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Abstract: Diamond needs to have a perfectly smooth surface due to the growing requirements in the
fields of electronic semiconductors, optical windows and high-fidelity loudspeakers. However, the
polishing of diamonds is highly challenging due to their exceptional hardness and chemical stability.
In this study, a new polishing slurry is prepared for the proposed photocatalysis-assisted chemical
mechanical polishing (PCMP) approach to obtain an ultra-smooth surface for large-area diamond.
The analyses and experimental findings revealed the significance of the photocatalyst, abrasive,
electron capture agent and pH regulator as essential components of the PCMP slurry. TiO2 with a
5 nm pore size and P25 TiO2 possess improved photocatalysis efficiency. Moreover, diamond removal
is smooth under the acidic environment of H3PO4 due to the high oxidation–reduction potential
(ORP) of the slurry, and, during the methyl orange test, P25 TiO2 exhibits reasonable photocatalytic
effects. Moreover, in 8 h, a smooth surface free of mechanical scratches can be obtained by reducing
the surface roughness from Ra 33.6 nm to Ra 2.6 nm.

Keywords: photocatalysis; chemical mechanical polishing; diamond; slurry; preparation

1. Introduction

Large-area diamonds are gaining popularity as a new generation of semiconductor
materials due to their outstanding physical, thermal, optical and chemical properties, such
as high hardness, strong chemical inertness, excellent thermal conductivity, high elasticity
modulus, large electrical resistance, broad electronic gap, wide-range transparency and a
small friction coefficient [1]. Particularly, the development of chemical vapor deposition
(CVD) technology has overcome the restriction of rare, expensive and small-sized natural
diamond, and it has greatly expanded the fields of application for diamonds from the
traditional jewels and tools to electronic semiconductors, optical windows, high-fidelity
loudspeakers, high-energy accelerators, etc. [2–4]. Diamond’s unique qualities have the
potential to significantly boost these devices’ functionality. To meet the criteria of the
aforementioned applications, however, the rough surface of diamonds developed by the
CVD method is challenging [5]. As a result, an ultra-high-precision process for large-area
diamonds is required for effective application.

Diamond has a high degree of hardness and chemical stability, making it difficult to
smooth its surface using conventional processing methods. The polishing of diamonds
has received a great deal of attention from researchers, who have also presented a va-
riety of techniques to improve surface quality and material removal rates [6]. These
polishing techniques can be sorted into five categories based on how the material is
removed: micro-chipping, diamond to graphite conversion, evaporation, sputtering and
chemical reaction [7].
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Micro-chipping happens at the interface of two contact surfaces when the friction force
is larger than the binding force of the materials. Mechanical polishing and grinding both
use micro-chipping mechanisms to remove diamond [8,9]. Cracks typically develop on a
diamond’s surface during the polishing process. Additionally, when the abrasive size is
less than 1 um, the rate of material removal is relatively low, which can reduce the strength
and surface roughness of a polished workpiece.

The second removal method involves the conversion of diamond to graphite. Diamond
is readily converted to graphite because of its thermodynamically metastable structure,
and the metals of iron, stainless steel, cerium, nickel, manganese and titanium are efficient
catalysts for the process [10,11]. To prepare a polishing plate or grinding wheel, thermo-
chemical polishing and tribochemical polishing typically use these metals and alloys to
achieve a high removal rate [12,13].

A non-contact technique for polishing curved surfaces and localized tiny areas is
laser polishing [14]. Due to the laser’s energy, diamond is extracted through a form
of evaporation. After laser polishing, the diamond’s surface will still have a layer of
graphite or non-diamond carbon that can be removed with chemical mechanical polishing
or mechanical polishing [15].

In addition to laser polishing, sputtering and plasma can also be used for the non-
contact polishing of diamond [16]. Ion beam polishing uses an ion source for polishing
sputtering. The carbon atoms at the stroke surface are bombarded with ions [17,18].
Complex forms can be polished by ion beam polishing; however, sample size is constrained
by the ion beam and chamber size.

Many researchers believe that chemical reactions during the polishing process are
advantageous since they can shift the rate at which the material is removed, even though
diamond has good chemical inertness. Common methods for polishing diamond with
chemical reaction mechanisms include reactive ion etching and chemical mechanical pol-
ishing. O2 and H2 gases react with diamonds during reactive ion etching [19]. Although it
is faster than ion beam sputtering, the diamond surface may become contaminated because
of plasma heating. The cost is relatively significant, and the plasma size restricts the sam-
ple size. Chemical mechanical polishing (CMP) is an effective method to achieve atomic
surface globally, and, therefore, the most promising technique for large-area diamonds is
chemical mechanical polishing [20,21]. To extract the diamond atom by chemical reaction
or tribochemical reaction, it employs either molten mixed salt containing NaNO3, KNO3
and KOH or produced slurry with strong oxidants containing CrO3, KMnO4, H2O2 and
K2Cr2O7 [22]. However, the traditional CMP slurry usually contains toxic and corrosive
ingredients, resulting in pollution to the environment [23].

To overcome this challenge of traditional slurry and increase the material removal
rate, strong oxidants, such as K2FeO4 and Fenton reagent, are used to prepare polishing
slurry [24]. These studies are a great contribution to the conventional CMP and manu-
facturing, effectively eliminating the pollution to the environment [25,26]. However, the
polishing effect might be negatively impacted by storage failure of this type of polishing
slurry with a strong oxidant. Waste liquid treatment and recovery are highly expensive, and
discharging waste liquid after polishing can seriously harm the environment and humans.
Furthermore, the polishing parameters can be used to actively alter the mechanical action
in the polishing process, but the chemical action is much more difficult to control. Given
this, the current study proposes a photocatalysis-assisted chemical mechanical polishing
(PCMP) approach to accomplish the ultra-smooth polishing of large-area diamonds via the
production of a polishing slurry for the proposed PCMP.

2. Principle, Methods and Experiments
2.1. Preparation of PCMP Slurry

Photocatalysis is a new oxidant technique developed recently to use solar energy
for environmental purification and energy purification [27]. As shown in Figure 1, on
the surface of the TiO2 nanoparticles, which are exposed to ultraviolet irradiation, many
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holes and hydroxyl radical ·OH are formed [28]. The produced holes and hydroxyl radical
·OH with a strong oxidizability on surface of TiO2 nanoparticles are easy to react with
diamond to achieve the goal of diamond removal at the atomic level. The mechanical
action of abrasive during the polishing process increases the atomic activity of diamond
surface material (changing to be activated diamond carbon C*), which shifts the pace of the
chemical reaction between diamond and oxidant in slurry. As a result, the rate of material
removal gradually rises. According to the photocatalysis oxidation mechanism, the PCMP
method is proposed as in Figure 2. According to the requirement of polishing process,
the oxidizability of slurry can be adjusted in terms of the ultraviolet (UV) light powder
and TiO2 concentration. The slurry is safe for humans and the environment because it
contains no toxic components. The hardness of titanium dioxide and the smaller size of
abrasive particles as compared to diamonds enable the ultra-smooth polishing of large-area
diamonds.
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The appropriate slurry preparation for the PCMP is of utmost importance. The
effectiveness of a photocatalytic reaction mostly depends on the separation of electrons
and holes, the rate of migration to the catalyst surface, the rate of oxidation and reduction
caught by reactants, catalyst particle size, crystal type, UV light source, pH value, oxidant,
etc. According to the photocatalysis principle, the photocatalyst, abrasive, electron capture
agent, pH regulator and dispersant need to be incorporated in the photocatalysis-assisted
chemical mechanical polishing slurry as shown in Table 1.
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Table 1. Components of PCMP slurry.

Photocatalyst Abrasive Materials Electron Trapping Agent pH Regulator

5 nm TiO2 Al2O3 H2O2 NaOH
10 nm TiO2 diamond K2FeO4 H3PO4
20 nm TiO2 SiC

P25 TiO2
ZnO

Alumina, silicon carbide and diamond abrasives are a few examples of super-hard
abrasives that are typically used to polish diamond because of their high degree of hard-
ness. This compares the polishing effectiveness of the abrasives of alumina and diamond.
Diamond abrasives are the most hard abrasives, which are usually used in the process
of lapping or mechanical polishing. They are not suitable for CMP and PCMP because
diamond grits in slurry can be oxidized along with diamond workpiece. Additionally,
diamond abrasives are easy to cause scratches on workpiece. The material removal rate will
significantly decline with the decrease in diamond abrasive size. Therefore, the diamond
abrasives are used as the abrasive of mechanical lapping for diamond rough treatment.
Alumina abrasives are used in PCMP slurry to verify the effect of chemical action in PCMP
on the material removal of diamond in this study because they cannot be oxidized by the
oxidant in slurry.

The most frequently employed photocatalysts are nanoparticles of TiO2. Anatase,
rutile and brookite are the three crystal types of titanium dioxide. Rutile titanium dioxide
has a lower redox potential (3.03 eV) than anatase (3.2 eV) and, as a result, possesses a
weaker redox capability [29]. When the nano TiO2 particles are exposed to UV light, the
electrons in the valence band may be stimulated to move into the conduction band, which
results in generation of holes in the valence band. As a result, semiconductor particles
produce electron (e−) and hole (h+) pairs [30]. With the band gap Eg as fallowing, the
required wavelength λg of UV light can be calculated [31].

λg(nm) =
1240

Eg(eV)
, (1)

To enable the generation of electrons and holes on the surface of titanium dioxide
particles, the UV light wavelength should, according to the Equation (1), be less than
387.5 nm [31]. The photo-generated holes have a standard redox potential of 3.2 V, which
is significantly higher than the redox potentials of popular oxidants such as ozone (2.07 V),
potassium ferrate (2.2 V), potassium permanganate (1.7 V) and chlorine (1.36 V); they have a
high oxidizability. The hydroxyl radical ·OH (the standard redox potential is 2.76 V) can be
produced by oxidizing the OH- and H2O adsorbed on the surface of TiO2 particles [32,33].
Strong oxidizability exists for the hydroxyl radical. By oxidizing carbon in the surface of
diamond, it can remove diamond. Through the use of material combination simulation
technologies and X-ray photoelectric emission experiments, many researchers found that
the mixed crystal titanium dioxide is superior to single-crystal titanium dioxide [34]. As
photocatalyst, Degussa Company’s nano P25 mixed crystal TiO2 and single-crystal anatase
TiO2 are used in the experiments. P25 TiO2 particles are typically about 25 nm in size. The
ratio of anatase to rutile in BET is roughly 80:20, and the surface area is 50 m2/g.

It is crucial to add an appropriate amount of an electron capture agent to the PCMP
process to prevent the recombination of holes and electrons. This enhances photocatalytic
reaction by allowing numerous holes to directly participate in oxidation reaction or to
indirectly generate hydroxyl radical ·OH. Strong oxidizers that are non-toxic, odorless and
inexpensive are H2O2 and K2FeO4. During the reaction process, they do not produce any
substances that are harmful to humans. Therefore, the preferred electron capture agents in
this investigation are H2O2 and K2FeO4.
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To increase the oxidizability and the dispersibility of the PCMP slurry, additional
ingredients, such as an abrasive, an electron capture agent, a pH regulator and dispersant,
are added. Phosphoric acid can be adopted for chemical mechanical polishing of diamond
due to its non-volatilization and decomposition characteristics. In light of this, phosphoric
acid was utilized in the study to regulate pH.

2.2. Characterization of PCMP Slurry

As illustrated in Figure 3, an oxidation characterization test was used to determine the
oxidation–reduction potential (ORP), pH value and conductivity of the PCMP slurry. The ORP
was measured with AZ86505 oxidation–reduction potentiometer (AZ Instrument Corporation,
Taiwan, China). The ORP values were recorded when different photocatalyst, electron
capture agent and pH regulator were added into solutions. In addition to these parameters,
the methyl orange degradation test can be used to determine the oxidizability of PCMP
slurry. Methyl orange (C14H14N3SO3Na) is a water-soluble dye that comes in orange
powder form [35]. Figure 4 shows the experiment setup for oxidation of methyl orange.
Methyl orange will be oxidized by the hydroxyl radical ·OH formed on the surface of TiO2
particles when subjected to UV radiation. As a result, the orange slurry will fade out. The
PCMP slurry’s ability to oxidize can be indicated by fade time. Higher oxidation resistance
results from a shorter fading time.
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2.3. PCMP Experiments

The UNIPOL-1202 automatic lapping and polishing equipment was used for PCMP
studies as shown in Figure 5. Aluminum oxide is used as the polishing plate. Three CVD
diamond workpieces are pasted with paraffin to the base of the polishing head during the
polishing operation. Changing the number of the counterweight allows for adjustment of
the polishing pressure. Before PCMP, rough asperities on the diamond workpieces must be
removed by stepwise lapping them with 3–6 µm, 1–3 µm, 0.5–1 µm and 0–0.5 µm diamond
abrasives. The slurry for PCMP contains 0.5 g of P25 TiO2 particles, 6 g of aluminum oxide
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abrasives and 3 mL of H2O2 in every 100 mL water. The polishing rotational speed and
pressure are 60 r/min and 1.09 MPa, respectively.
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Since nano TiO2 particles can only absorb UV light with wavelength smaller than
387.5 nm, ultraviolet light is crucial for PCMP. At the moment, the photocatalytic oxidation
experiment mostly uses UV light, such as xenon lamp, deuterium lamp, bromine tungsten
lamp, etc. The Merc-1000 W mercury lamp served as the light source for this work. A
mercury lamp can provide light with a maximum power of 1500 W, as shown in Figure 6.
The Merc-1000 W mercury lamp’s current may be adjusted between 5 A and 25 A and
air cooling is the primary cooling method for this type of lamp. During PCMP process,
different filters can be installed to control the light wavelength.
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3. Results and Discussion
3.1. Oxidation–Reduction Potential of PCMP Slurry

The oxidizability of a solution can be assessed using the ORP value, and, in water, it
varies with different photocatalysts, as illustrated in Figure 7. The ORP values of 5 nm
TiO2 are the highest among various photocatalysts and display an obvious increase when
the slurry is placed under the UV light. The ORP values of 10 nm TiO2, P25 TiO2 and
ZnO are smaller than 5 nm TiO2 but larger than 20 nm TiO2 distinctly, indicating that the
photocatalytic performance is not only affected by the size of photocatalyst particles but
also is related to the crystal form of photocatalysts. P25 is a type of mixed crystal TiO2. It
possesses higher ORP values than 20 nm TiO2, although the typical size of P25 TiO2 particles
is about 25 nm. The lowest ORP is observed in pure water because of its low oxidizability.
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Additionally, the ORP values display a remarkable increase when H2O2 is added to the
solution. This is owing to the fact that the H2O2 increases the conductivity of the solution
and prevents the recombination of electrons and holes due to its high oxidizability.
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Figure 8 illustrates how ORP varies with TiO2 concentration in the presence of UV
radiation. ORP increases as TiO2 concentration increases because more hydroxyl radicals
are produced on the surface of TiO2 particles, which also increases the conductivity of the
slurry. The conductive solution is beneficial for the measurement of ORP. However, too
many TiO2 particles in a slurry will decrease the absorption of UV light due to the slurry
becoming non-transparent when there are many TiO2 particles. That is why the increase in
ORP is not obvious when the concentration of TiO2 particles is high, especially when H2O2
and H3PO4 are already in the slurry. Additionally, it should be noted that the addition of
H2O2 and H3PO4 can significantly increase the oxidizability of the slurry. The introduction
of an acidic condition is useful to increase the oxidizability of a slurry. It should be noted
that the gas film produced on the surface of an electrode will affect the measurement of
ORP when H2O2 and H3PO4 are added into the solution. The measured ORP values will
be smaller than the actual ORP values of a particle area.
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process. The recombination probability of electron and hole can be decreased by adding
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an appropriate quantity of oxidant that captures an adequate number of electrons. As a
result, many holes can oxidize water and produce a hydroxyl radical. The holes and hy-
droxyl radical generated can oxidize the diamond and speed up the photocatalytic activity.
Oxidants are typically chosen as electron capture agents. In the present study, H2O2 and
K2FeO4 are utilized as electron capture agents due to their safety for the environment and
human body. Figure 9 shows that the oxidizability of the slurry increases as the amount of
the electron capture agent increases. Due to its better chemical stability, H2O2 outperforms
K2FeO4, whereas potassium ferrate can be easily decomposed and lose its effectiveness.
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Figure 9. ORP varying with the amount of electron capture agent.

The ORP value is measured while the slurry is dipped into various concentrations of
H2O2 to assess the stability of the mixture. According to Figure 10, if H2O2 is added to the
slurry, the ORP rises significantly, indicating that the slurry’s oxidizability has significantly
increased. After some time, however, the ORP and oxidizability of the slurry start declining.
Adding too much H2O2 will not only initiate the slurry’s decomposition but also prevent
ORP from increasing further. The ORP value essentially approaches 310 mV after 1.0 mL of
H2O2 is added into the slurry. Due to its improved stability with the addition of 0.5 mL
H2O2, the slurry’s ORP value remains high after 500 s. Therefore, during the polishing
process, an appropriate quantity of H2O2 must be intermittently added to the slurry to
maintain the slurry’s activity.
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3.2. pH Value of PCMP Slurry

The stability and oxidation efficiency of the polishing solution have a major effect
on pH in chemical mechanical polishing. The pH value will affect several characteristics,
including the position of the valence band and conduction band, the surface adsorption
of the functional group and the aggregation of TiO2 catalyst. Large amounts of OH- are
present in alkaline solutions with high pH levels, which encourages the transfer of holes
from the interior of TiO2 particles to the surface. On the contrary, the acidic solution’s
low pH makes the surface of TiO2 easily protonated and subsequently positively charged,
which is favorable for the transfer of photogenerated electrons to the surface of the TiO2
particles. In the chemical mechanical polishing experiments, phosphoric acid was used
as a pH regulator, making it hard to volatilize and decompose. The pH and ORP of the
TiO2–H2O2 slurry vary with the amount of phosphoric acid, as indicated in Figure 11. The
pH value steadily drops from 2.26 to 1.66 with a rise in phosphoric acid. The ORP value was
significantly increased initially by the addition of 0.2 mL phosphoric acid, reaching 501 mV.
However, as more phosphoric acid was added, the growth rate gradually decreased,
indicating that H2O2 in the photocatalytic polishing solution can capture electrons.
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Through UV photocatalysis reaction, the diamond powder can oxidize its carbon into
CO or CO2 when combined with slurry [36,37]. In slurry, CO2 dissolves and takes the
forms H2CO3, HCO3

− and CO3
2−. There are two equations for dissociation equilibrium:

2 ·OH + C = CO↑ + H2O (2)

4 ·OH + C = CO2↑ + 2H2O (3)

H2CO3 ↔ HCO−3 + H+, K1 = 4.2 × 10−7, (4)

HCO−3 ↔ CO2−
3 + H+, K2 = 5.6 × 10−11, (5)

The primary reaction product in a solution with a pH of 6~7 is bicarbonate, which
has an alkaline pH. As a result, the pH of the slurry steadily increases as the number of
diamond abrasives increases. Additionally, the presence of diamond abrasive reduces the
transmission of UV light in a solution. It also slows down the rate at which a photocatalyst
decomposes. The chemical reaction impacts only a small portion of the diamond particles,
but a consistent downward trend can be observed for ORP, as depicted in Figure 12.
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3.3. Conductivity of PCMP Slurry

Nano TiO2 particles are conductive. Therefore, the slurry conductivity will change
when nano TiO2 particles are added to the slurry. Figure 13 illustrates how the conductivity
of the solution varies as different quantities of TiO2 are added into 50 mL water. The
conductivity of a solution seems to be improved by the addition of a catalyst. When the
slurry with nano TiO2 particles is placed under the radiation of UV light, the conductivity
of the slurry cannot change obviously no matter how many nano TiO2 particles are added.
It indicates that the photocatalyzed reaction usually occurs on the surface of nano TiO2
particles, which do not affect the conductivity of a slurry. The conductivity of a slurry is
mainly affected by the amount of nano TiO2 particles. Additionally, the pH of a slurry
continuously increases after adding nano TiO2 particles. It implies that the slurry undergoes
some chemical reaction. It should be noted that excess of TiO2 powder will reduce the
absorbance of UV light, and that will decrease the efficiency of the photocatalytic reaction.
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Figure 14 shows the conductivity of the solution under UV irradiation for 10 min
when 0.2 g of TiO2 is added in various amounts of H2O2. By increasing the H2O2 dosage,
the conductivity of the solution increases in the same reaction time. As H2O2 decomposes
after being exposed to UV light for 100 s, the conductivity of the solution gradually falls.
Generally, the additional H2O2 takes part in the capture of photogenerated electrons while
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reacting with holes on the surface of the TiO2 particles to produce peroxides. Consequently,
the initial stage has more holes, which improves the photocatalytic activity and conductivity.
The activity and conductivity of slurry, however, decreased by the excess reaction of H2O2
and holes. Therefore, the photocatalytic activity and the material removal benefit from the
addition of a suitable amount of H2O2 to the slurry.
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3.4. Oxidation Test of Methyl Orange

Methyl orange (C14H14N3SO3Na) was added to the polishing slurry to better char-
acterize the slurry’s oxidizability. For the test, methyl orange in orange–yellow powder
form is used. The yellow color will quickly degrade if the methyl orange is oxidized by the
slurry’s oxidant. Therefore, the rate of yellow color degradation can be utilized to assess
the oxidizability of the slurry.

The slurry for the photocatalytic oxidation test was made by adding 200 mL of methyl
orange solution with 0.5 g of P25 TiO2, 1.5 mL of H2O2 and a small amount of sodium
hexametaphosphate. To guarantee the homogeneous dispersion of the solution, the slurry
underwent a 20 min ultrasonic dispersion treatment. After that, the slurry was subjected to
UV light. When methyl orange is added, the initial solution appears white and subsequently
turns yellow, as illustrated in Figure 15. The methyl orange solution is discolored after
30 min of UV exposure. Figure 15d depicts that the methyl orange solution recovers to its
original color and is entirely degraded after being exposed to ultraviolet light for 60 min.
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According to the analysis of the experimental results and the semiconductor photocat-
alytic oxidation mechanism, after exposure to UV light, a significant number of photogener-
ated holes are created in the solution and on the surface of the photocatalyst, and hydroxyl
radical ·OH is subsequently produced on the surface of TiO2 particles. Photogenerated
holes and the hydroxyl radical ·OH both demonstrate considerable oxidation [20]. In the
photocatalytic reaction, organic compounds such as methyl orange that are adsorbed on
the surface of TiO2 particles and in the solution will react with photogenerated holes and
hydroxyl radical ·OH, causing a portion of the methyl orange to be directly degraded into
CO2 and H2O. This leads to the decolorization phenomenon, as depicted in Figure 15.

3.5. Polishing Diamond with PCMP Slurry

Figure 16 shows that the diamond surface roughness varies according to the polishing
slurries. Before the PCMP process, the diamond workpieces were polished with diamond
abrasive so as to present the same roughness. Then, the surface roughness was traced to
evaluate the material removal in PCMP. Additionally, it also prevents uneven polishing due
to the repeating paste in the PCMP. As shown in the figure, the diamond surface roughness
lowers gradually during the duration of the 8 h polishing operation. The slurries with
photocatalyst have stronger oxidizability than those without photocatalysts. Therefore,
observation shows that the photocatalysis properties of P25 or 5 nm titanium dioxide are
better. Many hydroxyl radical ·OHs are created in the slurry, which is critical in the removal
of diamond. Among the three groups, the polishing slurry prepared with P25 titanium
dioxide exhibits the best polishing results, and the diamond’s surface roughness decreases
from Ra 33.6 nm to Ra 2.6 nm. Furthermore, P25 titanium dioxide’s photocatalytic activity
is relatively stable, so it can maintain its photocatalyzed capability for a long time.
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Figure 16. The surface roughness of diamond varying with polishing time.

The diamond surface morphology before and after polishing is shown in Figure 17.
As can be seen from the figure, the diamond’s initial surface contains multiple residual
mechanical scratches. However, after being polished without photocatalyst for eight hours,
the surface becomes smoother, with minor scratches. The majority of mechanical scratches
are removed when the diamond workpiece that has undergone mechanical lapping is
polished for eight hours with a slurry of 5 nm TiO2 or P25 TiO2. Therefore, a smooth
surface can be observed on a diamond workpiece. The surface morphology of a diamond
workpiece measured with AFM in a 5 µm × 5 µm shown in Figure 18 presents a small
surface roughness of about Ra1.6 nm after polishing with 5 nm TiO2.
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Figure 17. The diamond surface morphology before and after polishing. (a) Initial surface; (b) polishing
without photocatalyst for 8 h; (c) polishing with 5 nm TiO2 for 8 h; (d) polishing with P25 TiO2 for 8 h.
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Figure 18. The three-dimensional morphology of diamond after polishing with 5 nm TiO2.

4. Conclusions

In this paper, a novel method for polishing diamonds is provided that makes use of
the hydroxyl radical ·OH produced on the photocatalyst particles’ surface when they are
exposed to UV light. The production of a polishing slurry for the proposed PCMP is also
covered. The following are some insightful conclusions:
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(1) The removal of diamonds via photocatalysis-assisted chemical mechanical polishing
is effective as it utilizes hydroxyl radical ·OH as an oxidant in the slurry. The ECMP
slurry contains a photocatalyst, abrasive, electron capture agent, pH regulator and
dispersant to achieve an optimal effect.

(2) The maximum ORP is present in the 5 nm TiO2 and P25 TiO2 solutions. By incorporat-
ing H2O2 and H3PO4 into the slurry and exposing it to UV light, the oxidizability of
the slurry increases. Both H2O2 and H3PO4 are neither detrimental to the environment
nor to humans; however, K2FeO4 decomposes more easily than H2O2.

(3) The ORP of slurry and the oxidation of the diamond can both be improved by
acid condition. TiO2 powder and H2O2 can be used to boost slurry conductivity,
but, as the TiO2 and H2O2 concentrations reach a particular threshold, the gain in
conductivity stops.

(4) Methyl orange is an appropriate reagent for determining whether a slurry is oxidizable
because the UV light will cause the yellow color to disappear after 60 min.

(5) Both P25 TiO2 and 5 nm TiO2 exhibit strong photocatalysis properties. Surface rough-
ness can be decreased from Ra 33.6 nm to Ra 2.6 nm in 8 h using a slurry contain-
ing P25 TiO2. Moreover, PCMP can be used to remove mechanical scratches from
diamond surfaces.
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