control scheme and PDF control method, the following
controllers can be designed to stabilize the system (4):

ui(t) = −
ri

∑
l=1

µl
iF

l
di

.
xi(t) +

ri

∑
l=1

µl
iF

l
sixi(t) (5)

where Fl
si and Fl

di are controller gains.
By incorporating controller (5) into the system (4), we obtain

Ei(µi)
.
xi(t) = Ai(µi)xi(t) +

N

∑
h=1,h 6=i

Aih(µi)xh(t) (6)

where
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Ei(µi) =
ri
∑

l=1

ri
∑

j=1
µl

iµ
l
i

{
Ẽ

l
i + B̃

l
iF

l
di

}
,

Ai(µi) =
ri
∑

l=1

ri
∑

j=1
µl

iµ
l
i

{
Ã

l
i + B̃

l
iF

l
si

}
,

Aih(µi) =
ri
∑

l=1
µl

iA
l
ih

(7)

Remark 1. The limitations and definitions for PDF control methods and descriptor system have
been discussed in detail in [20]. The PDF can regulate the dynamics of differential variables in
a descriptor system. By utilizing the error signal and its derivatives, PD control can efficiently
respond to system dynamics, providing stability and performance improvement for differential
variables. It is easy to know that system (6) exists if unique and impulse-free det(sE−A) 6= 0.

In addition, the cost function is defined as follows:

Jic =
∫ ∞

0

{
uT

i (t)Ri1ui(t) + xT
i (t)Zi1xi(t) +

.
xT

i (t)Zi2
.
xi(t)

}
dt (8)

where Zi1, Zi2, and Ri1 are the given positive definite matrices.
The definition of CCC can be defined in the following way with the cost function (8).

Definition 1 [21]. For all derivative matrix Ei(µi)if the system is invertible, the system (6) is
asymptotically stable and satisfies CCC with PDF controller (5) if there exists a positive scalar λi
and the following inequality holds:

Jic < min (λi) (9)

where λi is the minimization of output energy.

In this paper, we consider inequality (9) to optimize the control signal and minimize
the output energy. These techniques involve formulating an optimization problem that
includes energy consumption as part of the cost function. By solving this optimization
problem, the control signal can be calculated to achieve the desired control objective while
minimizing the output energy.

Before presenting the main findings, we will use the following lemmas throughout
the proof to support our analysis:

Lemma 1 [21]. The following inequality holds if there exists real vectors ζ and ρ, and a positive
matrix Z.

2ζTρ ≤ ζTZζ + ρTZ−1ρ (10)

Lemma 2 [21]. With r̃ = r − r0 + 1, the following inequality holds if there exists a positive
semidefinite symmetric matrix W ∈ Rn×n and two positive integers r and r0 satisfying r ≥ r0 ≥ 1.(

r

∑
k=r0

xi(t)

)T

W

(
r

∑
k=r0

xi(t)

)
≤ r̃

r

∑
k=r0

xT(t)Wx(t) (11)

The presence of an interconnect matrix in the system can present challenges when
attempting to translate stability conditions into LMI form. However, using the above two
lemmas can effectively promote the transformation of the interconnection matrix, thereby
simplifying the steps of the subsequent stability analysis and making it more convenient.

Based on the given closed-loop system (6), there are three main control problems to be
addressed as follows:
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Problem 1. Finding suitable control gain matrices that guarantee the stability of the entire closed-
loop large system. The goal is to design control gains that ensure the system remains stable and does
not exhibit any unstable behavior.

Problem 2. Developing a DRCCFC strategy that maintains system stability even in the presence of
uncertainties. The aim is to design a robust control approach that can handle external uncertainties
and still keep the system stable and well-behaved.

Problem 3. Design the DRCCFC strategy in a way that satisfies the CCC conditions outlined
in Definition 1. The CCC conditions effectively constrain the output energy of the system. The
objective is to incorporate these constraints into the control design process to ensure that the output
energy remains within acceptable limits.

By addressing these three control problems, we can achieve a comprehensive solu-
tion that guarantees system stability, robustness, and adherence to the prescribed output
energy constraints.

3. Main Results

In this section, the T-S FM, QLF, and FWF are employed to design the PDF controller.

Theorem 1. For the given positive definite matrices Ri1, Zi1, Zi2 and, if there exists Qi, ξi > 0, L1,
L2, L3, Fl

si, Fj
si, Fl

di, Fj
di, and the following conditions hold, the fuzzy controller (5) is considered to

be the CCC for system (6) with l = 1 · · · ri and l < j = 1 · · · ri.

Θll
i < 0 (12)

Θl j
i + Θjl

i < 0 (13)

[
−min(λi) ∗

xi(0) −Qi

]
< 0 (14)

where

Θll
i =



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗
Yl

21 Yl
22 ∗ ∗ ∗ ∗ ∗

Kl
1i −Kl

2i −R−1
i1 ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗

ÃhiQi 0 0 0 0 0 X66



Θl j
i =



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗
Yj

21 Yj
22 ∗ ∗ ∗ ∗ ∗

Kl
1i −Kl

2i −R−1
i1 ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗

ÃhiQi 0 0 0 0 0 X66




LT
i1 = −QiSi1S−1

i2 , Li4 = He(Li1) + 2Li3LT
i3 + 2Φ̃ki,

LT
i2 = −S−1

i2 , Li5 = LT
i2 + LT

i3,
LT

i3 = ST
i1Qi, Qi = P−1

i

,
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Yl
21 = Li5 − Ã

l
iQi + Ẽ

l
iLi1 − B̃

l
iK

l
1i, Yj

21 = Li5 − Ã
l
iQi + Ẽ

l
iLi1 − B̃

l
iK

j
1i,

Yl
22 = I + He

(
Ẽ

l
iLi2 + B̃

l
iK

l
2i

)
, Yj

22 = I + He
(

Ẽ
l
iLi2 + B̃

l
iK

j
2i

)
,

Kl
1i = Fl

siQi − Fl
diLi1, Kl

2i = Fl
diLi2, Kj

1i = Fj
siQi − Fj

diLi1, Kj
2i = Fj

diLi2, Xi66 = −2(N − 1)−1ε,

Ãhi =
[
AT

1i · · ·A
T
hi · · ·A

T
Ni

]
︸ ︷︷ ︸

N−1

T
with h 6= i, ε = diag[Inxi · · · Inxi]︸ ︷︷ ︸

N−1

.

Proof. Considering the QLF defined in [20], the time derivative of QLF can be obtained as
follows using FWF:

N

∑
i=1

.
Vi(xi(t)) =

N

∑
i=1

{
2

.
xT

i (t)Pixi(t) + 2
[

xT
i (t)Si1 +

.
xT

i (t)Si2

]
×Ψi

}
(15)

where Si1 and Si2 are free-weighting matrices and the following FWF can be defined with a
closed-loop system (6):

N

∑
i=1

Ψi =
N

∑
i=1

{
2
[

xT
i (t)Si1 +

.
xT

i (t)Si2

][
−Ei(µi)

.
xi + Ai(µi)xi(t) +

N

∑
h=1,h 6=i

Aih(µi)xh(t)

]}
≡ 0 (16)

According to [20], one can obtain the following inequalities with Lemma 1 and Lemma 2.

N
∑

i=1

{
2xT

i (t)Si1 ×
N
∑

h=1,h 6=i
Aih(µi)xh(t)

}

≤
N
∑

i=1

(xT
i (t)Si1ST

i1xi(t)
)
+

[
N
∑

h=1,h 6=i
Ahi(µi)xi(t)

]T[
N
∑

h=1,h 6=i
Ahi(µi)xi(t)

]
(17)

and
N
∑

i=1

{
2

.
xT

i (t)Si2 ×
N
∑

h=1,h 6=i
Aih(µi)xh(t)

}

≤
N
∑

i=1

( .
xT

i (t)Si2ST
i2

.
xi(t)

)
+

[
N
∑

h=1,h 6=i
Ahi(µi)xi(t)

]T[
N
∑

h=1,h 6=i
Ahi(µi)xi(t)

]
(18)

Then, Equation (15) may be rewritten as follows using (17), (18), and some simplifications.

N

∑
i=1

.
Vi(xi(t)) ≤

N

∑
i=1

x̃T
i Ξi x̃i (19)

where x̃T
i =

[
xi(t)

.
xi(t)

]T, Φi = (N − 1)
N
∑

h=1,h 6=i
AT

hiAhi,

Ξi =

[
Sym(Si1Ai(µi)) + Si1ST

i1+2Φi ∗
Pi − ET

i (µi)ST
i1 + Si2Ai(µi) −Sym(Si2Ei(µi)) + Si2ST

i2

]
(20)

From cost function (8), we have

Jic =
∫ tp

0

N

∑
i=1

.
Vi(xi(t))dt−

.
Vi
(

xi
(
tp
))

+ uT
i (t)Ri1ui(t) + xT

i (t)Zi1xi(t) + xT
i (t)Zi2

.
xi(t) (21)
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≤
∫ tp

0
J̃icdt (22)

where

J̃ic =
N

∑
i=1

.
Vi(xi(t)) + uT

i (t)Ri1ui(t) + xT
i (t)Zi1xi(t) +

.
xT

i (t)Zi2
.
xi(t) (23)

Substituting (5) and (19) into (23), we then obtain

J̃ic =

[
Ni1 ∗
Ni2 Ni3

]
(24)

where


Ni1 = Zi1 + Sym(Si1Ai(µi)) + Si1ST

i1 + 2Φi + Fj
si

TRi1Fj
si,

Ni2 = Pi − ET
i (µi)ST

i1 + Si2Ai(µi)− Fj
di

TRi1Fj
si,

Ni3 = Zi2 − Sym(Si2Ei(µi)) + Si2ST
i2 + Fj

di
TRi1Fj

di

.

Pre- and post-multiplying (24) by the WT
i and Wi, it follows that[

Ñi1 ∗
Ñi2 Ñi3

]
(25)

where WT
i =

[
Qi LT

i1
0 LT

i2

]
, 

Kl
1i = Fl

siQi − Fl
diLi1

Kj
1i = Fj

siQi − Fj
diLi1

Kl
2i = Fl

diLi2

Kj
2i = Fj

diLi2

,


Ñi1 = Li4 + QiZi1Qi + LT

i1Zi2Li1 + Kl
1i

TRi1Kl
1i

Ñi2 = Li5 −Ai(µi)Qi + Ei(µi)Li1 + LT
i2Zi2Li1 −Kl

2i
TRi1Kl

1i
Ñi3 = I + Sym(Ei(µi)Li2) + LT

i2Zi2Li2 + Kl
2i

TRi1Kl
2i

,


LT

i1 = −QiSi1S−1
i2 , Li4 = Sym(Li1) + 2Li3LT

i3 + 2Φ̃ki,
LT

i2 = −S−1
i2 , Li5 = LT

i2 + LT
i3,

LT
i3 = ST

i1Qi, Qi = P−1
i

.

Then, according to (7), (25), and by extracting the membership functions, the cost
function (24) is obtained as follows:

J̃ic ≤
N

∑
i=1

[
ri

∑
l=1

µl2

i x̃T
i Ξ̃ll

i x̃i +
ri

∑
l<j

µl
iµ

j
i x̃

T
i

{
Ξ̃

l j
i + Ξ̃

jl
i

}
x̃

]
(26)

where

Ξ̃ll
i =

[
Li4 + QiZi1Qi + LT

i1Zi2Li1 + Kl
1i

TRi1Kl
1i ∗

Yl
21 + LT

i2Zi2Li1 −Kl
2i

TRi1Kl
1i Yl

22 + LT
i2Zi2Li2 + Kl

2i
TRi1Kl

2i

]
(27)

Ξ̃
l j
i =

[
Li4 + QiZi1Qi + LT

i1Zi2Li1 + Kj
1i

TRi1Kj
1i ∗

Yj
21 + LT

i2Zi2Li1 −Kj
2i

TRi1Kj
1i Yj

22 + LT
i2Zi2Li2 + Kj

2i
TRi1Kj

2i

]
(28)

Yl
21 = Li5 − Ã

l
iQi + Ẽ

l
iLi1 − B̃

l
iK

l
1i, Yj

21 = Li5 − Ã
l
iQi + Ẽ

l
iLi1 − B̃

l
iK

j
1i,

Yl
22 = I + Sym

(
Ẽ

l
iLi2 + B̃

l
iK

l
2i

)
, Yj

22 = I + Sym
(

Ẽ
l
iLi2 + B̃

l
iK

j
2i

)
.
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From (27), we know that

Ξ̃ll
i = Λll

1 + Λll
2 + Λll

3 (29)

where

Λll
1 =

[
Li4 ∗
Yl

21 Yl
22

]
, Λll

2 =

[
Kl

1i
T

−Kl
2i

T

]
R1
[
Kl

1i −Kl
2i
]
, Λll

3 =

[
Qi LT

i1
0 LT

i2

][
Zi1 0
0 Zi2

][
Qi 0
Li1 Li2

]
.

Then, by using the Schur complement, inequality (29) is equivalent to

Ξ̃ll
i =



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗
Yl

21 Yl
22 ∗ ∗ ∗ ∗ ∗

Kl
1i −Kl

2i −R−1
i1 ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗

ÃhiQi 0 0 0 0 0 X66


(30)

where Ãhi =
[
AT

1i · · ·A
T
hi · · ·A

T
Ni

]
︸ ︷︷ ︸

N−1

T
with h 6= i, X66 = −2(N − 1)−1ε and ε = diag

[Inxi · · · Inxi]︸ ︷︷ ︸
N−1

.

Similarly, we can rewrite (28) as

Ξ̃
l j
i =



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗
Yj

21 Yj
22 ∗ ∗ ∗ ∗ ∗

Kl
1i −Kl

2i −R−1
i1 ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗

ÃhiQi 0 0 0 0 0 X66


(31)

If the inequality in (12) and (13) holds, the matrices Ξ̃ll
i < 0 and Ξ̃

l j
i < 0 are also

satisfied, and then J̃ic ≤ 0 is obtained from (26). In addition, if J̃ic ≤ 0 is guaranteed, we
know that

N

∑
i=1

.
Vi(xi(t)) + uT

i (t)Ri1ui(t) + xT
i (t)Zi1xi(t) +

.
xT

i (t)Zi2
.
xi(t) < 0 (32)

Integrating (32) from 0 to tp, it yields

Jic < Ji0 (33)

where Ji0 =
∫ ∞

0

{
N
∑

i=1

.
Vi(xi(t))

}
dt = −Vc

(
xi
(
tp
))

+ Vc(xi(0)) = xT
i (0)Pixi(0).

If the inequality in (33) holds, the system is stable with CCC performance. However,
the inequalities in (12) and (13) provide the CCC performance. The following inequal-
ity presents a method of selecting a controller that minimizes the upper bound of the
guaranteed cost (8). By applying Schur complement to (14), it yields

xT
i (0)Pixi(0)−min(λi) < 0 (34)

or
xT

i (0)Pixi(0) < min(λi) (35)
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Based on (35), one can obtain

Jic < min(λi) (36)

Thus, if the conditions in (12), (13), and (14) are satisfied, the designed controller

satisfies the CCC performance, which also ensures the minimization of the guaranteed cost
for the system. The proof is completed. �

However, the stability conditions given in Theorem 1 exist in time-varying matrices,
which cannot be solved using the LMI toolbox. Therefore, the LMI conditions are given by
the following theorem.

Remark 2. It is worth emphasizing that Equations (12) and (13) cannot be classified as linear
matrix inequalities due to the presence of the uncertainties term, which introduces nonlinearity and
complicates the analysis. However, when the uncertainties term is not considered, Theorem 1 is the
stability condition of the system and satisfies the CCC performance.

Robust control techniques play a crucial role in ensuring the stability and performance
of fuzzy systems in the presence of uncertainties and disturbances. Robust control aims
to design controllers that can maintain system stability and desired performance, even
in the presence of uncertainties. Fuzzy systems inherently possess the ability to handle
imprecise and uncertain information, making them suitable for dealing with real-world
complexities. However, uncertainties in the system parameters, measurement noise, and
external disturbances can still affect the performance of fuzzy systems. Robust control
techniques provide a framework to systematically address these uncertainties and enhance
the robustness of fuzzy control systems. In the following section, we will extend the robust
control approach in the control design procedure.

Theorem 2. For the given positive definite matrices Ri1, Zi1, Zi2 and, if there exists Qi, ξi > 0,
λi > 0, L1, L2, L3, Fl

si, Fj
si, Fl

di, Fj
di, and the following conditions hold, the fuzzy controller (5) is

considered to be the CCC for system (6) with l = 1 · · · ri and l < j = 1 · · · ri.

Θ̃ll
i < 0 (37)

Θ̃l j
i + Θ̃jl

i < 0 (38)

[
−min(λi) ∗

xi(0) −Qi

]
< 0 (39)

where

Θ̃ll
i =



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Xl

i21 Xl
i22 + ξiHl

iH
l
i
T ∗ ∗ ∗ ∗ ∗ ∗

Kl
1i −Kl

2i −R−1
i1 ∗ ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗ ∗

ÃhiQi 0 0 0 0 0 X66 ∗
Xl

i71 Xl
i72 0 0 0 0 0 −ξi
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Θ̃l j
i =



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Xj

i21 Xj
i22 + ξiHl

iH
l
i
T ∗ ∗ ∗ ∗ ∗ ∗

Kj
1i −Kj

2i −R−1
i1 ∗ ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗ ∗

ÃhiQi 0 0 0 0 0 X66 ∗
Xl

i71 Xl
i72 0 0 0 0 0 −ξi


Xl

i21 = Li5 −Al
iQi + El

iLi1 − Bl
iK

l
1i, Xl

i22 = I + He
(

El
iLi2 + Bl

iK
l
2i

)
,

Xj
i21 = Li5 −Al

iQi + El
iLi1 − Bl

iK
j
1i, Xj

i22 = I + He
(

El
iLi2 + Bl

iK
j
2i

)
,

Xl
i71 = −Rl

aiQi + Rl
eiLi1 −Rl

biK
l
1i, Xl

i72 = Rl
eiLi2 + Rl

biK
l
2i.

Proof. Considering the uncertainties from (2), it follows from (30) that

Ξ̃ll
i = Λ̃ll

i + ∆Λ̃ll
i (40)

where

Λ̃ll
i =



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗
Xl

i21 Xl
i22 ∗ ∗ ∗ ∗ ∗

Kl
1i −Kl

2i −R−1
i1 ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗

ÃhiQi 0 0 0 0 0 X66


(41)

∆Λ̃ll
i =



0 ∗ ∗ ∗ ∗ ∗ ∗
X̃

l
i21 X̃

l
i22 ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 0


(42)

Xl
i21 = Li5 −Al

iQi + El
iLi1 − Bl

iK
l
1i, Xl

i22 = I + He
(

El
iLi2 + Bl

iK
l
2i

)
,

X̃
l
i21 = −∆Al

iQi + ∆El
iLi1 − ∆Bl

iK
l
1i, X̃

l
i22 = He

(
∆El

iLi2 + ∆Bl
iK

l
2i

)
.

By referring to Equation (42), we obtain

∆Λ̃ll
i = Πl

i∆
l
i(t)Γ

l
i +
(

Πl
i∆

l
i(t)Γ

l
i

)T
(43)

where

Πl
i =

[
0 Hl

i
T 0 0 0 0 0

]T, Γl
i =

[
Xl

i71 Xl
i72 0 0 0 0 0

]
,

Xl
i71 = −Rl

aiQi + Rl
eiLi1 −Rl

biK
l
1i, Xl

i72 = Rl
eiLi2 + Rl

biK
l
2i.
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According to Lemma 3 from [20], if there exists scalar ξi > 0, Equation (43) can be
written as follows using (33).

Ξ̃ll
i ≤ Λ̃ll

i + ξiΠ
l
iΠ

l
i
T + ξ−1

i Γl
i
TΓl

i (44)

By applying the Schur complement to (44), it yields

Ξ̃ll
i ≤

[
Λ̃ll

i + ξiΠ
l
iΠ

l
i
T ∗

Γl
i
T −ξi

]

≤



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Xl

i21 Xl
i22 + ξiHl

iH
l
i
T ∗ ∗ ∗ ∗ ∗ ∗

Kl
1i −Kl

2i −R−1
i1 ∗ ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗ ∗

ÃhiQi 0 0 0 0 0 X66 ∗
Xl

i71 Xl
i72 0 0 0 0 0 −ξi


(45)

Similarly, we also have the following inequality from (31).

Ξ̃
l j
i ≤



Sym(Li1) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Xj

i21 Xj
i22 + ξiHl

iH
l
i
T ∗ ∗ ∗ ∗ ∗ ∗

Kj
1i −Kj

2i −R−1
i1 ∗ ∗ ∗ ∗ ∗

Qi 0 0 −Z−1
i1 ∗ ∗ ∗ ∗

Li1 Li2 0 0 −Z−1
i2 ∗ ∗ ∗

LT
i3 0 0 0 0 −I/2 ∗ ∗

ÃhiQi 0 0 0 0 0 X66 ∗
Xl

i71 Xl
i72 0 0 0 0 0 −ξi


(46)

where Xj
i21 = Li5 −Al

iQi + El
iLi1 − Bl

iK
j
1i, Xj

i22 = I + He
(

El
iLi2 + Bl

iK
j
2i

)
. �

By analyzing Equations (45) and (46), it is clear that the conversion from BMI to
LMI is successfully achieved. As described in this section, this transformation allows
the derivation of sufficient conditions to ensure CCC performance and robust control.
Therefore, the proof is considered complete.

Based on the aforementioned design process, the design of DRCCFC can be summa-
rized as follows:

Design Procedure:
Step 1: Develop a set of fuzzy rules as outlined in Equation (1). These rules can

effectively describe nonlinear systems and assist in the design of DRCCFC.
Step 2: Given the performance matrices Zi1, Zi2, and Ri1, employ the LMI Toolbox in

Matlab to solve the stability condition stated in Theorem 2. This procedure can find the
control gains and minimum output energy values.

Step 3: Utilize the control gains obtained from Theorem 2 to construct the DRCCFC (5),
the configuration of which ensures the incorporation of the identified control parameters in
the control system design.

Step 4: Substitute the calculated Jic and λi into inequality (9) to confirm whether the
system satisfies CCC.

Following the above design procedures, DRCCFC can be effectively designed, and the
system is stable and satisfies CCC.
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4. Example

Example 1. Considering a nonlinear DIS with two subsystems, which can be represented by the
T-S FM with uncertainties in the form of (6), the parameters are given as follows:

For subsystem 1:

A1
1 =

[
−1 1
0 −2

]
, A2

1 =

[
−3 0
1 −3

]
, B1

1 =

[
1.2
1

]
, B2

1 =

[
1
1

]
, A1

12 =

[
0 0

0.3 0.01

]
,

A2
12 =

[
0 0

0.02 0.01

]
, E1

1 =

[
1 0
1 1

]
, E2

1 =

[
1 1
0 1

]
For subsystem 2:

A1
2 =

[
−1 1
0 −3

]
, A2

2 =

[
−1 0
0 −1

]
, B1

1 =

[
0.47

1

]
, B2

1 =

[
0.47
0.8

]
, A1

21 =

[
0 0

0.03 0

]
,

A2
21 =

[
0 0

0.05 0

]
, E1

2 =

[
1 0.1
0 1

]
, E2

2 =

[
1 0
0 1

]
The uncertainties for Example 1 have been defined as follows:

Hl
i =

[
0.1
0

]
, ∆l

i(k) = sin(k), Rl
ai =

[
0.5 0

]
, Rl

ei =
[
0.1 0

]
, Rl

bi = [0.1] with i = l = 1 , 2.

With the membership function (Figure 1) and by solving the proposed conditions
from Theorem 2, one can obtain the following controller gains with initial conditions

x1(0) =
[
3 −3

]T, x2(0) =
[
2 −5

]T and performance matrices Zi1 =

[
0.1 0
0 0.1

]
,

Zi2 =

[
0.05 0

0 0.05

]
and Ri1 = 0.1.
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For subsystem 1:


F1

s1 =
[
−1.5431 0.2612

]
F1

d1 =
[
0.5228 0.4490

]
F2

s1 =
[
−1.5431 0.2637

]
F2

d1 =
[
0.5226 0.4495

]
and

For subsystem 2:


F1

s2 =
[
−0.4303 −1.0575

]
F1

d2 =
[
0.2069 0.4779

]
F2

s2 =
[
−0.4297 −0.9395

]
F2

s2 =
[
0.2140 0.4212

]
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The state responses are shown in Figures 2 and 3. In addition, the following scalar
value is calculated to verify the CCC performance:

J1c = 2.6021; λ1 = 3.0596; J2c = 2.7051; λ2 = 2.8779
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Figure 3. The state responses correspond to subsystem 2 in Example 1.

According to Definition 3, inequality (9) is satisfied with the above parameters, which
implies that the CCC performance is well guaranteed under the minimization of output
energy λi.

Based on the observations in Figures 2 and 3, it is evident that the state trajectory
gradually converges to zero over time. This convergence indicates that the controller
gains proposed in Example 1 effectively stabilize the system. Furthermore, the system
demonstrates quick and smooth stabilization under the CCC performance. This signifies
that the proposed method delivers satisfactory performance. Figures 2 and 3 validate the
objective and effectively demonstrate the effectiveness of the proposed method.

Example 2. The system under consideration is a nonlinear TIP system connected by two springs,
as described in reference [20]. The nonlinear TIP system is a complex mechanical system that



Machines 2023, 11, 666 15 of 20

consists of multiple pendulums stacked on top of each other. Unlike a traditional pendulum that has
a single mass attached to a fixed pivot, the TIP system incorporates additional masses and linkages,
resulting in a highly nonlinear and dynamic behavior. In order to clearly demonstrate the proposed
methodology, the control method for a nonlinear TIP system is presented in Figure 4.
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.
x1

1(t) = x2
1(t)

.
x2

1(t) = −
m1gr

J1
sin
(

x1
1

)
− k1

J1
x2

1 +
u1(t)

J1
+

k1

J1
x1

2

.
x1

2(t) = x2
2(t)

.
x2

2(t) = −
m2gr

J2
sin
(

x1
2

)
− k1 + k2

J2
x2

2 +
u2(t)

J2
+

k1

J2
x1

1 +
k2

J2
x1

3

.
x1

3(t) = x2
3(t)

.
x2

3(t) = −
m3gr

J3
sin
(

x1
3

)
− k2

J3
x2

3 +
u3(t)

J3
+

k2

J3
x1

2

where x1
i (t) represents the angular displacement of the pendulum i−th from the vertical

reference; ui(t) denotes the torque input exerted by a servomotor at its base. All parameters
have been provided in Table 1.
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Table 1. System parameters for Example 2.

Symbol Parameter Value

m1 Masses of the pendulum 2 kg
m2 Masses of the pendulum 2.5 kg
m3 Masses of the pendulum 3 kg
J1 Moments of inertia 2 kg
J2 Moments of inertia 2.5 kg
J3 Moments of inertia 3 kg
k1 Connecting torsional spring 2 N ·m/rad
k2 Connecting torsional spring 1.5 N ·m/rad
r Pendulum height 1 m
g Gravity constant 9.8 m/s2

By approximating the subsystems at
.
xi1(t) = 0 or ±88◦ with the system form (6), the

following system parameter can be obtained.

A1
1 =

[
0 1
−9.81 −1

]
, A2

1 =

[
0 1
−0.31 −1

]
, A1

2 =

[
0 1
−9.81 −1.4

]
, A2

2 =

[
0 1
−0.31 −1.4

]
,

A1
3 =

[
0 1
−9.81 −0.5

]
, A2

3 =

[
0 1
−0.31 −0.5

]
, B1

1 = B2
1 =

[
0

0.5

]
, B1

2 = B2
2 =

[
0

0.4

]
,

B1
3 = B2

3 =

[
0

0.33

]
, A1

12 = A2
12 =

[
0 0
1 0

]
, A1

21 = A2
21 =

[
0 0

0.8 0

]
, A1

31 = A2
31 =

[
0 0

0.5 0

]
,

El
i =

[
1 0
0 1

]
with i = 1, 2 , l = 1, 2, 3.

The uncertainties have been considered as

∆Al
i =

[
0

0.1

]
sin(t)

[
0.05 0

]
, ∆El

i =

[
0

0.1

]
sin(t)

[
0 0.1

]
and ∆Bl

i =

[
0

0.1

]
sin(t)[0.1]

Considering the performance matrices Zi1 = Zi2 =

[
0.1 0.01

0.01 0.1

]
, Ri1 = 0.01. Upon

solving the conditions presented in Theorem 2, the feedback gains can be derived.

For subsystem 1:


F1

s1 =
[
−58.3057 −35.9537

]
F1

d1 =
[

0.5001 5.0006
]

F2
s1 =

[
−58.2939 −35.9480

]
F2

d1 =
[

0.5000 4.9994
]

For subsystem 2:


F1

s1 =
[
−49.9551 −31.7131

]
F1

d1 =
[

0.3995 3.9943
]

F2
s1 =

[
−49.9454 −31.7081

]
F2

d1 =
[

0.3995 3.9936
]

For subsystem 3:


F1

s1 =
[
−106.0702 −58.5215

]
F1

d1 =
[

0.3298 3.2999
]

F2
s1 =

[
−106.0703 −58.5216

]
F2

d1 =
[

0.3297 3.3000
]

With the initial conditions, x1(0) =
[
0.2 −0.12

]T, x2(0) =
[
0.1 0.22

]T and

x3(0) =
[
0.28 0.02

]T. The state responses are shown in Figures 5–7. According to the sim-
ulation results, all state responses converge to zero. That is to say, the DRCCFC proposed
in this study can be effectively used in nonlinear DIS. Additionally, the CCC performance
is satisfied for the tripled-inverted pendulum system with the following scalar values:
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J1c = 0.0402; λ1 = 0.1113; J2c = 0.0644; λ2 = 0.1341; J3c = 0.3507; λ3 = 0.8151

According to the state–response plot in the simulation results (Figures 2, 3 and 5–7),
there are some general guidelines to assess the quality of a state response:

1. Stability: In a stable system, the state variables should converge to a steady state or
equilibrium over time.

2. Transient Response: Evaluate how quickly the system reaches a steady state or desired
condition. A faster transient response, where the state variables reach their desired
values more rapidly, is often preferable. However, it is essential to balance speed with
stability and avoid excessive overshoots or oscillations.

3. Overshoot and Damping: Assess whether the state response exhibits an overshoot,
where the variables exceed their desired values before settling. Excessive overshoot can
lead to instability, oscillations, or even system failure if it persists or grows uncontrollably.

4. Settling Time: Settling time is an important parameter, as it provides information
about the system’s dynamic behavior and the speed at which it can achieve the desired
state. A shorter settling time is generally better, as it indicates a faster system response
and stability. However, too fast a settling time may cause overshoot in the system, so
designing a controller with a faster settling time and reduced overshoot has always
been a major problem in the field of control systems.

5. System Constraints: Consider any constraints or limitations specific to the system. For
example, in control systems, there may be limitations in the control effort or actuator
movements. A better state response adheres to these constraints while achieving the
desired performance.

According to the simulation results, 0 represents the equilibrium point in the system.
In the case of setting different initial state conditions, we can see that all states have
converged to 0. This means that the designed controller can effectively control and stabilize
T-S DIS. In addition, we can see that each state converges to 0 smoothly, which also means
that the system does not have excessive overshoot when it is under control. Ultimately,
CCC is a constraint that we choose to ensure that the total output energy of the system
remains within predefined ranges or limits. From the calculated values of Jic and λi, we can
conclude that the inequality in (36) is satisfied, which also means that the simulation results
meet the conditions of CCC. As a further explanation, in Figures 2, 3 and 5–7, since two
different states are included, we designed different initial conditions to demonstrate the
effectiveness of the controller. However, the initial evolution of the system will also have
different results due to the different initial conditions, system matrices, and controller gains.
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5. Conclusions

This paper studied the problem of CCC for nonlinear DIS with uncertainties. By
constructing the QLF and FWF, sufficient stability conditions can be obtained based on the
PDF control method and CCC function. In addition, the minimum value is also proposed to
ensure that the system performance degradation is less than the upper bound. The proposed
sufficient conditions for system stability can be cast into the LMI problems. Finally, we
have provided two examples and simulation figures, which show the effectiveness and
advantages of the proposed results. Based on the simulation results, it is evident that
all states converge to 0, which indicates that the designed controller effectively regulates
the T-S DIS and ensures its stability. Furthermore, the smooth convergence of each state
to 0 signifies that the controlled system does not exhibit an excessive overshoot. This
highlights the ability of the controller to maintain stable and controlled behavior without
significant oscillations. In addition, the CCC is implemented as a constraint to ensure that
the total output energy of the system remains within predefined limits or ranges. In fact,
the system considered in this paper can be extended to the time-delay system, which could
be the focus of our future work.
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