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Abstract: By analyzing the support of load-carrying rolling elements when the rolling elements
fall into the fault position, the dynamics model of a rolling bearing variable stiffness system with
local faults is proposed, considering the retention factor of the contact deformation. Then, this
paper researches the change of effective contact stiffness, contact deformation, contact force, and
the total effective stiffness of the rolling elements. The results show that the contact stiffness of
the rolling elements abruptly decreases when the rolling elements fall into the fault position. The
contact deformation and contact force of the load-carrying rolling elements in the load zone increase,
rebalancing the external radial load while causing a sudden reduction in the total effective stiffness,
resulting in the vibration of the system. When different rolling elements fall into the outer ring
fault position, the change in total effective stiffness and the system response are equal in magnitude.
Additionally, there is a significant outer race fault characteristic frequency accompanied by frequency
multiplication in the fault characteristic spectrums. When different rolling elements fall into the
inner race fault position, the total effective stiffness is modulated by the inner race rotation and
varies dramatically, resulting in the amplitude of the system time domain vibration response also
being modulated by the inner race rotation and varying dramatically. Additionally, there is a
significant inner race rotational frequency accompanied by frequency multiplication, an inner race
fault characteristic frequency accompanied by frequency multiplication, and a side frequency in the
fault characteristic spectrums. The research can provide some reference for the effective diagnosis of
the rolling bearing fault.

Keywords: rolling bearings; local faults; dynamics; variable stiffness; fault diagnosis

1. Introduction

With the continuous advancement of industrial technology, rotating machinery is de-
veloping in the direction of automation, integration, intelligence, high speed, and precision,
which has led to an increase in the fault rate. As a key component widely used in rotating
machinery, rolling bearing is prone to failure under harsh working conditions [1]. The
unexpected fault of bearings can lead to a sudden collapse of a machine or system, and
it may result in significant economic losses or even casualties [2]. Bearing fault diagnosis
is mainly performed in two aspects; on the one hand, the fault information is extracted
from the vibration response signal, which is mainly extracted and diagnosed by various
learning algorithms. For example, the deep learning approach [3,4], digital twin-driven
approach [5], optimized adaptive deep belief network [6], etc. [7,8]. With the increase in the
use of smart machines, the detection and diagnosis of mechanical faults by these methods
are increasing day by day. On the other hand, bearing dynamics models are mainly studied.
Rolling bearing fault dynamics is used as a comprehensive and accurate method to predict
the vibration characteristics of rolling bearings with various faults and to provide in-depth
guidance for detection and diagnosis applications [9]. Fault diagnosis mechanisms and
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methods for ball bearings are an ongoing research focus [10]. The dynamic models of shaft
bearing systems have been developed for theoretical studies [9,11].

Cui et al. [12–16] developed a rolling bearing dynamics model by introducing the
circumferential and radial dimensional parameters of two-dimensional faults into the
displacement excitation function, estimated the magnitude of the faults by analyzing the
time interval characteristics of the impact response, predicted the effect of local defects
on ball bearing vibration, and also studied the vibration of deep groove ball bearings
with single and multiple defects on the inner and outer race surfaces. Wu et al. [17–20]
described the geometric displacement of the rolling body through a two-dimensional fault
with a segmentation function and used this displacement as displacement excitation to
establish a rolling bearing dynamics model, observed the relationship between vibration
response and fault size, considered the coupling of rolling elements and segmentation
effects, brought the acceleration response of the model more in line with the actual situation,
and also considered the influence of the dent shoulder on the vibration, and derived a
more close to real impulse characteristics caused by a practical dent. To build the rolling
bearing dynamics model, Qui et al. [21,22] use the segmented function to introduce the
three-dimensional geometric parameters of the fault into the displacement excitation.
They analyze the variation of contact force of rolling elements under different contact
types and the relationships between the fault size and the system vibration response.
Zhang et al. [23,24] considered the dynamic lubrication conditions in an elastic fluid,
described the geometric displacement of a rolling body as it passes through a fault using
a segmentation function, used this displacement as a displacement excitation, developed
a rolling bearing dynamics model, introduced the transient collision force excited by the
strike of the rolling element on the trailing edge of the spall area, and analyzed the double
pulse time interval, and through additional deflection and multi-impact theories, it was
found that the location and the number of impulses due to varying compliance strongly
depend on multiple factors, and mainly on the values of applied load and shaft rotational
speed. Gao et al. [25,26] coupled displacement-excited rolling bearings in rail vehicles
and rotor systems, respectively. Petersen et al. [27–29] established the system dynamics
equations based on the displacement excitation function and analyzed the characteristics
of the system stiffness and contact force change under different fault dimensions, i.e., the
stiffness decreases in the loading direction and increases in the unloading direction, and
also proposed a method for accounting for the finite rolling element size, which means that
the time-frequency characteristics of the low-frequency event that occurs when a rolling
element enters the defect entry and the multiple high-frequency events that occur when
it exits the defect can be predicted more accurately. Sarabjeet et al. [30] used the explicit
dynamics finite element software package LS-DYNA to build a rolling bearing fault model,
and after an in-depth analysis of the numerically estimated dynamic contact forces between
the rolling elements and the raceways of a bearing, it was found that the re-stressing of the
rolling elements that occurs near the end of a raceway defect generates a burst of multiple
short-duration force impulses, and the contact forces and accelerations generated on the
exit of the rolling elements out of the defect compared to when they strike the defective
surface are much higher.

The above-mentioned rolling bearing faulty dynamic models can be used in the analy-
sis and diagnosis of system faults. In these dynamic models, the maximum displacement
of the impact excitation is calculated by the fault size and the bearing geometric parame-
ters. Additionally, the contact deformation and force are calculated by the displacement
when the rolling elements fall into the fault position. Because of the rigid nature of the
rolling elements, the deformation is generally a low order of magnitude. The maximum
displacement is far greater than the contact deformation, so there is a large deviation.

In general, the radial load of the bearing is balanced by the contact force of the multiple
load-bearing rolling elements. When a rolling element falls into the fault position and
loses all or part of its load-carrying capacity, the radial load is redistributed between the
load-bearing rolling elements. Additionally, the contact deformation and contact force of
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each load-bearing rolling element will be increased. When the rolling element loses its load
capacity, that is, its contact stiffness, the total contact stiffness of the system will be changed
suddenly. Then, the shock of the system is caused.

Based on Hertz’s contact theory, the retention factor of contact deformation will be
defined in this paper. During the rotation of different rolling elements with the cage,
this paper analyzes the variation of the effective contact stiffness, contact force, and total
effective stiffness of the system in the direction of radial load. A dynamic model of a single
degree of freedom variable stiffness of a rolling bearing system with a single local damage
fault is established, and simulation analysis and experimental verification are carried out.

2. Establish a Dynamic Model of the System with Fault

The deep groove ball bearing structure under radial load is shown in Figure 1a, the
numbers in the figure are rolling element serial numbers, simplifying the elastic contact
of a single rolling element with the inner and outer races into springs and dampers, as
shown in Figure 1b. In Figure 1, Oo and Oi are the centers of the outer and inner races,
β0 is the initial position angle of the fault location, ψ is the azimuth at which the rolling
elements are located, Qmax is the maximum contact force in the load zone, fm is the cage
rotation frequency, fs is the inner race rotation frequency, Fr is an external radial load, the
amplitude and direction are fixed, and δr is the maximum relative displacement between
the inner and outer races. Assume that the x-axis is in the radial load direction and the
positive direction is the same as the radial load direction and the sensor is set on the outer
race in the positive direction of the x-axis.
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Figure 1. Schematic diagram of bearings under radial load. (a) Schematic diagram of the structure; 

(b) Simplified spring-damper model. 
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Figure 1. Schematic diagram of bearings under radial load. (a) Schematic diagram of the structure;
(b) Simplified spring-damper model.

The situation when the rolling element falls into the fault position is shown in Figure 2.
In Figure 2, hs is the maximum theoretical distance that the rolling element can fall

when it falls into the fault position, r is the radius of the rolling element, ro is the radius of
the outer raceway, ri is the radius of the inner raceway, b is the fault width, and hd is the
fault depth.
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Figure 2. Structural diagram when the rolling element falls into the fault position. (a) Outer race
fault; (b) inner race fault.

In the case of b < r, the maximum theoretical geometric distance of the collapse when
the rolling element falls into the fault position is

hs =


hd hs ≥ hd Bottoming out
Cd + Ci Inner race hs < hd
Cd − Co Outer race hs < hd

Not bottoming out
(1)

In the formula,

Cd = r−

√
r2 −

(
b
2

)2
(2)

Ci,o = ri,o −

√
r2

i,o −
(

b
2

)2
(3)

where subscripts i, o correspond to the inner and outer races, respectively.
The central angle corresponding to the fault width is

∆β =

{
2arcsin b

2ri
Inner race

2arcsin b
2ro

Outer race
(4)

According to the deformation coordination conditions, the radial contact deformation
at any azimuth ψ is given by [31]

δψ = δmax

[
1− 1

2ε
(1− cos ψ)

]
(5)

where δmax is the maximum value of contact deformation at ψ = 0◦ and ε is the load
distribution range coefficient [15,23].

ε =
1
2

(
1− Pd

2δr

)
(6)

where Pd is the radial clearance and δr is the maximum relative radial displacement of the
inner and outer races at ψ = 0◦ [15,31].

δr =
Pd
2

+ δmax (7)
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Under the action of radial load Fr, the angular range of the load zone, is [24,31]

ψL = ±arccos
(

Pd
2δr

)
(8)

The relationship between the contact deformation δψ and the contact force Q(ψ) is [14–16,28]

Q(ψ) = Kδ1.5
ψ (9)

where K is the radial contact stiffness coefficient at a single rolling element [21,22].

K =

 1(
1/Kρi

) 2
3 +

(
1/Kρo

) 2
3

1.5

(10)

where Kρi and Kρo are the radial contact stiffness coefficients of the rolling elements and
the inner and outer raceways, please refer to the literature [31] for specific calculations.

Therefore, the contact force Q(ψ) can be expressed as [15,23]

Q(ψ) = Qmax

[
1− 1

2ε
(1− cos ψ)

]1.5
(11)

For ball bearings subjected to a single radial load [31]

Qmax =

{
4.37Fr
Z cos α Pd = 0

5Fr
Z cos α Pd 6= 0

(12)

where Z is the number of rolling elements and α is the contact angle.
When the rolling element with an angle of ψ falls into the fault position, according to

the geometric relationship between the amount of the contact deformation δψ and the fall
distance hs, the retention factor of contact deformation is

γ =

(
1− hs

δψ

)1.5
(13)

(1) At hs < δψ, then 0 < γ < 1, that is, the contact deformation at the rolling element is
partially released, providing a partially effective contact load.

(2) At δψ ≤ hs, then γ = 0, that is, the contact deformation at the rolling element is all
released, and the effective contact load cannot be provided.

The change of retention factor γ with distance hs is shown in Figure 3.
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Figure 3 shows that with the increase in hs, the release of the deformation increases
gradually, and the retention factor γ decreases gradually. When hs ≥ δψ, the amount of
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all deformation is released, the rolling elements cannot provide effective support, and the
retention factor γ is reduced to 0.

From Equation (9), it can be seen that the contact load when a rolling element with an
angle of ψ falls into the fault position is

Q(ψ) = Kγδ1.5
ψ (14)

Let the No.1 rolling element be located in this position when ψ = 0◦, as shown in
Figure 4a. The angle at which the i-th rolling element rotates with the cage is [20,21]

θmi = θm + (i− 1)
2π

Z
(15)

where the cage’s rotation angle is θm = 2π fmt.
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Cause

λ =

{
1 mod(θmi, 2π) ∈ [−βL, βL]
0 other

(16)

where mod(·) is the remainder operation; parameter λ determines whether the rolling
element is located in the load zone.

When the outer race fails, the contact stiffness at the i-th rolling element is

k = λK
{

γ mod(θmi, 2π) ∈ [β0, β0 + ∆β]
1 other

(17)

When the inner race fails, the rotation angle of the fault point with the inner race is [23]

θs = 2π fst + β0 (18)

The contact stiffness at the i-th rolling element is

k = λK
{

γ mod(θmi, 2π) ∈ [mod(θs, 2π), mod(θs, 2π) + ∆β]
1 other

(19)

To satisfy the static equilibrium relationship between the system and the radial load
Fr, Fr must be equal to the sum of the components of loads of each rolling element [15].

Fr =
Z

∑
i=1

Q(ψi) cos ψi (20)

where ψi is the azimuth of the i-th rolling element.
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The static equilibrium relationship of the system when there is no fault can be ex-
pressed as

Fr = keqaδ1.5
max (21)

where keqa is the total effective stiffness in the x-direction when there is no fault.

keqa = λK
Z

∑
i=1

[
1− 1

2ε
(1− cos ψi)

]1.5
cos ψi (22)

The effective contact stiffness of the i-th rolling element in the x-direction can be
expressed as

ki = λK
[

1− 1
2ε
(1− cos ψi)

]1.5
cos ψi (23)

In particular, when the radial clearance Pd is 0 and a rolling element is located directly
below the radial load Fr, there is just an odd number of rolling elements to support, as
shown in Figure 4a, and the total effective stiffness of the system is

keqa = K

(
1 + 2

π/2

∑
ψi=2π/Z

cos2.5 ψi

)
(24)

When the j-th rolling element falls into the outer or inner race fault position, the static
equilibrium relationship of the system is

Fr = keqb
(
δ′max

) 1.5 (25)

where δ′max is the nominal maximum contact deformation in the load zone at ψ = 0◦; keqb is
the total effective stiffness in the x-direction in case of fault.

keqb = λK


Z

∑
i=1
i 6=j

[
1− 1

2ε
(1− cos ψi)

]1.5
cos ψi + γ

[
1− 1

2ε

(
1− cos ψj

)]1.5
cos ψj

 (26)

The effective contact stiffness of the j-th rolling element in the x-direction can be
expressed as

k j = λγKγ

[
1− 1

2ε

(
1− cos ψj

)]1.5
cos ψj (27)

In particular, when the radial clearance Pd is 0, the j-th rolling element and point of
the outer or inner race fault are directly below the radial load Fr(ψj = 0◦), and the total
effective stiffness of the system is

keqb = K

(
π/2

∑
ψi=2π/Z

2 cos2.5 ψi + γ

)
(28)

Further, if δj ≤ hs, then an even number of rolling elements are supported, as shown
in Figure 4c, and the total effective stiffness of the system is

keqb = 2K
π/2

∑
ψi=2π/Z

cos2.5 ψi (29)

Therefore, the total effective stiffness of the system is

keq =

{
keqa Fault− free
keqb Fault (30)
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Take a deep groove ball bearing with nine rolling elements in Figure 4 as an example
to illustrate the difference between Equations (24) and (29). Figure 4a shows that the normal
bearing with exactly one rolling element located directly below the radial load Fr and the
number of load-carrying rolling elements comprises odd numbers. The rolling elements are
rotated with the cage to the position of Figure 4b, and the number of load-carrying rolling
elements is an even number; the azimuth of the No. 9 and No. 1 rolling elements on both
sides of the radial load Fr are +π/Z and −π/Z, respectively.

In Figure 4c, the No. 1 rolling element, located below the radial load Fr, falls into the
inner or outer race fault position and δ′max < hs. When the contact deformation is fully
released, the number of load-carrying rolling elements suddenly changes from an odd
number to an even number, and the azimuth of the No.9 and No.2 rolling elements on
both sides of the radial load Fr are +2π/Z and −2π/Z, respectively. In this case, the lack
of support for the No. 1 rolling element that provides the largest radial stiffness causes
the total effective stiffness to decrease greatly so that the contact deformation of other
load-carrying rolling elements increases to rebalance the radial load Fr.

The system is simplified in the x-direction to a single-degree-of-freedom system with
variable stiffness under radial load Fr, as shown in Figure 5.
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Figure 5. Simplified vibration model of bearing system.

In Figure 5, keq is the coefficient of the total effective stiffness, the slanted arrow
indicates that the value is variable, ceq is the damping coefficient [27,32], and m is the mass
of the outer or inner race.

In the case where there is no force on the bearing, the system coordinate system is
established with the variable x as the origin when the inner and outer races are concentric.

The differential equation of motion for the system is

m
..
x + ceq

.
x + keqx = Fr (31)

Combining the above formulas, the differential Equation (31) is solved using the
fourth-order Runge–Kuta method to obtain the vibration response of the system.

3. Simulation and Experimentation
3.1. Bearing Parameters and Conditions

Taking the deep groove ball bearing of SKF6205 as an example, the bearing parameters
are shown in Table 1.
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Table 1. SKF6205 Bearing parameters.

Parameter Value

number of rolling elements Z 9
diameter of rolling element d/mm 7.94

pitch diameter D/mm 39
contact angle α/◦ 0

radius of inner raceway ri/mm 15.53
radius of outer raceway ro/mm 23.47
radius of inner groove Ri/mm 4.089
radius of outer groove Ro/mm 4.169
damping coefficient ceq/Ns/m 200

mass m/kg 0.3
radial load Fr/N 490.4

The initial condition of the rolling bearing is shown in Figure 4c. At this time, the
inner race rotates counterclockwise, and the initial angle of the inner and outer race faults
β0 is 0◦. The No. 1 rolling element is located below the radial load Fr, and δ′max < hs, the
radial clearance Pd is 0, and the angle of the load zone ψL is ±90◦.

3.2. Simulation of Total Effective Stiffness keq

From the simulation of Equations (22) and (30), the simulation of the change of the
total effective stiffness of the system with the angle of rotation of the cage θm during fault-
free, inner race, and outer race faults is obtained as shown in Figure 6. The numbers in
Figure 6b,c indicate the serial number of the rolling elements through the fault location.
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race fault; (c) inner race fault.

As shown in Figure 6a, when there is no fault, each rolling element rotates with the
cage, so that the number of carrying rolling elements in the x-direction changes periodically
from odd numbers (Figure 4a) to even numbers (Figure 4b), and then to odd numbers
(Figure 4a). Additionally, the total effective stiffness of the system keq fluctuates periodically
within a small range.

Figure 6b shows the change in the total effective stiffness keq of the system when the
outer race has fault. The outer race fault is located in the load zone and the relative radial
load Fr, and the position of the load zone is fixed. When each rolling element falls into
the fault position in turn, the overall support situation of other rolling elements is the
same. As shown in Figure 7, the total effective stiffness is reduced from keqa to keqb, and
the keqb is equal in amplitude. The value of keqb is related to the location angle of the fault
β0, independent of the angle of rotation of the inner race.
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(b) No. 2 rolling element; (c) No. 3 rolling element; (d) No. 4 rolling element; (e) No. 5 rolling element;
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Figure 6b shows the change in the total effective stiffness keq of the system when
the inner race has fault. Because the fault rotates with the inner race, its position varies
periodically with respect to the radial load Fr and the position of the load zone. When
the rolling element and the fault point are in the load zone and meet, it causes the contact
stiffness at the rolling element to change, resulting in the total effective stiffness decreasing
from keqa to keqb. The value of keqb is related to the position of the rolling element when it
meets the fault point in the load zone. The keqb is variable in amplitude and it is modulated
by the rotation of the inner race.

3.3. Simulation of Stiffness, Contact Force, and Contact Deformation of Each Rolling Element in
Case of Outer Race Fault

From the simulation of Equations (23) and (27), it is obtained that the change of
effective contact stiffness of each rolling element in the x-direction during the cage rotates
one turn in case of the outer race fault as shown in Figure 7. Each rolling element calculates
its angle of rotation with the cage starting from the initial azimuth. The key position of
each rolling element entering and exiting the load zone and falling into the fault position is
shown in Table 2.
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Table 2. The state of each rolling element rotates one week with the cage in case of the outer race fault.

Rolling Element 1 2 3 4 5 6 7 8 9

Initial azimuth ψ0i/◦ 0 40 80 120 160 200 240 280 320
Whether it is located in the load zone Yes Yes Yes No No No No No No

Rotation angle required to enter the load zone ∆θmi_in/◦ 150 110 70 30
Rotation angle required to exit load zone ∆θmi_out/◦ 90 50 10 330 290 250 210 170 130

The rotation angle of the cage where the rolling element meets the fault ∆θmi/◦ 0 320 280 240 200 160 120 80 40

Figure 7a shows that the No. 1 rolling element falls into the fault position and is unable
to provide support at this time. After the No. 1 rolling element is out of the fault with the
rotation of the cage, its azimuth gradually increases, making the effective contact stiffness
provided gradually decrease. The No. 1 rolling element rotates 90◦ with the cage and then
exits the load zone, and the effective contact stiffness drops to 0 at this time. However, the
initial azimuth of the No. 9 rolling element is 320◦; its azimuth gradually decreases with
the rotation of the cage, making the effective contact stiffness provided gradually increase.
The No. 9 rolling element falls into the fault position when it rotates 40◦ with the cage, the
effective contact stiffness drops to 0 at this time. After the No. 9 rolling element becomes
out of the fault with the rotation of the cage, its azimuth gradually increases, making the
effective contact stiffness provided gradually decrease. The No. 9 rolling element rotates
90◦ with the cage and then exits the load zone; the effective contact stiffness drops to 0 at
this time, as shown in Figure 7i. The case of other rolling elements is similar and will not
be repeated.

Each rolling element is 40◦ apart, and they fall into the fault position in turn when the
cage rotates counterclockwise. Therefore, the entire rolling bearing in the load zone is four
rolling elements to provide support, and the support situation is identical; only the rolling
element serial number is different, and the total effective stiffness keqb is equal in this case.
By superimposing the effective contact stiffness of all rolling elements in the x-direction,
the total effective stiffness is obtained as shown in Figure 6b.

Taking the case of the No. 5 rolling element falling into the fault position in Figure 7e
as an example, analyze the changes of the contact deformation and the contact force of
the No. 3, No. 4, No. 6, and No. 7 load-carrying rolling elements in the load zone under
fault-free and fault conditions. From the simulation of Equations (5), (13), and (16), the
contact force and the contact deformation are obtained as shown in Figure 8. From the
simulation of Equations (9), (23), and (27), the contact force and the contact deformation
are obtained as shown in Figure 9.
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Figure 9. Contact force and contact deformation of No. 3, No. 4, No. 5, No. 6, and No. 7 rolling
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As can be seen from Figure 8, the No. 5 rolling element is located below the radial
load Fr after rotating 200◦ with the cage, and it is subjected to the largest load and contact
deformation in the load zone; the No. 4 and No. 6 rolling elements are next, and the No. 3
and No. 7 rolling elements are the smallest.

As can be seen from Figure 9, when the No. 5 rolling element falls into the fault
position, its contact deformation δ5 is all released, and the contact deformation δ5 and
contact force Q5 are 0. To rebalance the external radial load Fr, the No. 4 and No. 6
rolling elements, which are closest to the No. 5 rolling element, become the most important
load-carrying rolling elements. Additionally, their contact force and contact deformation
increase greatly, and because the angle of the No. 4 rolling element and the radial load Fr
and the angle of the No. 6 rolling element and the radial load Fr are equal, their increase
is the same. The contact force and contact deformation of the No. 3 and No. 7 rolling
elements, which are far from the No. 5 rolling element, also have an equal increase, but
because the angle of the No. 3 rolling element and Fr and the angle of the No. 7 rolling
element and Fr are large, their increase is smaller.

3.4. Simulation of the Stiffness, Contact Force, and Contact Deformation of Each Rolling Element
in Case of the Inner Race Fault

From the simulation of Equations (23) and (27), the change of stiffness of each rolling
element as it rotates with the cage and meets the inner race fault is obtained as shown in
Figure 10, the key position of each rolling element as it meets the fault is shown in Table 3,
and the angle of entering and exiting the load zone is the same as Figure 7 and Table 2.

Table 3. The state of each rolling element when rotating with the cage in case of inner race fault.

Rolling Element 1 2 3 4 5 6 7 8 9

Initial azimuth ψ0i/◦ 0 40 80 120 160 200 240 280 320
Whether it is located in the load zone Yes Yes Yes No No No No Yes Yes

Rotation angle of the cage where the rolling element meets the fault ∆θmi/◦ 0 25.2 51.7 78.2 104.7 131.1 157.6 184.1 210.5
Rotation angle of the fault when the rolling element meets the fault θsi/◦ 0 65.2 131.7 198.2 264.7 331.1 397.6 494.1 530.5

Whether it is located in the load zone when the rolling element meets the fault Yes Yes No No No Yes Yes No No

As can be seen from Figure 10, the change in stiffness in the case of the inner race fault
is much more complex than in the case of the outer race fault, and the position of each
rolling element that falls into the fault position is related to the inner race rotation. Each
rolling element meets the inner race fault every 26.5◦ as it rotates with the cage, the inner
race rotation angle is 66.5◦ at this time, and the number of rolling elements in the load zone
is 4 or 5. If the inner race fault is rotated outside the load zone, although it meets the rolling



Machines 2023, 11, 609 13 of 22

element, they are not in contact, so there is no change in the effective contact stiffness. Like
the No. 3, No. 4, No. 5, No. 8, and No. 9 rolling elements in Figure 10, the contact force
and contact deformation are 0 at this time.
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Figure 10. Contact stiffness of each rolling element in case of inner race fault. (a) No. 1 rolling element;
(b) No. 2 rolling element; (c) No. 3 rolling element; (d) No.4 rolling element; (e) No. 5 rolling element;
(f) No. 6 rolling element; (g) No. 7 rolling element; (h) No.8 rolling element; (i) No. 9 rolling element.

From the simulation of Equations (5), (13), and (16), the change in the contact defor-
mation of each rolling element in the case of the inner race fault is obtained as shown in
Figure 11. From the simulation of Equations (9), (23) and (27), the change in contact force
is obtained as shown in Figure 12. As can be seen in Figures 11 and 12, due to the fault
rotating with the inner race, the position of each rolling element when it falls into the fault
position is different, and the contact deformation and contact force increase in other rolling
elements in the load zone are also different.
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Figure 11. Change of contact deformation of each rolling element in case of the inner race fault.
(a) No. 1 rolling element; (b) No. 2 rolling element; (c) No. 3 rolling element; (d) No. 4 rolling element;
(e) No. 5 rolling element; (f) No. 6 rolling element; (g) No. 7 rolling element; (h) No. 8 rolling element;
(i) No. 9 rolling element.

Take the No. 6 rolling element falling into the fault position in Figure 10f as an example.
From the simulation of Equations (9), (23), and (27), the changes in contact deformation
and contact force of the No. 5, No. 7, and No. 8 rolling elements in the load zone at this
time as shown in Figure 13. When the No. 6 rolling element falls into the inner race fault
position after rotating 131.1◦ with the cage, its contact deformation δ6 is all released, and its
contact deformation δ6 and contact force Q6 are 0. To balance the external radial load Fr,
the angle between the No. 7 rolling element and the radial load Fr is minimal; that is, near
the center of the load area, its contact force and contact deformation increase greatly and
become the most important load-carrying rolling elements. At the same time, the No. 5
and No. 8 rolling elements are at the edge of the load zone; their contact force and contact
deformation also increase, but not much. Similarly, when rolling element No. 7 falls into
the inner race fault position after rotating 157.6◦ with the cage, the rolling elements in the
load zone at this time are No. 4, No. 5, No. 6, No. 7, and No. 8, and the changes in the
contact deformation and the contact force are similar and will not be repeated.
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Figure 12. Change of the contact force of each rolling element in case of inner race fault. (a) No.
1 rolling element; (b) No. 2 rolling element; (c) No. 3 rolling element; (d) No. 4 rolling element; (e)
No. 5 rolling element; (f) No. 6 rolling element; (g) No. 7 rolling element; (h) No. 8 rolling element;
(i) No. 9 rolling element.
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3.5. Simulation and Experiment of System Response

Fault characteristic frequency of the rolling bearing inner and outer races [11,14]

fi =
Z fs

2

(
1 +

d
D

cos α

)
(32)

fo =
Z fs

2

(
1− d

D
cos α

)
(33)

where fi is the fault characteristic frequency of the inner race; fo is the fault characteristic
frequency of the outer race.

The bearing experimental data of the rotor test bench are from Case Western Reserve
University (USA). The model of the rolling bearing is SKF6205, and its parameters are
shown in Table 1. In the case of the inner race fault, the rotor test stand motor speed is
1721 rpm, namely, 28.68 Hz, and the theoretical calculation of the characteristic frequency
fi of the inner race fault is 155.35 Hz. In the case of the outer race fault, the rotor test stand
motor speed is 1725 rpm, namely, 28.75 Hz, and the characteristic frequency fo is 103.03 Hz.
The dimensions of the fault are ∅0.18 mm and 0.28 mm deep, located directly below the
bearing. The fault bearing is installed at the drive end, and the sampling frequency is
48 kHz. The manufacturing and installation of the bearing will cause deviations between
the measured frequency and the theoretical calculation. In addition, the rotor test bench
of our university was used for the experiment, as shown in Figure 14. The model of the
rolling bearing is 6000, and its main parameters are shown in Table 4, where the sensor is a
KISTLER 8702B25. The motor speed at the time of failure is 900 rpm, i.e., 15.0 Hz, and the
theoretical calculation of fi is 66.55 Hz and fo is 38.45 Hz. The dimensional width of the
failure is 1 mm and 0.7 mm deep, as shown in Figure 15.
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Table 4. Results of 6000 bearing parameters.

Parameter Value

number of rolling elements Z 7
diameter of rolling element d/mm 4.762

pitch diameter D/mm 17.8
contact angle α/◦ 0

radius of inner raceway ri/mm 6.52
radius of outer raceway ro/mm 11.28
damping coefficient ceq/Ns/m 100

mass m/kg 0.01
radial load Fr/N 10
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Figure 15. Bearing faults. (a) Outer race fault; (b) inner race fault.

The theoretical simulation uses the variable stiffness model (VEM) of this paper and
the more widely used two-degree-of-freedom displacement excitation model (DEM) and
compares and analyzes the experimental data. The simulation and experimental results of
the local fault of the rolling bearing outer race are shown in Figure 16. The experimental data
and the VSM in Figure 16a,c are represented by the left axis, and the DEM is represented
by the right axis. In Figure 16b, the experimental data and the VSM and the DEM are
represented by the left coordinate axis, and in Figure 16d, the experimental data and the
DEM are represented by the left coordinate axis, and the VSM is represented by the right
coordinate axis.
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Figure 16. Simulation and experiment of the outer race local fault. (a) The 6000 time domain
waveform; (b) 6000 envelope spectrum; (c) SKF6205 time domain waveform; (d) SKF6205 enve-
lope spectrum.

Figure 16a,c shows the time domain waveform in each impact response position. The
VSM and the DEM match with the experimental data. The amplitude of the VSM is basically
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the same as the experimental data, but the DEM is more different. In general, the change in
each shock response amplitude is small, and the distance between two adjacent amplitudes
is 1/ fo. Because the overall support of the bearing is the same after each rolling element
falls into the fault position, the change in total effective stiffness keq and the change in
contact stiffness when each rolling element falls into the fault position are also the same, as
shown in Figures 6b and 7, resulting in the same amplitude of the system response under
radial load.

Figure 16b,d shows the envelope spectrum. There are significant outer race local fault
characteristic frequencies f accompanied by frequency multiplication in the figure. For
example, the characteristic frequencies of bearing 6000 are 38.5 Hz, 76.9 Hz, etc., and the
characteristic frequencies of bearing SKF6205 are 103.5 Hz, 206.9 Hz, 310.5 Hz, etc. At each
fault characteristic frequency position, the VSM and the DEM match with the experimental
data, but the amplitude of the DEM in Figure 16b is too large, while the amplitude of
the VSM in Figure 16d is slightly larger. Therefore, the results of the VSM are in better
agreement with the experimental results and are superior to the DEM.

The simulation and experimental results of the local fault of the rolling bearing inner
race are shown in Figure 17. The experimental data in Figure 17 are represented by the left
axis, and the VSM and the DEM are represented by the right axis.
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Figure 17a,c shows the time domain waveform in each impact response position. The
VSM and the DEM match the experimental data. The amplitudes of the DEM and the VSM
are larger than the experimental data, but the DEM is more different in Figure 17a. In
general, each shock response amplitude varies drastically, and the distance between two
adjacent amplitudes is 1/ fi. When each rolling element rotates with the cage and meets the
inner race fault, the total effective stiffness keq is changed, the change in the total effective
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stiffness keq and the change in the contact stiffness when each rolling element falls into the
fault position are different, as shown in Figures 6c and 8, and the magnitude of the change
of total effective stiffness keq is modulated by the inner race rotation, resulting in a change
in the system response amplitude as well.

Figure 17b,d shows the envelope spectrum. There is a significant inner race rotation
frequency fs accompanied by frequency multiplication as well as fault characteristic frequency
fi and its frequency multiplication in the figure. The side frequency with obvious ampli-
tude is distributed on both sides of the fault characteristic frequency fi and its frequency
multiplication. For example, the characteristic frequencies of bearing 6000 are 66.6 Hz and
133.1 Hz; 36.6 Hz, 51.5 Hz, 81.6 Hz, and 96.5 Hz are the side frequencies of 66.6 Hz; and
15.1 Hz and 30.0 Hz are the inner race rotation frequencies. The characteristic frequencies
of bearing SKF6205 are 154.9 Hz and 309.8 Hz; 252.3 Hz, 281.1 Hz, 338.4 Hz, and 366.9 Hz
are the side frequencies of 309.8 Hz, and 28.75 Hz and 57.31 Hz are the inner race rotation
frequencies. Therefore, the theoretical simulation and experimental results agree that there
is a significant modulation of the response amplitude in the case of the inner race fault. At
each fault characteristic frequency and its side frequency and rotation frequency positions,
the VSM and the DEM match with the experimental data, but the amplitude of the DEM is
significantly larger than that of the VSM and experimental data. Therefore, the results of the
VSM are in better agreement with the experimental results and are better than the DEM.

The degree of agreement between the simulated and experimental data can be ex-
pressed in terms of average coherence:

τ =
1
N

N

∑
i=1

(
Ai − AEi

AEi

)
(34)

where N is the number of time domain peak samples (N = 30), AEi is the peak of experi-
mental data, and Ai is the peak of the VSM or DEM simulation data.

From Table 5, the amplitude of the VSM is more consistent with the experimental data,
and the consistency of the outer ring is the best, with a minimum of 49%; the inner ring is
slightly worse, with a minimum of 241%. However, both are significantly better than the
DEM, indicating that the VSM is more consistent with the reality.

Table 5. Average coherence validation data.

Position ¯
AE/m/s2

¯
AVSM/m/s2 τVSM

¯
ADEM/m/s2 τDEM

inner race
SKF6205 0.93 5.31 471% 7.92 752%

6000 1.80 6.14 241% 26.26 1359%

outer race
SKF6205 3.88 6.71 73% 0.54 −86%

6000 2.58 3.85 49% 9.62 273%

In summary, when the rolling elements fall into the fault positions of the inner and
outer races, the total effective stiffness of the system will change abruptly. Therefore,
to re-balance the external radial load, the contact deformation and contact force of each
load-carrying rolling element in the load zone change, and finally, this causes the dynamic
system vibration. As the fault position of the outer race is unchanged relative to the radial
load and the position of the load zone, the amplitude of the total effective stiffness reduction
of the system is alike when each rolling element falls into the fault position with the rotation
of the cage. Therefore, the amplitude of the outer loop response is alike, and there is a
significant characteristic frequency fo of outer race faults and its frequency multiplication
in the fault characteristic spectrum. However, the position of the inner race fault relative
to the radial load and the load zone changes periodically with the rotation of the inner
race; the rolling elements in the load zone will change the total effective stiffness of the
system due to the inner race fault. Therefore, the total effective support stiffness of the
system is affected by the rotation of the inner race, which further leads to the amplitude
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of the inner loop response also being affected. In the fault characteristic spectrum of the
inner race, there is a significant rotation frequency of the inner race fs accompanied by
frequency multiplication as well as a fault characteristic frequency of the inner race fi and
its frequency multiplication and side frequency.

4. Conclusions

By setting up the dynamics modeling of the rolling bearing variable stiffness system
with local fault, this paper researches the change in effective contact stiffness, contact
deformation, contact forces, and total effective stiffness of the rolling elements. Some
conclusions are as follows.

(1) Based on the retention factor of contact deformation, the single-degree-of-freedom
variable stiffness model of rolling bearings with fault is proposed, and the dynamics
modeling of the variable stiffness of rolling bearings with fault is established.

(2) The contact stiffness of the rolling elements abruptly decreases when the rolling
elements fall into the fault position. The contact deformation and contact force of the
load-carrying rolling elements in the load zone increases, rebalancing the external
radial load while causing a sudden reduction in the total effective stiffness, resulting
in the vibration of the system.

(3) When different rolling elements fall into the outer race fault position, the change in the
total effective stiffness and the system response are equal in magnitude. Additionally,
there is significant outer race fault characteristic frequency and its frequency multipli-
cation in the fault characteristic spectrums. When different rolling elements fall into
the inner race fault position, the total effective stiffness is modulated by the inner race
rotation and varies dramatically, resulting in the amplitude of the system time do-
main vibration response also being modulated by the inner race rotation and varying
dramatically. Additionally, there are significant inner race rotational frequencies and
their frequency multiplications, inner race fault characteristic frequencies and their
frequency multiplication, and side frequency in the fault characteristic spectrums.

(4) The VSM is more consistent with the experiment and provides some theoretical basis
for the effective diagnosis of rolling bearing faults. The contact deformation retention
factor is only for rectangular or circular faults, which has some limitations. In the
subsequent research, the VSM will be applied to other types of rolling bearings to
expand the application scope of the VSM.
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Nomenclature

b fault width (mm)
hs geometric distance (mm)
hd fault depth (mm)
d diameter of rolling element (mm)
D pitch diameter of bearing (mm)
γ retention factor of contact deformation
fs, fm inner race/cage rotation frequency (Hz)
λ dimensionless parameters
fi, fo fault characteristic frequency of inner/outer races (Hz)
θm rotation angle of the cage (◦)
Fr external radial load (N)
θmi rotation angle of the i-th rolling element with the cage (◦)
K, Kρi, Kρo contact stiffness coefficient (N/m3/2)
θs rotation angle of the fault point with the inner race (◦)
ki, kj effective contact stiffness (N/m3/2)
δmax, δψ, δj maximum/radial contact deformation (mm)
keqa, keqb, keq total effective stiffness (N/m3/2)
δr maximum relative radial displacement (mm)
m mass of the outer or inner race (kg)
ε load distribution range coefficient
r radius of rolling element (mm)
ψ, ψi azimuth (◦)
ri, ro radius of inner/outer raceway (mm)
ψL angular range of the load zone (◦)
Ri, Ro radius of inner/outer groove (mm)
Qmax, Q(ψ) maximum/contact force (N)
ceq damping coefficient (Ns/m)
Pd radial clearance (mm)
α contact angle (◦)
x,

.
x,

..
x displacement, velocity, acceleration of the outer or inner race (m, m/s, m/s2)

β0 initial angle of the fault location (◦)
Z number of rolling elements
∆β central angle (◦)
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