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Abstract: The Complete Coverage Path Planning (CCPP) is a key technology in the field of agricul-
tural robots, and has great significance for improving the efficiency and quality of tillage, fertilization,
harvesting, and other agricultural robot operations, as well as reducing the operation energy con-
sumption. The traditional boustrophedon- or heuristic-search-algorithm-based CCPP methods, when
coping with the field with irregular boundaries, obstacles, and other complex environments, still
face many problems and challenges, such as large repeated work areas, multiple turns or U-turns,
low operation efficiency, and prone to local optimum. In order to solve the above problems, an
improved-genetic-algorithm-based CCPP method was proposed in this paper, the proposed method
innovatively extends the traditional genetic algorithm’s chromosomes and single-point mutation
into chromosome pairs and multi-point mutation, and proposed a multi-objective equilibrium fitness
function. The simulation and experimental results on simple regular fields showed that the proposed
improved-genetic-algorithm-based CCPP method achieved the comparable performance with the tra-
ditional boustrophedon-based CCPP method. However, on the complex irregular fields, the proposed
CCPP method reduces 38.54% of repeated operation area and 35.00% of number of U-turns, and can
save 7.82% of energy consumption on average. This proved that the proposed CCPP method has a
strong adaptive capacity to the environment, and has practical application value in improving the
efficiency and quality of agricultural machinery operations, and reducing the energy consumption.

Keywords: complete coverage path planning; genetic algorithms; autonomous agricultural robot;
field efficiency

1. Introduction

The traditional agricultural robot operations relying on manual control have low
operation efficiency, high energy consumption, poor safety, and the quality of operation
depends on the experience of agricultural machinery operators [1]. Moreover, due to the
increasing shortage of rural labor force, they are unable to meet the requirements of modern
agricultural development. Therefore, the automatic driving technology has become the
research focus in the intelligent planters, transplanters, harvesters, and other intelligent
agricultural robots [2–5]. The farmland Complete Coverage Path Planning (CCPP), as
one of the key technologies in autonomous agricultural robots [6], aims at finding paths
that cover all operating areas except obstacles. It has great significance for improving the
operation efficiency of automatic driving agricultural robot, reducing the repeated work
area and energy consumption [7], ensuring the operation quality [8], and promoting the
development of precision agriculture [9].

The CCPP methods mainly address the following problems [10–12], (1) the entire work
area must be traversed; (2) the static obstacles must be avoided; (3) the repeated work areas
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should be reduced as much as possible; and (4) the number of turns and U-turns should be
minimized. The CCPP methods can be classified as grid-based method, cell decomposition-
based method, neural network-based method, and heuristic algorithm-based method
according to its implementation method.

The grid-based method, invented by W.E. Howden in 1968, divides the work area into
several grids with equal size, and seeks the optimal path that has the minimum number of
repeated grids and traverses all free grids. A high-resolution grid map representation-based
online CCPP control algorithm [13] was proposed to generate a smooth coverage path
through Bezier curve approximation. The grid and HS (Harmony Search) algorithm-based
path planner [14] significantly reduced the number of trajectories turns. To solve the
problem of path planning with a large number of grids, Ammar et al. [15] improved the
calculation times of the actual cost function. The grid-based methods have the advantages
of simple implementation and easy planning; however, their computational complexity
increases with the increasing number of grids.

The cell decomposition-based method firstly decomposes the work area into multiple
sub-regions with simple shapes and without obstacles. Then the CCPP of each sub-region
becomes a simple reciprocating movement, and can be implemented by seeking the op-
timal operation sequence of each sub-region. The boustrophedon-based decomposition
method [16] was presented to divide the region with excessive obstacle vertices. The de-
composition method [17] using different decomposition directions for different farmlands
solved the problem that the traditional method can only be decomposed vertically. Al-
though the cell decomposition methods have high efficiencies and significantly reduced
the CCPP difficulty, the inappropriate connecting order of each sub-region can result in too
many repeated paths.

The neural network-based CCPP method utilizes the self-learning ability and adapt-
ability of neural network to improve the area coverage efficiency. A biologically inspired
neural networks-based CCPP method [18] was emerged to plan collision-free paths au-
tonomously and in real time. The neural dynamics-based complete coverage navigation
(CCN) algorithm [19] can plan a shorter collision-free complete coverage path in an un-
known environment. A complete coverage neural network (CCNN) [20] was constructed,
which can generate paths with smaller steering angles and fewer changes in navigation
direction by the next optimal location decision strategy that combined with the driving
direction. A feature-learning fully convolutional model [21] was built to solve the crop row-
based CCPP problem. The neural network brings new ideas to solve the CCPP problem,
whereas it has a lower planning success rate when the data are insufficient, and its loss
function has less robustness.

The heuristic algorithms-based CCPP method utilizes the heuristic factors to reduce
the complexity of the search problem, thereby improving the efficiency of searching the
optimal paths. The bacterial foraging method [22] for robot path planning is proposed to
plan the best collision-free path between the starting point and the target point, and it can
plan stable and reliable trajectories in complex environments. A new mix-opt operator for
simulated annealing algorithm [23] was proposed to accelerate the convergence speed of
heuristic optimization. The CCPP method combining the genetic algorithm and TSP (Travel
Quotient Problem) [24] can find the coverage path that has the shortest travel distance and
grid coverage time. A novel integrated virus evolution heuristic algorithm [25] that satisfies
the trade-off between multiple objectives is proposed for intelligent toolpath optimization,
which can obtain the direct output of the global optimized toolpath, and has very important
industrial strategic capabilities. The Non-Dominated Sorting Genetic Algorithm (NSGA-
III) [26] takes the maximum volume of pesticide tanks into consideration, and can seek out
the coverage path with minimum travel distance and routing angle. It can solve the CCPP
problem of multi-agricultural mobile robot. A self-reconfigurable autonomous robot [27]
that can enter the narrow space was created, and can conduct the CCPP by optimizing
the order of traveler sequences. Focusing on the irregular fields with a single entrance, a
search space with virtual obstacles [28] was generated that can use the A* algorithm to
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determine a curved path for returning to the entrance after completed an agricultural task.
The heuristic algorithm-based CCPP methods have the advantages of easy implementation,
high capability of seeking the optimum solution, and fair extensibility [29].

Many scholars have done in-depth research on complete coverage path planning tech-
nology, which is of significance for the further research and application of this technology
in intelligent agricultural robots. Each path planning method mentioned above has its own
advantages and limitations, and their differences are summarized in Table 1, a comparison
table of complete coverage path planning methods. Among them, the genetic algorithm has
the advantages of high optimization ability and parallel ability, easy coding, and combina-
tion with other algorithms, and can effectively solve multi-objective optimization problems.
Hence, this paper uses the improved genetic algorithm to solve the complete coverage path
planning problem.

Table 1. Comparison table of complete coverage path planning methods.

Algorithm Descriptions

Grid method
Simple implementation and convenient planning
The complexity increases with the increase in the grid

Cell decomposition method
Convenient and fast, reducing the difficulty of CCPP
Unreasonable connection order lead to repeated paths

Neural network method
Excellent real-time and obstacle avoidance
The robustness of the error function is poor

Heuristic algorithm
Strong optimization ability and scalability
Unstable performance, easy to fall into local optimum

The grid-based, cell decomposition-based, and neural network-based CCPP methods
have obtained many research achievements; however, they still have some problems
such as high path repetition rate, low planning efficiency, and poor robustness when
coping with complex working scenarios. Therefore, the heuristic-based CCPP method
with good stability and strong global optimization-seeking ability was used in this paper
to deal with the complex farming scenarios that have irregular boundaries and obstacles.
Nonetheless, the adopted classical heuristic genetic algorithm is prone to the local optimal
solution in the actual planning. Thus, an improved genetic algorithm-based [30] CCPP
method was proposed in this paper to improve the global optimization-seeking ability and
environmental adaptability of the classical genetic algorithm in complex environments. The
proposed method innovatively extends the traditional genetic algorithm’s chromosomes
and single-point mutation into chromosome pairs and multi-point mutation, which can
reduce the repeated area and the number of turns and U-turns. The proposed CCPP method
can guide the autonomous agricultural robot to achieve efficient cultivation especially in
complex field environments. The main contributions of this paper are as follows, (1) extends
the chromosomes to chromosome pairs that contains a chromosome for genetic evolution
and a chromosome for fitness calculation, which increases the efficiency and operational
effectiveness of CCPP; (2) proposes a multi-point mutation method to break the genetic
sequence of the parent chromosomes as much as possible, which improves the global
optimization-seeking ability in a complex environment; and (3) establishes a multi-objective
fitness function that takes account of the repeated operation area, the number of turns and
U-turns, which reduces the overall energy consumption.

2. Materials and Methods

The proposed improved-genetic-algorithm-based CCPP method consists of two parts,
(1) the field environment map modeling and (2) the improved genetic algorithm for CCPP.
As shown in Figure 1, the field environment map modeling includes three modules,
(1) environment map rasterization, which divides the environment map into grids with
equal size; (2) irregular object dilation, which dilates the irregular-sized obstacles and
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irregular-shaped fields into regular grids; and (3) grid map coding, which adopts the
sequential notation method to code the grids. The improved genetic algorithm for CCPP
includes six modules, (1) chromosome-pairs-based initial population generation, which
generates the initial Q chromosome pairs; (2) multi-objective-balance-criterion-based chro-
mosome fitness calculation, which is used for algorithm iterative update; (3) elitist-strategy-
based roulette selection, which selects a limited number of chromosomes with the best
fitness values to pass to the next generation population; (4) order-preserving crossover,
which aims to inherit the excellent genes of the parent chromosomes and ensure the stability
of the population; (5) multi-points mutation, which introduces diversity in the genetic
population and expands the search space; and (6) optimal complete coverage path (OCCP)
output, which decodes and outputs the OCCP when the termination condition is satisfied.

begin

Distended Irregular Disorder

generate initial population  
based on chromosome pairs

quit?

end

Rasterized environment map

decode output 
complete coverage path

roulette selection

order-preserving crossover

multi-point mutation

Evolution process

generate progeny population

calculate  fitness based on multi-
objective-balance-criterion

Improved genetic algorithm

Y

N

Farmland environment modeling based on grid-based method

Coded grid-based map

Figure 1. Flow chart of CCPP method based on improved genetic algorithm.

2.1. Field Environment Map Modeling Based on Grid Method

The field environment mapping is the foundation of CCPP for self-driving agricultural
robots. The grid map can accurately represent the environmental information, and is easy
to maintain, store, and be used for solving the CCPP problem. Therefore, the grid map
construction method was adopted in this paper for representing the field boundaries, free
space, and obstacles in an real field. The grid-map-based field environment modeling
includes (1) environment map rasterization, (2) irregular object dilation, and (3) grid map
coding, which are detailed as follows.
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2.1.1. Rasterization of the Environment Map

The environment map rasterization is the first task for creating the environment grid
map, which divides the environment map into grids with equal area. As shown in Figure 2,
the field map shown in Figure 2a is rasterized into the grid map shown in Figure 2b. The
grid size can be determined by the size and the operation width of the autonomous driving
agricultural robot. In addition, the obstacles are projected to the grid map, e.g., the obstacle
A and B in Figure 2.

B

A
A

(a)

A

B

(b)

Figure 2. Field environment map rasterization. (a) The actual field area. (b) The grid-based map.

2.1.2. Irregular Grid Expansion

When the field has an irregular shape or some static obstacles existed in the field,
the rasterized field map needs to be dilated into a regular-shaped map, and the irregular-
shaped obstacles into regular-shaped obstacles. This will help to determine whether a
grid is reachable. For example, the grid map shown in Figure 2b was dilated to the grid
map shown in Figure 3. Area C in Figure 3 was added to regularize the grid map and the
irregular-shaped obstacle A in Figure 2b were dilated into the regular-shaped obstacle A’
in Figure 3. In addition, because the area D in Figure 3 surrounded by L-shaped obstacle B
in Figure 2b is an unreachable, the L-shaped obstacle B in Figure 2b should be dilated into
the rectangular obstacle B’ in Figure 3.

A’
C

B’

Unreachable grids are 
marked as an obstacle  

D

Figure 3. The grid-based map after irregular grid expansion

2.1.3. Grid-Based Map Coding

For the convenience of solving the CCPP problem and presenting the final planned
path, the sequential notation method was adopted to encode the map grids in this paper.
As shown in Figure 4, the grid map was encoded, starting from the bottom left grid, and
each grid is sequentially marked as the unique number in the order of left to right and
bottom to top. Meanwhile, the black occupied grid (e.g., 18–20, 143–146, 118–120) was
labeled as “1”, and the white free grid (e.g., 61–117) as “0”, for identifying the properties of
different grids. Therefore, each grid is represented as < ID, Prop >, where ID ∈ N is the
unique number of the grid, and Prop ∈ {0, 1} is the grid property. When the CCPP method
searches for the OCPP, the 4-neighbor searching method was employed for reducing the
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CCPP searching spaces. For example, if the autonomous driving agricultural robot is at
the position <90,0> in Figure 4, its 4-neighbor were <89,0>, <91,0>, <70,0>, and <110,0>,
namely the one-step reachable search domain of the grid <90,0>. For ease of calculating the
number of turns and U-turns (see Section 2.2.2), the left movement (e.g., from <90,0> to
<89,0> in Figure 4 is marked as 1, up movement (e.g., from <90,0> to <110,0> in Figure 4 as
2, right movement (e.g., from <90,0> to <91,0> in Figure 4 as 3 and down movement (e.g.,
from <90,0> to <70,0> in Figure 4 as 4.

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

Figure 4. Grid-based map encoding.

2.2. Field CCPP Based on Improved Genetic Algorithm

Since the traditional-genetic-algorithm-based CCPP method, when coping with the
irregular-shaped field, and other complex field with obstacles, is prone to the problems,
such as more repeated work area, more turns or U-turns, and falling into local optimum, an
improved-genetic-algorithm-based CCPP method was proposed in this paper. This method
innovatively proposes the chromosome pairs and multi-points mutation to improve its
global optimization ability in complex environments, and the multi-objective (i.e., the
repeated work area, the number of turns and U-turns)-balance-criterion-based chromo-
some fitness function to reduce the number of turns and U-turns under the premise of less
repeated work area. The improved genetic algorithm includes (1) chromosome-pair-based
initial population generation, (2) multi-objective-balance-criterion-based chromosome fit-
ness calculation, (3) elitist-strategy-based roulette selection, (4) order-preserving crossover,
(5) multi-points mutation, and (6) OCCP output, which are detailed as follows. Further-
more, the algorithm needs to meet the following conditions, (1) the shape of the grid map
is a regular rectangle; (2) the number of grids in the grid map is limited; (3) the feasible area
and obstacle area of the known grid map; and (4) does not consider the mileage constraints
of agricultural robots. At the end of the algorithm run, the output optimal chromosome is
decoded into the optimal path order.

2.2.1. Initial Population Generation Based on Chromosome Pairs

The CCPP aims to traverse all the free grids, and the traversed grid order is the planned
complete coverage path. To describe the encoding scheme with a minimum encoding
character set, a decimal encoding is adopted in this paper. Each chromosome represents
a feasible solution, i.e., a field complete coverage path, where the grid in set Sw presents
at least once, while the grid in set So is absent. For example, an initial chromosome Xch in
Figure 5b corresponding to the encoded grid map in Figure 5a, can be randomly generated.
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9 10 11 12

5 6 7 8

1 2 3 4

(a)

1 8 10 6 9 7 4 53

chromosome
gene

(b)

Figure 5. The initial chromosome. (a) Coded map (b) Generated chromosome randomly.

The traditional genetic algorithm randomly generates Q chromosomes as the initial
population. However, for the CCPP problem, the randomly generated initial population is
prone to a large number of invalid chromosomes. For example, the chromosome shown
in Figure 5b is an invalid chromosome since the 4-neighbor relationship between gene 1
and gene 8 is not satisfied, i.e., gene 8 is not in the one-step reachable search domain of
gene 1. In other words, the autonomous driving agricultural robot cannot directly move
from grid 1 to grid 8. Therefore, the randomly generated chromosome is adjusted in this
paper to obtain the chromosome (as shown in Figure 6) that the adjacent genes satisfied the
4-neighbor relationship.

1 5 6 7 8 7 6 10 9 5 6 7 3 4

Figure 6. The adjusted chromosome.

The proposed adjustment method of the chromosome is described as follows:

(1) If two adjacent genes satisfy the 4-neighbor relationship, i.e., the adjacent genes are
one-step reachable, no adjustment is required.

(2) If two adjacent genes do not satisfy the 4-neighbor relationship, the gene sequence
where the adjacent genes satisfy the 4-neighbor relationship with the shortest path
was inserted between the two genes. If the inserted gene appears in the subsequent
gene sequence of the chromosome, the repeated genes appeared in the subsequent
gene sequence will be deleted. The Floyd’s algorithm [31] was used in this paper to
find the gene sequence with the shortest path that should be inserted.

(3) Starting from the first gene of the chromosome, step (1) and step (2) were repeated
until all the genes of the chromosome were traversed. Thus, the valid chromosome
where all the adjacent genes satisfy the 4-neighbor relationship will be generated.

For example, the process of adjusting the invalid chromosome shown in Figure 5b to
the valid chromosome shown in Figure 6 is as follows:

(1) As shown in Figure 7a, starting from the first gene, the shortest path 5-6-7 obtained
by the Floyd’s algorithm was inserted between gene 1 and gene 8 since gene 1 and
gene 8 do not satisfy the 4-neighbor relationship. In addition, the genes 5, 6, and 7
appeared in the subsequent gene sequence of the chromosome are deleted, and the
adjusted chromosome 1-5-6-7-8-10-9-4-3 will be obtained.

(2) As shown in Figure 7b, next traversing the gene 8, the shortest path 7-6 obtained by
the Floyd’s algorithm was inserted between gene 8 and gene 10 since gene 8 and gene
10 do not satisfy the 4-neighbor relationship. Because gene 7 and gene 6 was absent in
the subsequent gene sequence, the chromosome 1-5-6-7-8-7-6-10-9-4-3 can be obtained
without gene deletion operation.

(3) As shown in Figure 7c, continually traversing the next gene 10, because gene 10 and
gene 9 satisfy the 4-neighbor relationship, no adjustment was done. Then travers-
ing the next gene 9, as shown in Figure 7d, the shortest path 5-6-7-3 was inserted
similarly as (1) between gene 9 and gene 4, and the repeated gene 3 was deleted.
Since gene 4 was the last gene of the chromosome, the chromosome adjustment was
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finished. Finally, the adjusted valid chromosome is 1-5-6-7-8-7-6-10-9-5-6-7-3-4 where
all free grids appeared at least once and all the adjacent genes satisfy the 4-neighbor
relationship.

1 8 10 6 9 7 4 3 5

1 5 6 7 8 10 6 9 7 4 3 5

insert shortest path

dissatisfy 4-neighbors

delete duplicate  grids

1 5 6 7 8 10 9 4 3
The chromosome after 

the first adjustment

(a)

1 5 6 7 8 10 9 4 3

1 5 6 7 8 7 6 10 9 4 3

dissatisfy 4-neighbors

insert shortest path

1 5 6 7 8 7 6 10 9 4 3
The chromosome after 
the second adjustment

(b)

1 5 6 7 8 7 6 10 9 4 3

1 5 6 7 8 7 6 10 9 4 3

satisfy 4-neighbors

no adjustment required

1 5 6 7 8 7 6 10 9 4 3
The chromosome after 

the third adjustment

(c)

1 5 6 7 8 7 6 10 9 5 6 7 3 4 3

insert shortest path

1 5 6 7 8 7 6 10 9 4 3

dissatisfy 4-neighbors

1 5 6 7 8 7 6 10 9 5 6 7 3 4
The chromosome after 
the fourth adjustment

(d)

Figure 7. The initial chromosome adjustment. (a) Need to adjust two not adjacent genes. (b) Insert
the shortest path. (c) No need to adjust two adjacent genes. (d) Adjustment to the end of the last
gene position.

As shown in Figure 7, the chromosome pair was generated by combining the chromo-
some Xch = 1-8-10-6-9-7-4-3-5 and the adjusted valid chromosome Ych = 1-5-6-7-8-7-6-10-
9-5-6-7-3-4. Thus, the initial population Pinit = {< X1|Y1 >,< X2|Y2 >, · · · ,< XQ|YQ >}
show in Figure 8 can be obtained by combing the Q chromosomes {X1, X2, · · · , XQ} ran-
domly generated by the traditional genetic algorithm and its adjusted valid chromosomes
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{Y1, Y2, · · · , YQ}. The chromosome X in the initial population has the same number of
genes, and was used for selection, crossover, mutation, and other evolutionary operations.
The chromosome Y in the initial population may have different number of genes, and
was used for chromosome fitness calculation. Moreover, the chromosome Y represents a
complete coverage path that an autonomous driving agricultural robot can travel in the
real farming operation.

1 8 10 6 9 7 4 3 5

1 5 6 7 8 7 6 10 9 5 6 7 3 4

population

chromosome pair

1 9 10 8 5 3 7 6 4

1 3 9 10 5 6 7 8 4

1 5 6 7 3 7 6 5 9 10 6 7 8 4

1 5 9 10 6 7 8 4 3

… … … … … … 
… … … … … … 

X1

Y1

X2

Y2

XQ

YQ

Figure 8. The chromosome pair-based population.

2.2.2. Fitness Calculation Based on Multi-Objective Equalization Criterion

The fitness function is the basis of the genetic algorithm iteration, and is the key factor
of generating optimal solution and algorithm convergence. Because the turns and U-turns
will produce a deceleration–reacceleration process, and increase the energy consumption
of agricultural robot, the main objective of CCPP is to reduce the number of turns and
U-turns as much as possible while covering all the free grids. However, in practical farming
operation, the number of turns or U-turns was inevitably increased to reduce the repeated
work area, or the repeated work area was increased to reduce the number of turns or
U-turns. Therefore, to balance the cost of the number of turns, the number of U-turns, and
the repeated work area [32], a multi-objective-balance-criterion-based fitness function was
proposed in this paper, which was defined as follows

f (i) =
1

w1(i)ϕ[z1(i)] + w2(i)ϕ[z2(i)] + w3(i)ϕ[z3(i)]
(1)

where f (i) represents the fitness value of the i-th chromosome; w1(i), w2(i) and w3(i)
represent the weight of the repeated work area, the weight of the number of turns and
the weight of the number of U-turns, respectively, which were defined in (2) to (7); and
ϕ[z1(i)], ϕ[z2(i)] and ϕ[z3(i)] represent the repeated work area, the number of turns and
the number of U-turns, which were defined in (11) to (15).

The initial weight of w1(i), w2(i), and w3(i) are set to 0.3, 0.2, and 0.5, then the weight
adaptive mechanism was used to balance the three objectives with the following formula,

wt
1(i) =

wt−1
1 (i)× (1 + ϕ[zt

1(i)]−ϕ(Zt−1
1 )

ϕ[zt
1(i)]

)

wt−1
1 (i)

,
,
ϕ[zt

1(i)] > ϕ(Zt−1
1 )

ϕ[zt
1(i)] ≤ ϕ(Zt−1

1 )
(2)

wt
2(i) =

wt−1
2 (i)× (1 + ϕ[zt

2(i)]−ϕ(Zt−1
2 )

ϕ[zt
2(i)]

)

wt−1
2 (i)

,
,

ϕ[zt
2(i)] > ϕ(Zt−1

2 )

ϕ[zt
2(i)] ≤ ϕ(Zt−1

2 )
(3)

wt
3(i) =

wt−1
3 (i)× (1 + ϕ[zt

3(i)]−ϕ(Zt−1
3 )

ϕ[zt
3(i)]

)

wt−1
3 (i)

,
,

ϕ[zt
3(i)] > ϕ(Zt−1

3 )

ϕ[zt
3(i)] ≤ ϕ(Zt−1

3 )
(4)
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w1(i) =
wt

1(i)
wt

1(i) + wt
2(i) + wt

3(i)
(5)

w2(i) =
wt

2(i)
wt

1(i) + wt
2(i) + wt

3(i)
(6)

w3(i) =
wt

3(i)
wt

1(i) + wt
2(i) + wt

3(i)
(7)

where wt
1(i), wt

2(i) and wt
3(i) represent the weights of the i-th chromosome in current

population; wt−1
1 (i), wt−1

2 (i) and wt−1
3 (i) represent the weight of the i-th chromosome in

parent population; ϕ[zt
1(i)], ϕ[zt

2(i)] and ϕ[zt
3(i)] represent the repeated work area, the

number of turns and the number of U-turns of the i-th chromosome in current population,
respectively; and ϕ(Zt−1

1 ), ϕ(Zt−1
2 ) and ϕ(Zt−1

3 ) represent the average of the repeated
work area, the number of turns and the number of U-turns of all chromosomes in parent
population, respectively, which were defined in (8) to (10).

ϕ(Zt−1
1 ) =

Q

∑
i

ϕ[zt−1
1 (i)]/Q (8)

ϕ(Zt−1
2 ) =

Q

∑
i

ϕ[zt−1
2 (i)]/Q (9)

ϕ(Zt−1
3 ) =

Q

∑
i

ϕ[zt−1
3 (i)]/Q (10)

The repeated work area ϕ[z1(i)], the number of turns ϕ[z2(i)] and the number of
U-turns ϕ[z3(i)] of the i-th chromosome were calculated according to the Y chromosome,
which are defined as follows:

ϕ[z1(i)] = ||Yi|| − ||set(Yi)|| (11)

turn(g) =
{

1
0

,
,
|orien(Yi[g])− orien([Yi[g− 1])|%2 = 1
|orien(Yi[g])− orien([Yi[g− 1])|%2 6= 1

(12)

ϕ[z2(i)] =
||Yi ||

∑
g=1

turn(g) (13)

uturn(g) =
{

1
0

,
,
|orien(Yi[g])− orien([Yi[g− 1])| = 2
|orien(Yi[g])− orien([Yi[g− 1])| 6= 2

(14)

ϕ[z3(i)] =
||Yi ||

∑
g=1

uturn(g) (15)

where ||Yi|| represents the length of the chromosome Yi; ||set(Yi)|| represents the length
of the chromosome after removing its repeated genes; % represents the mod operation;
orien(Yi[g]) represents the moving direction of the autonomous driving agricultural robot
at the grid Yi[g]; and turn(g), uturn(g) represent whether the autonomous driving agricul-
tural robot has the turn and U-turn action at the grid Yi[g], respectively.

2.2.3. Roulette Selection Operation Based on Elite Strategy

The elitist-strategy-based roulette selection was adopted in this paper to make the
optimal k elite chromosomes in the parent population be inherited to the offspring popu-
lation. In addition, the remaining chromosomes in the parent population are selected by
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the roulette algorithm until the desired number of offspring chromosomes are satisfied.
Thus, each chromosome has the probability that proportional to its fitness value to enter
the offspring generation, and the chromosomes both with low fitness value and high fit-
ness value are selected. This will make the population have the diversity, and make the
algorithm avoid falling into a local optimum [33]. The probability P(i) of a chromosome
being selected in the population is defined as follows:

P(i) =
f (i)

Q
∑

i=1
f (i)

(16)

where i represents the i-th chromosome; f (i) represents the fitness value of the i-th chromo-
some (as shown in (1)); and Q is the total number of chromosome in the population.

2.2.4. Crossover Operation Based on Order-Preserving Method

Crossover is one of the important steps in the evolution of genetic algorithm, which
is analogous to reproduction and biological crossover. In crossover operation, more than
one parent is selected with a high probability and one or more off-springs are produced
using the genetic material of the parents, which will enhance the algorithm’s optimization
ability. The order-preserving crossover method was used in this paper, which was detailed
as follows. Firstly, two chromosomes, A and B, were randomly selected for crossover in the
parent population. Then a crossover point of chromosome A was randomly determined,
and the genes behind this point in chromosome A were deleted. Next the genes at the front
of the crossover point in chromosome A were deleted from chromosome B. Finally, the
remaining genes in chromosome B were added behind the crossover point of chromosome
A, and a new chromosome C will be obtained. The crossover probability is generally
between 0.5 and 1. The crossover not only ensures that the off-spring chromosome contains
all the free grids, but also has the characteristics of the parent chromosome.

For example, the order-preserving crossover operation are shown in Figure 9. Firstly,
as shown in Figure 9a, the crossover point was randomly determined, i.e., gene 6 in
chromosome 1 and gene 8 in chromosome 2. Then, as shown in Figure 9b, gene 1, 8, and
10 (appeared before the crossover point in chromosome 1) were deleted in chromosome 2,
and the genes (i.e., gene 9, 7, 4, 3, and 5) behind the crossover point in chromosome 1 were
deleted. Finally, as shown in Figure 9c, the remaining gene sequence 3-7-5-9-4 was added
in order behind the crossover point of chromosome 1, and the off-spring chromosome
1-8-10-6-9-7-4-3-5 can be obtained. Similarly, the off-spring chromosome generated by the
order-preserving crossover operation also should be adjusted by the method in Section 2.2.1
to calculate its fitness value.
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1 8 10 6 9 7 4 3 5

1 10 3 8 7 5 9 4 6

chromosome1

chromosome2

delete duplicate genes

(a)

1 8 10 6 3 7 5 9 4

1 10 3 8 7 5 9 4 6

progeny 
chromosome

fill in order

(b)

1 8 10 6

3 7 5 9 4

progeny 
chromosome

fill in order

(c)

Figure 9. The order-preserving crossover. (a) Determine the crossover point. (b) Delete duplicate
gene. (c) Fill the remaining genes in order.

2.2.5. Mutation Operation Based on Multi-Points Method

Mutation is one of the important steps in the evolution of genetic algorithm. Mutation
can be defined as a small random tweak in the chromosome to obtain a new solution, which
can maintain and introduce diversity in the genetic population. It is usually applied with a
low probability since the GA will become reduced to a random search if the probability
is very high. Mutation is essential to the convergence of the genetic algorithm. A novel
mutation operation, namely multi-points mutation, was proposed in this paper to improve
the ability to search for the optimal solution, which is described as follows. Firstly, the
number (m) of gene pairs for mutation was randomly determined, and the gene positions
of the m pairs for mutation were also randomly determined. Then, the two genes in
each pair of mutation points were exchanged, and, finally, a new chromosome can be
obtained. The mutation probability is generally between 0.001 and 0.1. The multi-points
mutation can significantly destroy the gene sequence of the parent while ensures that the
off-spring chromosome contains all the free grids, which helps the algorithm avoid to fall
in local optimum.

For example, the multi-points mutation operation was shown in Figure 10. Firstly,
two mutation points were randomly identified, e.g., gene 6 and gene 7 in Figure 10a. Then
keeping the gene 1 unchanged, the chromosome segments before gene 6 and after gene 7
were interchanged, as shown in Figure 10b. Finally, the progeny chromosome 1-4-3-5-6-7-
8-10 after mutation was obtained. Similarly, the progeny chromosome generated by the
multi-points mutation operation also should be adjusted by the method in Section 2.2.1 to
calculate its fitness value.
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1 8 10 6 9 7 4 3 5
paternal 

chromosome
mutation points

(a)

1 4 3 5 6 9 7 8 10

segment exchange

progeny 
chromosome

(b)

Figure 10. The multi-points mutation operation. (a) Determine the mutation points (b) Swap segment
of genes.

2.3. Outputting the Optimal Complete Coverage Path

Genetic algorithm usually has two conditions of termination, (1) setting the maximum
number of generations, and (2) the fitness tends to stable. The former was that when the
maximum number of iterations was reached, the algorithm was terminated and output the
optimal solution. The latter was that when the fitness value of the optimal solution was
less than the pre-set threshold δ or the fitness value was unchanged for many iterations
(e.g., M times, which also was preset), the algorithm can be terminated and output the
optimal solution. Both conditions were adopted in this paper, the maximum number of
iterations was set, and if the condition (2) was satisfied, the algorithm can be terminated
early; otherwise, the algorithm will be terminated until the maximum number of iterations
was reached.

When the algorithm was terminated, the OCCP, i.e., the adjusted chromosome Y in
the chromosome pair can be acquired. For example, if the optimal solution was the optimal
adjusted chromosome chromosome∗ shown in Figure 11a, its corresponding OCCP was
shown in Figure 11b.

1 5 9 10 6 7 8 34

chromosome*

(a)

9 10 11 12

5 6 7 8

1 2 3 4

(b)

Figure 11. The OCCP. (a) The Y chromosome in optimal pair (b) OCCP.

3. Results and Discussion

Heuristic algorithm is a basic method to solve optimization problems [34], four fields
with different shapes were used for evaluating the performance of the proposed improved-
genetic-algorithm-based CCPP method, such as the algorithm convergence, the feasibility
and optimality of the planned path. All the test experiments were performed on the
transplanter (as shown in Figure 12a, 2ZB-2B, DingDuo robot Co., Ltd., Baoji, China) with
automatic navigation ability. The transplanter has the shape of 3050 × 2000 × 1750 (mm)
(length × width × height). The automatic navigation system was the Beidou automatic
navigation and driving system (AF301, Lianshi Navigation Technology Co., Ltd., Shanghai,
China), which includes the double antenna satellite receiver (R71, Lianshi Navigation
Technology Co., Ltd., Shanghai, China), the steering controller (EMS2, Lianshi Navigation
Technology Co., Ltd., Shanghai, China), the angle sensor (Vert-X 26, Contelec AG, Bienne,
Switzerland), the IMU (S31, Lianshi Navigation Technology Co., Ltd., Shanghai, China),
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and the vehicle-mounted information terminal (T100, Lianshi Navigation Technology Co.,
Ltd., Shanghai, China). The proposed CCPP method was deployed on the microprocessor
(Jetson Nano, Nvidia Corp., Santa Clara), and the microprocessor connect with the vehicle-
mounted information terminal through the RS232 interface. The connection between
modules is shown in Figure 12b.

(a)

Jetson Nano
CCPP Controller

T100
Navigation Controller

R71 GNSS
Position Antenna

EMS2
Steering Drive Unit

RS232
S31

Imu Sensor

Vert-X 26
Angle Sensor

(b)

Figure 12. Automatic guided transplanter. (a) Transplanter. (b) Hardware structure.

3.1. Experiments Settings

Environment map selection: One rectangular field A without obstacles (as shown in
Figure 13a, one rectangular field B with obstacles (as shown in Figure 13b, one polygonal
field C without obstacles (as shown in Figure 13c, and one polygonal field D with obstacles
(as shown in Figure 13d) were selected for testing the proposed CCPP method. The
minimum bounding rectangles of the selected four fields have the same shape, i.e., 40 m
long and 24 m wide. Then, the four fields were encoded as the grid maps (as shown in
Figure 14 using the method in Section 2.1. The grid size was set to 2 m × 2 m according to
the working width of the transplanter in Figure 12.

40m

28
m

(a)

Obstacle

(b)

Irregular 
boundary

(c)

Obstacle

Irregular 
boundary

(d)

Figure 13. Multi-topographic field map. (a) Barrier-free rectangular field. (b) Rectangular field with
obstacles. (c) Barrier-free irregularity field. (d) Irregularity field with obstacles.

In this paper, the selected four multi-topographic fields are processed through the en-
vironment map modeling based on the grid method, and the fields are rasterized according
to the automatic driving agricultural robot with the work breadth of 2 m. Firstly, the fields
are divided into grids with equal areas, with a grid area of 4 m2. Secondly, the boundary
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area and obstacle area are to be dilated into a regular-shaped map. Furthermore, finally,
encoding the grid map to obtain four grid maps as shown in Figure 14.

1 20

221 240

(a)

1 20

221 240

(b)

1
11

221 238

(c)

1
11

221 238

67

(d)

Figure 14. Coded multi-topographic field map. (a) Coded barrier-free rectangular field. (b) Coded
rectangular field with obstacles. (c) Coded barrier-free irregularity field. (d) Coded irregularity field
with obstacles.

Parameters setting: The parameters of the proposed improved genetic algorithm were
set to the same for all the selected testing fields. The number Q of the chromosome pairs in
initial population was 200, the crossover probability of chromosomes was 0.5, the mutation
probability of chromosomes was 0.01, and the number of iterations T was 5000. For the
initial weights (i.e., w1(i), w2(i) and w3(i)) in (1) of the repeated work area, the number of
turns and the number of U-turns for fitness calculation were 0.3, 0.5, and 0.2, respectively.
The elitist preservation strategy was adopted to ensure that the optimal chromosomes of
each generation are inherited to the next generation, and the k in roulette selection was set
to 1. The number of stable iterations M was set to 500; thus, when the fitness value was
not changed for 500 consecutive times or the difference from the target value is less than
0.001, the algorithm will terminate in advance. The code of the algorithm proposed in this
paper is written in C++ language, and run the program on a computer with Windows 11
operating system, Intel(R) Core(TM) i7-11800H processor, and 16GB memory. The average
time of running 1000 iterations on a map with grid number 12 × 20 is 215 s. The running
time will change with the number of grids and the number of iterations. When the number
of grids and the number of iterations increase, the running time of the algorithm will
increase accordingly.

3.2. Convergence Test of the Algorithm

To test the proposed multi-points mutation effect on the algorithm convergence and the
global optimization-seeking ability, the single-point mutation was selected for comparison.
The parameters for multi-points and single-point mutation were set to the same as in
Section 3.1, and the fitness values of the 1000 iterations were counted, as shown in Figure 15.
The results shown in Figure 15 showed that the proposed multi-points mutation has a
higher evolutionary efficiency than the single-point mutation. The fitness values of the
1000th iteration on the field A, B, C, and D calculated by the multi-points-mutation-based
algorithm were 0.22727, 0.18519, 0.26316, and 0.11364, respectively, exceeding the fitness
values calculated by the single-point-mutation-based algorithm, i.e., 0.16393, 0.12048,
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0.15625, and 0.09804. This indicated that the global optimization-seeking ability of the
multi-points mutation was increased comparing with the single-point mutation.
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Figure 15. Comparison of multi-point and single-point mutation. (a) The algorithm convergence on
field A. (b) The algorithm convergence on field B. (c) The algorithm convergence on field C. (d) The
algorithm convergence on field D.

As shown in Figure 15, the evolution speed of the improved genetic algorithm pro-
posed in this paper was faster than that of the traditional genetic algorithm. This is because
the order-preserving crossover method and multi-point mutation method can destroy
the gene rank of the parent chromosome to the greatest extent, which can accelerate the
algorithm to overstep the local extremum. As shown in Figure 15a,b, in the regular-shaped
field experiment, the multi-point mutation method has a stronger search ability than the
single-point mutation method in both field A and B, especially in the field with obstacles
(i.e., Field B). As shown in Figure 15c, in the experiment of irregular-shaped field C, al-
though the multi-point mutation method stopped earlier than the single-point mutation
method, it has a higher fitness value. As shown in Figure 15c,d, the multi-point mutation
method improves the optimization ability of the algorithm at the later stage, and can find
a better solution than the single point mutation. In addition, these are indicated that the
algorithm has a strong adaptability in both regular-shaped and irregular-shaped fields.

3.3. Path Feasibility Test of the Algorithm

For testing the feasibility of the planned path, the traditional genetic algorithm with
one chromosome-based CCPP method was used for comparison. The paths (as shown in
Figure 16) planned by the traditional genetic algorithm were disorganized for all testing
fields. This is because the adjacent genes in the chromosome of the traditional genetic
algorithm do not satisfy the 4-neighbor relationship, resulting in the excessive randomness
of the planned path that the transplanting robot cannot follow. However, the proposed
chromosome-pair-based genetic algorithm can plan the feasible path (as shown in Figure 17,
since all adjacent genes in chromosome Y satisfy the 4-neighbor relationship with each
other. The chromosome Y represents a complete coverage path that the transplanting robot
can follow.
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(a) (b)

(c) (d)

Figure 16. Multi-topographic field path planning based on single chromosome. (a) CCP of A based
on single chromosome. (b) CCP of B based on single chromosome. (c) CCP of C based on single
chromosome. (d) CCP of D based on single chromosome.

(a) (b)

(c) (d)

Figure 17. Multi-topographic field path planning based on chromosome pairs. (a) CCP of field A
based on chromosome pairs. (b) CCP of field B based on chromosome pairs. (c) CCP of field C based
on chromosome pairs. (d) CCP of field D based on chromosome pairs.

3.4. Path Optimality Test of the Algorithm

To test the optimality of the path planed by the proposed improved-genetic-algorithm-
based CCPP method, the boustrophedon-based complete coverage method was used for
comparison, and its planned path was shown in Figure 18. Its basic idea was to use the
“bow” type search method to cover the field, i.e., the transplanting robot works back and
forth along the longest edge of the field. Furthermore, when encountering an obstacle, it
moves a grid up to cross the obstacle, then returns to the previous working path. If the
field boundary was reached, it moves back. The above steps were repeated until all the
field were covered.
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(a) (b)

(c) (d)

Figure 18. Multi-topographic field path planning based on boustrophedon method. (a) CCP of field
A based on boustrophedon. (b) CCP of field B based on boustrophedon. (c) CCP of field C based on
boustrophedon. (d) CCP of field D based on boustrophedon.

3.5. Experimental Results in Real Transplanting Robot

As shown in Figure 18, it can be seen that the complete coverage path generated by
the boustrophedon algorithm is more regular, showing a “bow” type operation pattern;
however, there are more repetitive operation area and the number of U-turns. The complete
coverage path generated by the proposed method (Figure 17) has less repetitive operation
area and number of U-turns. We use the transplanting robot shown in Figure 12 to test the
complete coverage operation in four multi-terrain fields using the boustrophedon method
and the method in this paper, and the final energy consumption in the field is calculated by
calculating the percentage drop of battery voltage. Field A is a barrier-free rectangular area,
and the planning paths of boustrophedon method and this paper are the same, and there is
no significant change in each index. Field D is an barrier irregular-shaped area, the area
of repeated operation and the number of U-turns decreased significantly. In addition, as
shown in Table 2, the comprehensive energy consumptions of the boustrophedon method
in four multi-topographic fields are 29%, 71%, 56%, and 85%, respectively. Furthermore,
the comprehensive energy consumptions of the method in this paper are 29%, 66%, 51%,
and 72%, respectively. This is because the method in this paper focuses on the complex
farming environment, such as irregular-shaped boundary and obstacle in field, which is
more suitable for field B, field C, and field D. Therefore, the CCPP method in this paper is
more capable in complex fields.

Complete coverage path planning focuses on saving comprehensive energy con-
sumption [35], it can be seen from the comparison between the boustrophedon method
and improved-genetic-algorithm-based method in Table 3 and Figure 19. In four multi-
topographic fields, all indicators are reduced except for a slight increase in the number of
turns, which is due to the equilibrium adaptation fitness with multiple indicators. There
will not be significant increases in the number of turns while reducing the area of repeated
area and the number of U-turns. The advantage of the CCPP based on in this paper in field
D is the most obvious, followed by field B and field C. In addition, with an average increase
of 13.76% in the number of turns, the repetitive operation area, the number of turnarounds
and the comprehensive energy consumption are reduced by 38.54%, 35.00%, and 7.82% on
average. Although the CCPP method in this paper may increase the number of turns, the
repeated operation area and the number of U-turns are decreased, and the comprehensive
energy consumption is significantly reduced.
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Table 2. Path planning data of multi-topographic field with complete coverage.

Indicator Method Field A Field B Field C Field D Average

w1/m2
boustrophedon 0 32 16 36 21.00

our method 0 4 16 12 8.00

w2/time
boustrophedon 22 32 26 34 28.50

our method 22 47 22 42 33.25

w3/time
boustrophedon 0 1 4 5 2.50

our method 0 0 4 3 1.75

w4
boustrophedon 29% 71% 56% 85% 60.25%

our method 29% 66% 51% 72% 54.50%
Note: w1, w2, w3, and w4 represents the repeated area, the turns number, the U-turns number and the consumed
battery voltage, respectively.

Table 3. Comparison between boustrophedon method and provided method in this paper.

Indicator Field A Field B Field C Field D Average

w1 reduce/m2 0 28 0 24 13.00
w2 reduce/time 0 −15 4 −8 −4.75
w3 reduce/time 0 1 0 2 0.75

w4 reduce 0% 5% 5% 13% 5.75%
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Figure 19. Comparison percentage chart of each indicator.

According to the above analysis, compared with the boustropredon method, the
proposed method in this paper can minimize the repeated operation area and reduce
the number of U-turns, which can help improve the operation efficiency of transplanting
robot and reduce the operation energy consumption cost. It is more capable of planning a
complete coverage path for the real operation of self-driving transplanting robots, which is
more adaptable to the environment and has practical application value.

4. Conclusions

In this paper, the improved-genetic-algorithm is proposed to plan the complete cover-
age of the field of autonomous driving agricultural robot. Compared with the standard
genetic algorithm, it has the following advantages. A chromosome adjustment method
suitable for CCPP is designed to generate chromosome pairs, in which the number of chro-
mosome genes before adjustment is the same, which is used for evolution operations, such
as crossover and mutation. The number of adjusted chromosome genes is not necessarily
the same, but each genes and their neighboring genes are consecutively adjacent in the
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grid-map, representing a feasible complete coverage path. Furthermore, we designed a
multi-point mutation method, compared with single-point mutation, it can destroy the
locus of the parent chromosome and has better global optimization ability. In order to verify
the effectiveness of the algorithm proposed, the method in this paper and the boustrophe-
don method are used for CCPP for the four different types of actual fields. The complete
coverage of the actual operation of agricultural robot reduces unnecessary mileage and
improves operation efficiency. Next, this paper considers path planning for large-area fields
to propose a new method that can handle large-scale grids. At the same time, the popular
deep learning technology is used to improve the accuracy and efficiency of the algorithm,
and multiple plots are studied to further improve the practicability of field path planning.
The complete coverage path planning method based on grid method and improved genetic
algorithm studied in this paper is mainly aimed at the field of self-driving agricultural
robots. Of course, it can also be applied to broader scenarios, such as cleaning robots,
demining robots, and plant protection drones and other fields.
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