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Abstract: In recent years, multi-rotor UAVs have become valuable tools in several productive fields,
from entertainment to agriculture and security. However, during their flight trajectory, they sometimes
do not accurately perform a specific set of tasks, and the implementation of flight controllers in these
vehicles is required to achieve a successful performance. Therefore, this research describes the design
of a flight position controller based on Deep Neural Networks and subsequent implementation for a
multi-rotor UAV. Five promising Neural Network architectures are developed based on a thorough
literature review, incorporating LSTM, 1-D convolutional, pooling, and fully-connected layers. A
dataset is then constructed using the performance data of a PID flight controller, encompassing diverse
trajectories with transient and steady-state information such as position, speed, acceleration, and
motor output signals. The tuning of hyperparameters for each type of architecture is performed by
applying the Hyperband algorithm. The best model obtained (LSTMCNN) consists of a combination
of LSTM and CNN layers in one dimension. This architecture is compared with the PID flight
controller in different scenarios employing evaluation metrics such as rise time, overshoot, steady-
state error, and control effort. The findings reveal that our best models demonstrate the successful
generalization of flight control tasks. While our best model is able to work with a wider operational
range than the PID controller and offers step responses in the Y and X axis with 97% and 98%
similarity, respectively, within the PID’s operational range. This outcome opens up possibilities for
efficient online training of flight controllers based on Neural Networks, enabling the development of
adaptable controllers tailored to specific application domains.

Keywords: drone; UAV; deep learning; intelligent flight control; LSTM; ANN; CNN

1. Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have been around
since the First World War and were initially used in the military field [1]. However, they
are currently used for both civilian and commercial purposes as well [2]. Search and
rescue operations [3], remote sensing [4], last-mile deliveries [5], and aerial spray and
disinfection [6] are just a few practical applications.

Quadrotors are a type of six-degree-of-freedom (6-DOF) UAV with four rotors, which
produce lift through difference in the thrust of the rotation of its propellers. Due to their
vertical takeoff and landing (VTOL) capability, omnidirectional flight, and mobility in
constrained spaces, UAV quadrotors can perform outdoor and indoor tasks. Furthermore,
the lightweight, small size, versatility, easy handling, and low cost of quadrotors make
them more suitable compared to the fixed-wing UAVs for short-term missions [7].

Disturbances such as wind, temperature, air pressure, reference changes, aerodynamic
effects (ground effect, drag, and downwash), or uncertainties can cause the UAV to be-
come unstable and get damaged, as the applications are designed for specific operating
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conditions [8]. To achieve the variety of intended applications, controllers must ensure
stability, correct execution of movements in a short time with a small margin error, robust-
ness, and efficient energy consumption [9]. However, the design of attitude and position
controllers for quadrotors is challenging due to their unstable and under-acted nature and
coupled and multi-variable nonlinear dynamics.

Several approaches have been developed to overcome the challenge of controlling
quadrotor UAVs under different operating conditions. These approaches can be broadly
categorized into model-based and model-free controllers. Model-based controllers require
a precise understanding of the system and depend on a model. PID controller plus Linear-
Quadratic Regulator (PID+LQR) [10] or robust Sliding Mode Control (SMC) [11] are
examples of model-based controllers. However, these types of control approaches can be
sensitive to modeling errors, and it is important to count on accurate modeling and system
identification for effective control design [12].

A linear model for a nonlinear system can be obtained by using a small-signal approx-
imation around an operating point [13]. These models allow the development of classical
linear [14] and optimal [10] control systems, demonstrating stability even in environments
with wind speed fluctuation [15]. In contrast, linear control algorithms fail to control the
UAV in states other than the operating point.

More complex control systems have been proposed to improve the performance of
UAVs under specific operation points and to enhance the stability of these vehicles in
the presence of external disturbances, such as those considering the dependency between
movement and attitude in our plant to offer a robust control in the presence of loads [16],
un-modeled high-frequency dynamics [17], an adaptive control for multi-quadrotor coop-
eration under load uncertainties [18], Robust adaptive control for heterogeneous multi-
quadrotor cooperation [19], and Adaptive Backstepping Control to deal with uncertainties
and non-linear dynamics from the UAV model [20]. However, these models often require
an accurate high-order mathematical model with sophisticated coefficient computations.
Finally, although these approaches propose to solve specific points of operation un-modeled
dynamic factors can lead to system instability, low convergence rate, chattering effect, or
transient and steady-state problems.

Model-free controllers such as PD Hybrid Artificial Neural Network (PD-ANN) [21],
Fuzzy Based Backstepping Control [22], and Nonlinear Integral Backstepping Model-free
Control (NIB-MFC) [23] have been proposed to control under system uncertainties and
modeling errors, resulting in a significant improvement in low-level control for UAVs
compared to classical controllers [24]. Furthermore, intelligent models based on neural
networks can generalize experience from provided data for different operating points,
making them suitable for controlling and modeling complex dynamic systems such as UAV
low-level control [25].

Model-free controllers can be further divided into online and offline approaches.
Online methods such as Reinforcement Learning [26] build the data simultaneously as it is
experienced but requires a lot of time and a high computational cost. Offline approaches [27]
learn from a specified dataset and are faster and more efficient than online methods. Still,
model performance depends on the quality and quantity of the available data. Combining
both strategies, as proposed by Ashvin Nair and co. [28], can accelerate model learning by
offline learning on a prior dataset and then fine-tuning with online interaction.

This paper is organized as follows: In Section 2, we describe the recent research effort
in flight control systems toward intelligent control, robust control, hybrid approaches, and
the paper’s contribution. Then, Section 3 explains the applied software and techniques
proposed with definitions from the literature. Next, the results of the experiments used to
evaluate our trained controllers and their evaluation compared to our base PID controller
are explained in Section 4 and commented on in Section 5. Finally, the conclusions and
recommendations for future works are commented on in Sections 6 and 7.
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2. Related Works

The UAV control area has been widely explored by applying a wide variety of control
techniques and approaches, such as linear and non-linear control, robust and adaptive
control, machine learning, and reinforcement learning, among many more.

2.1. Linear Controllers

The proportional–integral–derivative controller (PID) is the most popular control
technique used for industrial drones due to its ease of implementation and reliability [29].
Some research aims to find the best combination of constants applied to a UAV, such as
the Ziegler–Nichols technique used in a closed-loop to determine stability limits and PID
constants [30], and the application of bio-inspired searching algorithms to find the best
parameters for the PID controller [31]. More complex approaches include PID+LQR [10]
or LQ and H∞ [15]. It is worth pointing out that these controllers provide the basic
functionalities of flight control even in the presence of environmental changes such as wind
direction [15].

2.2. Non-Linear and Robust Control Techniques

Linear control techniques have limitations when the control action is far from its
equilibrium point. Researchers have attempted to solve these problems by using non-linear
or robust control techniques. For example, Lyapunov techniques [32] and [33], Fuzzy
based [34], Backstepping control [35], and Geometric Control [36]. These developments are
more robust in challenging environmental conditions. However, for our study, on the one
hand, implementing these techniques requires a thorough understanding of system uncer-
tainties, system models, and robust control theory [37]. On the other hand, these control
techniques are dependent on an accurate model, but most of the proposed models do not
abstract operation points of drones with high attitude angles [38]. Therefore, mismatches
in the approximated model for our UAVs could lead to instability and singularities when
complex rotational trajectories are required with these controllers.

2.3. Machine Learning Techniques

According to [39], machine learning techniques offer potential solutions to develop a
versatile controller for a UAV with variable parameters in its environment. Ref. [40] found
that an intelligent flight assistant based on the simplest neural network architecture has the
capacity to outperform human flight performance. Refs. [41,42] designed robust and effi-
cient controllers with an auto-tuning feature. In [43], they implemented an adaptable state
observer based on a neural network, which updates the error states dynamically, offering
a notable performance even when the measures contain noise. Further, ref. [44] devel-
oped a controller by applying the actor–critic method with a deterministic policy gradient,
whereby introducing an integral compensator to the structure, it found an improvement in
accuracy and robustness.

2.4. Reinforcement Learning Approaches

Reinforcement Learning algorithms (RL) are commonly used for unsupervised flight
control in UAVs, as demonstrated by several works, including those of Bravo et al. [45],
who developed a high-level flight control system capable of following a trajectory while
avoiding obstacles, and Vankadari [46], who addressed navigation problems in varying
environmental conditions. Other researchers, such as Shan et al. [47] and Hodge et al. [48],
have compared algorithms such as Proximal Policy Optimization (PPO), Markov Decision
Process (MDP), and Partial Observable Markov Decision Process (POMDP) for finding a
way out of dead-end streets. Koch [49] compared the performance of several RL algorithms
with that of the PID control technique for controlling drone attitude.
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However, training a neural network for flight control presents challenges, such as
the need for a large and diverse dataset and the difficulty of ensuring the trained model’s
robustness to new and unseen environments. Furthermore, the black-box nature of some
machine learning models can hinder interpreting and explaining their behavior, raising
concerns in safety-critical applications such as UAV control [50]. Our work aims to develop
a neural network model detailed in the following sections.

2.5. Limitations and Contributions

Our work aims to develop a neural network controller based on a supervised learning
methodology to fly a UAV. The mentioned methodology is useful for our purpose because
it allows us to obtain a neural flight controller that mimics the behavior of a PID flight
controller. However, this methodology is not applied for the purpose of outperforming
the base controller within its operating range. The dataset must be constructed taking
into account the correct representation of data in every situation where we expect a good
performance of the neural flight. Furthermore, it is necessary to implement an appropriate
technique to tune various hyperparameters. Considering the above two points, in the best
case, the neural controller will offer similar performance to the baseline controller within
its operating range, but we expect to take advantage of the generalization power of neural
networks to maintain stability outside this operating point.

The main paper contribution is the development of a pre-trained Neural Network-
based controller for a multirotor UAV using offline learning. This approach lays the ground-
work for future research into online learning policies that may be applied in low-level UAV
controllers. We present a regression problem with a PID controller as the baseline controller,
with features as controller inputs (states) and labels as controller output signals (actions).
First, to develop the dataset, we determined several trajectories. Subsequently, we exam-
ined multiple neural network-based architectures, including Artificial Neural Networks
(ANNs), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM),
to generalize the behavior of the Pybullet DSLPID controller. We used the Hyperband
algorithm to optimize the hyperparameters of the neural network-based models [51]. Our
evaluation showed that the neural controller outperformed the PID controller regarding
response time, steady-state error, maximum overshoot, control effort, and disturbance
rejection, using the traditional linear model of the drone in the Pybullet simulator outside
its operating point.

3. Materials and Methods

The implementation of the proposed models was developed at the simulation level
based on the commercial drone model and is highly used in the UAV research area, such
as the Crazyflie. This section includes information on the simulation environment, imple-
mented models, and the developed methodology.

3.1. Simulation Environment

Pybullet [52] is an open-source Python interface that provides a link with the Bullet
Physics SDK library [53], specialized in robotics physics.

3.1.1. Drone Model

We chose a drone model for conducting our tests based on the open source develop-
ment platform Bitcraze’s Crazyflie 2.0 [54]. Our model is a nanoquad, which is lightweight
and small, allowing for better indoor flight and the ability to perform aggressive trajectories.
The drone can be simulated in either a cross (reference body frame aligned with the drone
arms) or equis (body axis at a 45-degree angle to the drone arms) configuration, and its
features are listed in Table 1 and depicted in Figure 1.
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Figure 1. Physical structure of the Bitcraze’s Crazyflie 2.0.

Table 1. Bitcraze’s Crazyflie 2.0 Drone physical parameters.

Parameter Description Value

mquad Mass 270 [g]
Size W × H × D 92 × 92 × 29 [mm]

d Arm length 39.73 [mm]
r Rotor ratio 23.13 [mm]

Ixx Moment of inertia over x axis 1.395 × 10−5 [kg·m2]
Iyy Moment of inertia over y axis 1.436 × 10−5 [kg·m2]
Izz Moment of inertia over z axis 2.173 × 10−5 [kg·m2]
kF Impulse coef. 3.160 × 10−10 [N/rpm2]
kM Torque coef. 7.940 × 10−12 [Nm/rpm2]

CDxy Friction coef. over xy axis 9.170 × 10−7

CDz Friction coef. over z axis 10.31 × 10−7

kG Ground Effect coef. 11.36
kD1 Induced Flow coef. 1 2267
kD2 Induced Flow coef. 2 0.160
kD3 Induced Flow coef. 3 −0.110

As defined by Sabatino [13], the dynamics of the UAV in space, by assuming that[
φ̇ θ̇ ψ̇

]T
=
[
p q r

]T , which is true for small angle motions, and
[
ẋ ẏ ż

]T
=[

u v w
]T , would be defined by (1).

X =



ẍ = − ft
m [sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)]

ÿ = − ft
m [cos(φ)sin(ψ)sin(θ)− sin(φ)cos(ψ)]

z̈ = g− ft
m [cos(φ)cos(θ)]

φ̈ =
Iyy−Izz

Ixx
θ̇ψ̇ + τx

Ixx

θ̈ = Izz−Ixx
Iy

φ̇ψ̇ +
τy
Iyy

ψ̈ =
Ixx−Iyy

Izz
φ̇θ̇ + τz

Izz

(1)

Additionally, a vector of disturbances is defined in (2), mainly caused by changes in
wind direction and magnitude, which alter the force and torque in each of the aircraft di-
mensions.

Z =
[

fwx fwy fwz τwx τwy τwz
]T ∈ IR6 (2)

3.1.2. DSLPID Controller

We have chosen Utia’s DSLPID controller as our baseline for training the Neural Net-
works. Our aim is to replicate the controller behavior using Deep Learning techniques. The
DSLPID controller was developed initially by Jacopo Panerati et al. [55] at the University of
Toronto Institute for Aerospace Studies (Utia) in their laboratory of dynamic systems (DSL).
Table 2 shows the PID parameters obtained from the Mellinger controller [56] and designed
for the model Bitcraze’s Crazyflie Cf2x/Cf2p [54]. The code for the Crazyflie controller is
available on the GitHub of gym-pybullet-drones [57].
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Table 2. Parameters of the DSLPID controller.

Axis kP kI kD

x 0.40 0.05 0.20
y 0.40 0.05 0.20
z 1.25 0.05 0.50
φ 70 × 103 0.00 20 × 103

θ 70 × 103 0.00 20 × 103

ψ 60 × 103 500 12 × 103

Figure 2a shows the general scheme of the controller. Due to a drone being an under-
acted system, it is not possible to implement a straightforward controller for the x and y
axis. It is necessary for a double loop controller to manipulate the mentioned axis by fixing
the values of the φ and θ axis. Then the controller will calculate a thrust value (which will
act over the z-axis) to obtain a desired rotation that will move our drone in the xy plane.

(a)

(b)

(c)
Figure 2. Block Diagram for Cf2x DSLPID Control from Pybullet. (a) General Scheme of Cf2x DSLPID
Control. (b) Linear Position Controller Scheme. (c) Angular Position Controller Scheme.

Inside, this controller is composed of PID controllers in the way that is displayed in
Figure 2b,c for the position and attitude control, respectively.

3.1.3. Pybullet Set-Up

Along with the Pybullet framework, we use the gym-pybullet-drones project [58] and the
OpenAI Gym library [59] to perform the Drone simulation.

• Open AI Gym: It is a tool kit developed to perform deep learning tasks. It allows
one to design a simulation environment and works with several numeric calculation
libraries such as TensorFlow [60].

• Gym-pybullet-drones: This open-source project is an environment from the Open AI
Gym based on Pybullet, which has simulation tools for simulations with one and multi-
ple agents. Furthermore, it allows the low-level control of aerial vehicles and emulation
of aerodynamic effects such as friction, ground effect, and wind direction change.
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To easily perform our simulations, we developed three classes: BaseControl, Drone, and
PybulletSimDrone (you can find the developed software and a deeper explanation of these
classes to implement it as well in our Git-Hub repository [61]).

• BaseControl defines the properties and methods of our drone controller according to
its kind (for this project DSLPIDControl, SimplePIDControl, and NNControl). If we
want to implement a PID controller (DSLPIDControl and SimplePIDControl), it will
be necessary to define the kp, kd, and ki coefficients for this controller. If we want to
implement a Deep Neural Controller (NNControl), it will be necessary to define the file
from Tensorflow (.h5) where our Neural Network is saved. This class contains methods
to calculate the control signal and process the current states.

• Drone defines the drone properties, such as model, controller, initial position, and
orientation. This class has methods to gather the current states from the environment
and apply the control action.

• PybulletSimDrone defines the properties of our simulation environment required by Py-
bullet (such as physics engine, simulation frequency, control frequency, environment,
and obstacles), debug options (such as graphic interface, video recording, console
output, data graphics, and data storage); further, we define the trajectories to perform
and whether we want to simulate with disturbances or not. The methods for this
class allow one to initialize the environment, define drones and trajectories, debug the
simulation, run one simulation step, and save state data).

Table 3 summarizes the environment parameters defined for this project.

Table 3. Parameters of the Pybullet environment.

Parameter Value

Physics Engine Pyb
Drone Model C2 f x

Controller DSLPID
Simulation Frequency 240 Hz

Control Frequency 48 Hz
Obstacles No

Environment CtrlAviary

3.2. Technical Specifications

The machine used for developing this investigation has an AMD2950X(TM)
Threadripper(TM) 2950X processor, a NVIDIA GeForce RTX-2080Ti graphic card and
64 GB RAM. In terms of software to develop the experiments shown within this project.
It is recommendable to use Python version 3.8.10, gym_pybullet_drones 0.6.0, Pybullet
3.1.6 simulator, Gym 0.20.0, and the libraries for Python: Numpy 1.19.5, Matplotlib 3.3.4,
Statsmodels 0.12.2, Tensoflow-gpu 2.5.0, Keras 2.5.0rc0, and Keras_tuner 1.0.3.

3.3. Dataset

In our proposed dataset, we want to collect data describing the behavior of our baseline
controller in different states. To do so, we must first identify the information to be gathered
from the environment. As a result, we read the input state vector (which was sent to the
controller in Pybullet by the state estimator), which is shown in (3).

X =
[

φ θ ψ p q r x y z vx vy vz aφ aθ aψ ax ay az
]T ∈ IR18 (3)

Yre f =
[

rx ry rz rψ

]T ∈ IR4 (4)

u =
[

RPM0 RPM1 RPM2 RPM3
]T ∈ IR4 (5)

where u, v, and w are the linear speeds of the x, y, and z axes, respectively. p, q, and r are
the angular speeds of the φ, θ, and ψ axes, respectively. Moreover, we derive the speed
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state vector provided by the estimator to get the acceleration vector. The derived variables
are directly related to the input variables and may provide additional information that
can potentially improve the accuracy of the model’s predictions. Reading in this way, all
the variables of the current state. The reference position and orientation are depicted in
(4). Finally, the Neural Network outputs are gathered in (5), and we read the four control
signals for the actuator calculated by the reference controller.

Once one defines all the variables to read from our environment, we proceeded to
define the trajectories to save. We propose the trajectories presented in Figure 3.

The aim of these signals is to prioritize the number of harmonics, the normal distri-
bution of data, and the balance between information at the transitory state and steady
state. Moreover, some trajectories contain disturbances, where it will be possible to observe
how the controller recovers in these scenarios. The process to generate this dataset is
automatic; the trajectories for each axis and the parameters of these were chosen randomly.
We dismissed the signals when the drone fell or was not possible to track the trajectory.

3.4. Time Window

Due to the signals of the system being a time series, it is important to feed previous
states to our Neural Networks so that it is possible for the network to calculate the control
signal for each motor. We will define a number of previous states where we find a balance
between inference time, memory size, and performance of our models.

3.4.1. Partial Autocorrelation Function

This function is defined in (6).

ρk =
∑N−K

t=1 (xt − µ)(xt+k − µ)

∑N
t=1(xt − µ)2

(6)

where x is our signal, composed of the current state and the previous states, and µ is the
average of our data, defined as µ = ∑N

t=1
xt
N .

This function calculates the autocorrelation between the current state and the previous
states. A positive correlation value means a strong association between the values of the
current state and previous states [62].

For our case, we calculate the autocorrelation taking signals from our dataset for each
axis. Getting the autocorrelation value for several quantities of states in a range of 1 to
100. Table 4 shows in descending order the quantity of states per axis where we found the
highest autocorrelation.

Table 4. The quantity of samples with the highest autocorrelation.

Position x States y States z States ψ States Median

1 75 2 76 57 2
2 60 63 59 66 75
3 93 5 2 4 58
4 29 96 40 78 64
5 2 21 47 40 67

Taking the median per axis, we find that the highest autocorrelation value is obtained
with the two previous states. However, taking into account the simulation frequency and
the rise times per axis of our baseline controller, this is a small amount of information for
our Neural Network. Hence we take a number of the previous states between the third and
second highest value of autocorrelation (58 and 75).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 3. Set-Point Signals for dataset generation implemented (a) Random step with a return to
zero. (b) Staggered Sinusoidal. (c) Staggered random steps signal. (d) Big random step signal with a
return to zero. (e) Ramp signal. (f) Low-Frequency Noise Signal. (g) Null signal with disturbances.
(h) Chirp signal.
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3.4.2. Empirical Method

This method relies on taking into account the Average Inference Time (Ti) and Mean
Square Error (MSE). We sweep the Time Window sizes between a range of 1 to 1000, taking
100 window sizes that are separated logarithmically along the defined range. To evaluate
the performance of our model, we use a dataset size of 4096 samples obtained from our
dataset and measure MSE as well as Ti for the samples passed to our model. Finally, we
calculate the performance (P) with the function defined in (7).

P =
1

MSE× Ti
(7)

Figure 4 shows the values of this function for the described range, where the optimal
value is between the values of 20 to 90 previous states as shown in Figure 4 by the red square.

Due to both tests of the previous states, it is defined as a quantity in the middle of the
found ranges. Hence the size of our time window will be 63 previous states plus the current
state because it is a multiplot of 2 and could be advantageous in the implementation.

Window length

N
or

m
al

iz
ed

 fu
nc

tio
n

Inference time - Error vs Window length

Figure 4. Empirical method for performance evaluation (green) based on Ti (blue), MSE (orange)
and Time Window (red square).

3.5. Data Pre-Processing

First, we apply average normalization to the data. We normalize each signal presented
in the state vector (Section 3.3) according to the function presented in (8).

xnormi =
xi − µ

xmax − xmin
(8)

where µ is the average value of the signal; xmax and xmin are maximum and minimum
values, respectively; and xi is the signal’s sample to normalize.

Later, we sort our data into three batches (train, validation, and test), of which the
portions are shown in Table 5.
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Table 5. Dataset division.

Batch Quantity of Trajectories Percentage

Train 142 84%
Validation 16 10%

Test 10 6%

Finally, we define a Data Generator Class from Tensorflow per batch [63]. This helps us
to select the data while training. To create one sample, our generator takes a current random
state from our normalized dataset and appends it to the previous states; subsequently, the
data are sorted according to the input sizes required for each net architecture. In this way,
the generator creates samples until it fulfills the defined batch size. Once this process is
done, the batch is provided to perform one episode of our Neural Network training. The
previous process is performed iteratively by the generator until it finishes the training.

3.6. Proposed Architectures

To model the behavior of the controller, we propose analyzing several types of Neural
Network architectures:

(i) Fully Connected Artificial Neural Networks (ANN): These networks are also
known as Multi-Layer Perceptrons (MLPs) or Feedforward Neural Networks
(FNN). This architecture is the simplest and also the architecture that consumes the
least resources. They consist of multiple layers of nodes (neurons) connected in a
feedforward manner, where each neuron in a layer is connected to all the neurons
in the previous layer. ANNs are suitable for modeling nonlinear relationships
between inputs and outputs, which makes them suitable for modeling the behavior
of a position PID controller.

(ii) Fully Connected Artificial Neural Networks with Feedback (ANN Feedback): This
architecture is sometimes referred to as an autoregressive model or iterative pre-
diction. It is based on ANN, but the input states include the previous output of the
network as illustrated in Figure 5. It can allow the network to incorporate infor-
mation about past predictions into future predictions. This could be particularly
useful in applications where the system being controlled is dynamic and subject to
rapid changes.

 

 

 

 

 

 

 

Motor Speeds 

 

Input States 

FC Layers 

Figure 5. Feedback network structure.

(iii) Long-Short Term Memory (LSTM): These networks are a type of Recurrent Neural
Network (RNN) that are designed to handle long-term dependencies in sequential
data such as time series data. They use a memory cell to store information over
time, which allows them to maintain a long-term memory of past observations. It
can be used to learn the patterns and dynamics of the drone’s movements over
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time. One potential advantage of using an LSTM for drone position control is its
ability to handle variable-length input sequences. This can be particularly useful
in situations where the drone’s movements are not perfectly regular or predictable:
the input sequence could be longer or shorter depending on the complexity of
the environment and the level of variability in the conditions. The proposed
architecture is shown in Figure 6.

 

  

 

 

 

 

Input States 
LSTM Motor Speeds 

LSTM Layers FC Layers 

Figure 6. LSTM network structure.

(iv) LSTM Layers interleaved with convolutional 1D layers (LSTMCNN): This archi-
tecture consists of connected blocks in a cascade at the beginning of the network,
where each block is composed of LSTM layers followed by convolution layers in
one dimension (CNN-1D) as shown in Figure 7. The CNN-1D can capture local
patterns and features in the sequential data, while the LSTM can capture long-term
dependencies and context. The output of each block can be fed into the next block,
allowing for a hierarchical feature extraction process in both time and frequency
domains. The fully connected layers can further process the extracted features and
generate the final output. Both CNN-1D and LSTM can handle variable length
sequences of data. CNN-1D is also robust to noise and variability in the input data.

 

 

 

 

 

 

LSTM 

LSTM – 1D CNN Layers FC Layers 

Motor Speeds Input States 

Figure 7. LSTMCNN network structure.

(v) Convolutional 1D Layers in cascade with LSTM layers (CLSTM): This proposed
architecture consists of connected blocks in a cascade at the beginning of the
network, where each block is composed of convolutional 1D layers followed by
max pooling layers to identify the most salient features in the data by taking the
maximum value within a pooling window. The output of each block can be fed
into LSTM layers, which can capture the long-term dependencies in the drone’s
flight path based on the most important features extracted from the convolutional
layers. The output of the LSTM layers can then be fed into several fully connected
layers in a cascade to process the extracted features further and generate the final
output as shown in Figure 8.



Machines 2023, 11, 606 13 of 31

 

 

 

 

 

LSTM 

1D CNN – Pooling 1D Layers LSTM Layers FC Layers 

Motor Speeds Input States 

Figure 8. CLSTM network structure.

Model Compilation and Hyper-Parameter Tuning

For this stage, the Neural Network model is defined according to the desired architec-
ture to train. It is defined as an optimizer, a loss function, activation functions, a gradient
clipping value to avoid gradient exploding (specifically for the most complex architectures,
which include LSTM and Convolutional layers), and some other hyper-parameters. These
values were obtained from the evaluation of the final error in numerous randomly com-
bined hyper-parameter training carried out experimentally. The values of the previously
mentioned Hyper-parameters are summarized in Table 6.

Table 6. Hyper-parameter definitions.

Parameter Value

Loss function MSE
Optimizer Adam

Gradient clipping 0.5
Batch size 1024

Time window size 64
Hyperband max epochs 500

Hyperband executions per trial 2
Hyperband reduction factor 3

Training steps 142
Validation steps 16

Pooling type max
Pooling kernel size 3

LSTM activation tanh
LSTM recurrent activation Sigmoid

For each of the architectures, hyper-parameters such as the number of neurons per
layer, the number of layers, and the activation function of each neuron were obtained
using the Hyperband algorithm [51], as shown in Table 7. Hyperband is designed to
efficiently allocate resources, such as computation time or hardware resources, to explore
the hyper-parameter space and find the best set of hyper-parameters for a given machine
learning model.

Once these values are defined, the training starts. Subsequently, we briefly evaluate
the trained model according to its mean square error value with the test data batch.

3.7. Evaluation Functions

The evaluation of the proposed system focuses on reducing energy consumption and
error in trajectory tracking, as shown below.

3.7.1. Control Effort

To evaluate the control effort for our controllers, we apply (9) by comparing the output
signal u(t) with uss, which is the magnitude from the controller output to counteract gravity
(this value is 14,468.429).

Q =
1
t

∫ T

0
|u(t)− uss|δt (9)
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where T is the integration time from the total duration of the simulation.

Table 7. Hyper-parameter tuning objectives.

Parameter Default Min Max Step Values

LSTM Layers 5 1 5 1

LSTM Units 256 32 512 32

CNN-1D Layers 5 1 5 1

CNN-1D filters 128 32 512 32

CNN-1D Activation relu [relu, tanh, sigmoid]

FC Layers 5 1 5 1

FC Units 128 32 512 32

FC activation relu [relu, tanh, sigmoid]

Learning rate 1 × 10−3 1 × 10−4 1 × 10−2 log

3.7.2. F1 Custom Function

This function rates the performance in terms of Settling Time (Ts), Overshoot (Os), and
Steady State Error (sse) with the ITSE function as indicated in (10)–(13).

Ts→
∣∣∣y(t)− y f inal

∣∣∣ < 0.02× y f inal (10)

Os =
max(y(t))− y f inal

y f inal
(11)

ITSE =
1

len(t)

len(y(t))

∑
i=1

t ∗ (yi − u)2 (12)

F1 =
(a ∗ Ts) + (b ∗Os) + (c ∗ ITSE)

3
(13)

where y(t) is the series of position values in the evaluated axis and y f inal is the final value
in the evaluated axis. Moreover, a, b, and c are the weights of function F1 whose aim is
to compare each value in each function for the proposed controllers compared with our
reference PID. Those weights are defined as the multiplicative inverse of the scores assigned
by each function to our PID baseline as depicted by (14).

a =
1

TsPID
; b =

1
OsPID

; c =
1

ITSEPID
(14)

4. Results

The results obtained from the experimentation of the proposed model are shown
based on the performance of the different models proposed in terms of stability, energy
consumption, and path tracking.

4.1. Final Dataset

The final dataset and specific features are explained next. This dataset is fundamental
in the training process of the different models used.

4.1.1. Main Features

Our final dataset applied to train each model is composed of 168 trajectories with a du-
ration between 15 and 100 s. Those trajectories are distributed as described in Tables 8–10.
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Table 8. Dataset description.

Parameter Value

Length 168 signals
Size 0.778 GB

States 18 variables
Set-Point 4 variables
Outputs 4 variables

Average simulation time 76.55 s
Total samples 3.068 × 106

Table 9. Trajectories per duration.

Duration Quantity

100 s 104
50 s 38
20 s 22
15 s 4

Table 10. Number of trajectories per type of trajectory and axis.

Type of Trajectory X Y Z ψ Total

Null reference with disturbances 46 56 44 99 245
Random step with return to zero 61 63 66 53 243
Staggered random steps 23 17 20 3 63
Low frequency noise 7 8 19 4 38
Sinusoidal wave 15 6 11 4 36
Staggered sinusoidal with return to
zero

9 10 3 1 23

Chirp Signal 2 2 0 0 4
Others 1 5 6 5 4 20

1 Composed by test signals (ramps, lemniscate, and exponential).

4.1.2. Data Distribution

Table 11 provides descriptive statistics for the control variables in the dataset. These
statistics offer insights into the rank, dispersion, and distribution characteristics.

To determine the maximum and minimum values for the trajectories, we identified the
empirical values at which the controller remained stable. Additionally, we estimated the
average value to approximate the operating point X0 =

[
x̄ = 0 ȳ = 0 z̄ = 1 ψ̄ = 0

]T

around which the controller was designed.
The data distribution for variables x, y, and ψ follows a Gaussian distribution, while

the distribution for variable z is asymmetrical and primarily concentrated at lower altitudes.
These characteristics provide important insights into the behavior and range of the control
variables in the dataset.

Table 11. Descriptive statistics for control variables.

Axis Mean Std Min Max

rx 6.439 × 10−3 1.058 × 10−1 −8.000 × 10−1 8.000 × 10−1

ry 3.417 × 10−3 1.010 × 10−1 −8.000 × 10−1 8.000 × 10−1

rz 8.782 × 10−1 7.641 × 10−1 0.000 7.998
rψ 1.285 × 10−2 4.414 × 10−1 −3.140 3.141

To evaluate the range of position exploration in our dataset and identify states with
less information during model training, we created Figure 9. This visualization provides
insights into the generalization of the model’s behavior and highlights areas where the
dataset may have limited coverage.
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(a) (b)

(c) (d)

Figure 9. Dataset Samples Heat-Map (a) Plane XY. (b) Plane ΨZ. (c) Plane XZ. (d) Plane YZ.

4.2. Neural Network Architectures

This section explains the process of obtaining the best neural controller from all the
proposed architectures. In this selection process, first, for each proposed architecture, we
manually and automatically tuned our models until getting the best five models taking
into account the MSE loss function. The models tuned automatically were the models
that involved CNN1D and LSTM layers within its architecture, due to the complexity of
these models. The algorithm used to tune our models automatically was the Hyperband
algorithm [51]. Figure 10 shows the loss per epoch for the trained models. A total of 64
models per architecture type were trained using the Hyperband algorithm. These five
architectures were tested in simulation to choose the best model per architecture. The
simulation was performed under one specific scenario, where our drone had to follow
a step set-point signal in each axis (rx = 0.1 m, ry = 0.1 m, rz = 0.1 m, rψ = 0.1 rad).
To evaluate the performance of each controller in the simulation, we implemented the
personalized function F1. Table 12 relates the evaluation parameters for each of the best-
obtained models per architecture. Figure 11 shows the step time response for the best
model for each of the proposed architectures.

Table 12 provides the evaluation metrics for the different models considered in our
study. The mean square error (MSE) quantifies the average squared difference between
the predicted and target values. The control effort (Q) is measured using (9), and F1avg
represents the average total score per axis based on time response parameters.
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Figure 10. Hyperband algorithm results of 64 different LSTMCNN models where the five best models
were selected given their Loss value below 0.01 (red line).

Table 12. Best models comparison.

Architecture MSE F1x F1y F1z F1ψ F1avg Q Total

ANN 3.31 × 10−3 0.31 0.70 6.48 28.3 8.95 415 × 103 7.44
LSTM 2.36 × 10−3 0.98 1.10 27.8 18.2 12.0 69.7 × 103 6.51
LSTMCNN 3.27 × 10−3 1.39 0.97 10.6 23.7 9.17 59.3 × 103 5.01
CLSTM 2.39 × 10−3 1.44 1.07 27.7 19.0 12.32 79.3 × 103 6.73
DSLPID NA 1 1 1 1 1 70.0 × 103 1

Time (s) Time (s)

Time (s) Time (s)

Reference

Figure 11. Step response comparison for best models.

To assess the overall performance of each model, we introduce the “Total” value,
which incorporates the normalized values of Q and F1avg (denoted as Qnorm and F1norm,
respectively). The calculation of the Total value is explained in (15)–(17). We would like to
note that the ANN Feedback architecture is not included in our study due to its inherent
instability in simulation. Therefore, we focused our analysis on the other architectures to
select the most suitable model for our purposes, with LSTMCNN emerging as the optimal



Machines 2023, 11, 606 18 of 31

choice based on its performance in terms of control effort and F1 error. The specific structure
of the LSTMCNN model is presented in Table 13.

Qnorm =
Q

70.01× 103 (15)

F1norm =
F1avrg

1
(16)

Total =
Qnorm + F1norm

2
(17)

Table 13. LSTMCNN 5 Structure.

Layers Neurons/Filters Activation # Parameters

LSTM_1 320 tanh 439 K
CONV1D_1 480 relu 461 K
LSTM_2 128 tanh 311 K
CONV1D_2 288 relu 110 K
LSTM_3 128 tanh 213 K
FC_1 64 relu 8 K
FC_2 96 relu 6 K
FC_3 320 relu 31 K
FC_4 192 relu 61 K
FC_5 4 linear 772

4.3. LSTMCNN Comparison with PID Baseline

In this section, we present a comprehensive evaluation and comparison of our pro-
posed Neural Network Controller, the LSTMCNN, with the baseline controller, DSLPID
controller, for UAV position control. Our objective is to assess the performance and effec-
tiveness of the Neural Network Controller in various aspects and compare it to the baseline
controller to gain insights into its advantages and limitations. The evaluation encompasses
multiple criteria, including the response in the time domain (Section 4.3.1), control lim-
its (Section 4.3.2) disturbance rejection (Section 4.3.3), sensitivity to noise (Section 4.3.4),
handling aggressive trajectories (Section 4.3.5), adaptability (Section 4.3.6), and stability
analysis (Section 4.3.7).

4.3.1. Step Response

For this test, we compare the basic control evaluation parameters towards a step
set-point signal in each control axis (rx = 0.2 m, ry = 0.2 m, rz = 0.2 m, and rψ = 0.2 rad),
the results are shown with the Figures 12 and 13. Table 14 shows the measures of this ex-
periment.

Table 14. Step response measures.

Axis
DSLPID LSTMCNN

Ts [s] Os [%] Ess [ITSE] F1 Ts [s] Os [%] Ess [ITSE] F1

x 5.12 5.786 1725 1.000 1.750 8.687 4326 0.983
y 5.15 5.813 1737 1.000 2.680 7.322 2412 0.970
z 0.816 0.134 88.38 1.000 1.470 2.388 1097 10.64
ψ 0.808 2.247 225.2 1.000 3.170 0.269 15,109 23.70
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Figure 12. Step response DSLPID vs. LSTMCNN.

15,000

17,500

15,000

20,000

15,000

20,000

15,000

20,000

Figure 13. Control effort DSLPID vs. LSTMCNN.

4.3.2. Big Step Response

In our experiment, we aimed to compare the behaviors of the DSLPID controller
and our LSTMCNN controller under a larger magnitude step input, which can lead to
output saturation and consequently trigger the wind-up effect. The wind-up effect is a
phenomenon observed especially with PID controllers, where the integral term accumulates
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excessive error, resulting in undesired outcomes such as overshoot, instability, or slow
response. In the context of UAV position control, the wind-up effect can manifest when
the drone encounters external disturbances or movement limitations, such as reaching
maximum velocity or encountering physical obstacles. The time domain responses of both
controllers to the larger step input can be observed in Figure 14.

(a) (b)

(c) (d)

Figure 14. Big step response DSLPID vs. LSTMCNN. (a) z response. (b) x response. (c) y response.
(d) ψ response.

Our objective was to assess how the controllers perform under these challenging con-
ditions and observe if the Neural Network Controller exhibits a broader range of responses
beyond the nominal operating point. As anticipated, the DSLPID controller demonstrated
the wind-up effect in our experiment, resulting in instability. On the other hand, our
Neural Network Controller, the LSTMCNN, showcased a wider range of responses that
surpassed the nominal operating point. However, it is worth noting that the response in the
ψ axis exhibited instability, and there is room for improvement in the z axis. This behavior
indicates the potential of the LSTMCNN controller to handle larger step inputs and adapt
to varying conditions, offering improved performance compared to the PID controller.

4.3.3. Disturbance Rejection

For this experiment, we compare the disturbance rejection with disturbances twice
as large compared to those present in the dataset, the results are presented in Figure 15.
Table 15 shows the measures of this experiment.

Table 15. Disturbance response measures.

Axis
DSLPID LSTMCNN

Ts [s] Os [%] Ess [ITSE] F1 Ts [s] Os [%] Ess [ITSE] F1

x 4.904 2.946 72.89 1.000 5.216 2.765 301.2 26.74
y 4.904 2.853 70.24 1.000 7.045 1.988 50.17 1.594
z 1.058 8.672 145.1 1.000 2.062 9.615 1725 12.83
ψ 2.783 10.09 71.28 1.000 3.712 11.99 1224 19.07
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(a) (b)

(c) (d)
Figure 15. Disturbance rejection DSLPID vs. LSTMCNN. (a) z response. (b) x response. (c) y response.
(d) ψ response.

4.3.4. Noise Degradation

Noise in the input can originate from various sources, including sensor inaccuracies,
measurement errors, and environmental disturbances affecting the drone. By quantifying
the impact of noise on the controller’s performance and providing a comparison to the
ideal conditions, we can gain insights into the model’s robustness and assess its ability to
handle noisy input conditions. Therefore, the objective of this experiment is to assess the
model’s response to noisy conditions and analyze its effect on the controller’s performance.

To introduce noise, we determined the noise variance based on the rank of each
variable and used (18) to establish the relationship. The noise variance values are provided
in Table 16, and a uniform distribution was chosen for all axes.

∆ = 1% ∗ (Xmax − Xmin)

2
(18)

where Xmax and Xmin are the maximum and minimum values of the state variable, respectively.

Table 16. Noise parameters.

Axis Variance

x 8.180 × 10−3 [m]
vx 1.002 × 10−2 [m/s]
ax 4.093 × 10−1 [m/s2]
y 8.176 × 10−3 [m]
vy 8.609 × 10−3 [m/s]
ay 3.494 × 10−1 [m/s2]
z 4.037 × 10−2 [m]
vz 6.607 × 10−2 [m/s]
az 1.009 [m/s2]
ψ 3.141 × 10−3 [rad]
r 7.241 × 10−2 [rad/s]

aψ 2.080 [rad/s2]
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Subsequently, we simulated the controller using a zero reference signal and added
noise to the model input for each state variable individually, corresponding to its respective
control axis. For example, when analyzing the response in the z-axis, we introduced noise in
variables z, vz, and az. The time responses for x, y, z, and ψ are illustrated in Figures 16–19,
respectively.

(a) (b)

(c) (d)
Figure 16. Noise input evaluation for z axis. (a) Response without noise. (b) Response with noise in
z. (c) Response with noise in vz. (d) Response with noise in az.

(a) (b)

(c) (d)

Figure 17. Noise input evaluation for x axis. (a) Response without noise. (b) Response with noise in
x. (c) Response with noise in vx. (d) Response with noise in ax.
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(a) (b)

(c) (d)

Figure 18. Noise input evaluation for y axis. (a) Response without noise. (b) Response with noise in
y. (c) Response with noise in vy. (d) Response with noise in ay.

(a) (b)

(c) (d)

Figure 19. Noise input evaluation for ψ axis. (a) Response without noise. (b) Response with noise in
ψ. (c) Response with noise in r. (d) Response with noise in aψ.

The degradation in controller performance caused by noise is presented in Table 17.
This degradation is calculated as the difference between the ideal operation without noise
and the performance under noisy conditions, as shown in (19). It is important to note
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that the baseline controller does not utilize acceleration information for the control action
calculation, and for the R-axis, speed information is also excluded.

SigDegradation% =
MSE(xnoise, x)

∆
∗ 100% (19)

Table 17. Noise signal degradation measurements.

Axis
DSLPID LSTMCNN

Pos.% Vel. % Acc. % Pos. % Vel. % Acc. %

x 0.562 5.684 × 10−3 0.000 0.597 4.807 × 10−3 24.15 × 10−3

y 0.560 4.190 × 10−3 0.000 0.559 4.029 × 10−3 9.418 × 10−3

z 13.57 0.131 0.000 20.21 12.33 10.43
ψ 8.923 0.000 0.000 9.492 82.02 × 10−3 2.614

4.3.5. Lemniscate

In this experiment, our objective was to evaluate the performance of the controllers
when subjected to aggressive set points. We specifically chose a Lemniscate function as the
set-point signal, which follows an infinite (∞) shape. The use of this function is motivated
by the need for high speeds and large attitude angles, which take the drone away from its
linear operating point, posing a challenge for linear controllers such as the PID controller
to track the signal accurately. The Lemniscate function is implemented as shown in (20).

x(t) = (a
√

2)
cos(2π f ∗ t + Ψ)

sin2(2π f ∗ t + Ψ) + 1

y(t) = x(t)sin(2π f ∗ t + Ψ)

(20)

where a is the amplitude, f the frequency, and Ψ the offset angle.
The responses of both controllers to the Lemniscate set-point signal are depicted in

Figure 20. It is evident from the results that the LSTMCNN neural network controller
successfully tracks the intricate shape of the Lemniscate function, demonstrating its capa-
bility to handle the demanding trajectory. In contrast, the baseline PID controller struggles
to follow the desired trajectory, which eventually leads to instability accurately. These
findings highlight the superior performance and robustness of the LSTMCNN controller in
challenging scenarios with aggressive set points.

Figure 20. Lemniscate trajectory.
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4.3.6. Down-Wash Effect

In this experiment, our objective is to evaluate whether our controllers, the DSLPID
(PID controller) and the LSTMCNN (Neural Network), demonstrate generalization capa-
bilities for aerodynamic effects that were not considered in our dataset due to limitations
in the physics engine used. Specifically, we focus on investigating the downwash effect
by incorporating it into our simulation. The downwash effect is the change in airflow
caused by the aerodynamic interaction of an aircraft. When two quadcopters cross paths at
different altitudes, the lower drone experiences a reduction in lift force. Panerati et al. [55]
modeled this effect by applying a force to a point particle, where the magnitude W depends
on the distances in the x, y, and z axes between the two vehicles (δx, δy, δz), as well as
experimentally derived constants kD1 , kD2 , kD3 :

W = kD1

(
rP
4δz

)2
exp

−1
2


√

δ2
x + δ2

y

kD2 δz + kD3

2 (21)

The constants kD1 , kD2 , and kD3 capture the characteristics of the aerodynamic interac-
tion, allowing for accurate modeling of the force experienced by the lower drone. To achieve
this, we select the pyb_dw physics engine in our simulator and conduct the simulation with
two drones, each equipped with one of our controllers (DSLPID and LSTMCNN).

To compare the performance of the controllers under the downwash effect, the drones
fly in close proximity, with one drone positioned below the other to experience the down-
wash effect in its flight. Both drones follow sinusoidal trajectories that are out of phase with
each other. The response of both controllers is illustrated in Figure 21.

(a) (b)
Figure 21. Down-wash LSTMCNN. (a) 3D view. (b) Response in z axis.

4.3.7. Phase Plane Evaluation

In this experiment, our focus is to assess the robustness of our LSTMCNN controller
and compare it with the baseline DSLPID controller using a phase-plane evaluation. The
phase plane offers a visual representation that enables us to comprehend the system’s
behavior in relation to its state variables. This analysis provides valuable insights into the
controllers’ responses to various set-point signals and disturbances.

To achieve our objective, we examine the responses of both controllers in terms
of position and speed for each axis within the phase plane. Specifically, we evaluate
their performance under different set-point signals, including sinusoidal, step, and flight
with disturbances.

Figure 22 illustrates the response of each axis within the phase plane, presenting a
visual representation of the controllers’ performance. Through this analysis, we can effec-
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tively assess and compare the performance of our LSTMCNN controller and the DSLPID
controller under different conditions, providing valuable insights into their suitability for
robust drone position control. We can observe that in the X and Y axes, the response is
similar to that of the DSLPID controller, and there is a clean transition, converging to the
same points. However, in the z and yaw axes, the response of the LSTMCNN controller
is more complex and distorted compared to the DSLPID controller. The two controllers
converge to different points, suggesting a discrepancy in their ability to control the drone’s
altitude and yaw orientation accurately. Further investigation and improvements are nec-
essary to enhance its performance in these specific axes, including addressing sensitivity
to disturbances, refining the training dataset, and optimizing the controller’s architecture
and parameters.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 22. Phase Plane evaluation. (a) Disturbance trajectory x-vx plane. (b) Disturbance trajectory
y-vy plane. (c) Disturbance trajectory z-vz plane. (d) Disturbance trajectory r-wr plane. (e) Step
trajectory x-vx plane. (f) Step trajectory y-vy plane. (g) Step trajectory z-vz plane. (h) Step trajectory
r-wr plane. (i) Sin trajectory x-vx plane. (j) Sin trajectory y-vy plane. (k) Sin trajectory z-vz plane.
(l) Sin trajectory r-wr plane.

5. Discussion

According to the results presented in Table 12, the LSTMCNN model stands out as
the best-performing network architecture. It demonstrates superior flight performance
in terms of the F1 and Q functions. The F1 function measures the desired time response,
considering parameters such as settling time (Ts), overshoot (Os), and steady-state error
(sse). The Q function evaluates the actuator control effort.

In terms of network architecture, our proposed LSTMCNN model combines the
strengths of long short-term memory (LSTM) networks and Convolutional Neural Net-
works (CNNs). This hybrid architecture allows the model to capture both temporal de-
pendencies and spatial patterns, enhancing its ability to learn and predict complex drone
dynamics. This integration of LSTM and CNN architectures is a unique approach that sets
our methodology apart from existing studies.
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Our evaluation process encompasses a comprehensive set of experiments and analyses
to assess the performance of the controller in various scenarios. These include step response,
big step response, disturbance rejection, aggressive trajectories, noise sensitivity, and
the consideration of aerodynamic effects such as the downwash effect. By examining
the controller’s behavior under different conditions and evaluating key metrics such as
settling time, overshoot, steady-state error, and control effort, we provide a thorough and
multifaceted assessment of its capabilities.

Regarding the step response experiment (Section 4.3.1), our controller exhibited similar
responses to the baseline controller in the X and Y axes, accurately following the set point
and maintaining stability. However, it showed higher steady-state error compared to the
baseline controller in the ψ and Z axes. The ψ axis was particularly challenging due to the
discontinuity of the state bounded between [−π; π].

Figure 13 depicts the control effort related to the stepping trajectory. The experi-
ments indicate that our controller reduces the control effort required compared to the
baseline controller.

The results of the big-step experiment (Section 4.3.2) demonstrated that the LSTMCNN
controller exhibited stability over a wider range of control beyond the nominal operating
point in the x and y axes. This indicates its capability to accurately track and control the
drone’s position even when subjected to larger step inputs. However, improvements are
needed in the z axis and especially in the ψ axis, where the LSTMCNN controller showed
instability. Fine-tuning of controller parameters or architecture may be necessary to enhance
performance in these specific axes.

In the disturbance rejection experiment (Section 4.3.3), both controllers maintained
stability in the presence of sudden disturbances. However, the DSLPID controller outper-
formed the LSTMCNN controller based on metrics such as settling time, overshoot, and
steady-state error.

Contrary to our initial expectations, the noise degradation experiment (Section 4.3.4)
revealed that the LSTMCNN Neural Network Controller exhibited increased sensitivity
to noise, particularly when it affected the position variable. This highlights the challenges
associated with noise in Neural Network Controllers and suggests the need for further
investigation and improvements in architecture and training strategies to enhance noise
robustness. The inclusion of acceleration information in the neural network’s predic-
tions offers better generalization capabilities but also increases sensitivity to noise due to
additional variables.

In the Lemniscate experiment (Section 4.3.5), the LSTMCNN Neural Network Con-
troller successfully tracked the intricate shape of the Lemniscate function, showcasing
its ability to handle demanding trajectories. Conversely, the baseline DSLPID controller
struggled to follow the desired trajectory, leading to eventual instability accurately. These
findings underscore the superior performance and robustness of the LSTMCNN controller
in challenging scenarios involving aggressive set-points with high accelerations or large
attitude angles.

When subjected to the downwash effect (Section 4.3.6), an aerodynamic phenomenon
absent in the initial dataset, our model demonstrated limited adaptability. Although it
maintained stability, the controller’s performance declined. To address this issue, retraining
the controller with a more comprehensive dataset incorporating a wider range of aerody-
namic scenarios could enhance its ability to handle the downwash effect and related factors.
Alternatively, integrating online learning techniques into the controller’s architecture could
enable continuous adaptation to real-time feedback and varying aerodynamic conditions.
Further research and experimentation are necessary to determine the most suitable ap-
proach, considering factors such as resource availability, performance requirements, and
feasibility within the specific problem context.

Lastly, the phase plane diagram in Figure 22 illustrates the stability of our controller
within and beyond the operating point of the baseline controller. This analysis provides
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valuable insights into the behavior of the system’s state variables and supports the assess-
ment of controller performance.

Overall, our study contributes to the broader understanding of neural network-based
controllers for drone position control by providing insights into the strengths, limitations,
and areas for improvement of such approaches. We highlight the trade-offs between
different architectures and the challenges associated with noise sensitivity, aggressive
trajectories, and the impact of aerodynamic effects. These findings can guide future research
and inform the development of more robust and adaptable control strategies.

6. Conclusions

In this paper, we proposed a new flight control system implemented with Pybullet
and its model for the Craziflie quadrotor. Our controller was developed based on the
training and building of several Neural Network architectures proposed in the literature.
These architectures were trained with data gathered by flying with the controller offered by
Pybullet. Finally, our controller was evaluated in comparison with the controller offered by
Pybullet. From this, we can conclude:

From our experiments, we conclude that the LSTMCNN architecture offers the best
performance for controlling the Craziflie quadrotor. The best way to obtain this archi-
tecture’s parameters was by using the Hyperband algorithm and its time window by
applying the partial autocorrelation function in combination with our proposed empirical
method, which involved gathering data from flying with the Pybullet controller. Our
empirical stability evaluation of the proposed controller architecture, as shown in Figure 22,
demonstrates that it converges to the set-point in all axes for all evaluated trajectories.

From the proposed dataset, we found out that the signals that offer better information
in terms of controller dynamics are the signals null with disturbances, low-frequency
noise, and staggered random steps. These signals offer more information in terms of
harmonic components.

Overall, this project provides a viable and reliable way to develop UAV flight neural
controllers. The proposed Offline-Training approach enables the development of intelligent
flight controllers in a more efficient manner than other proposals that might be implemented
with Online-Training. We believe that these observations and conclusions offer important
details for researchers and developers to take into account when gathering, training, and
evaluating intelligent flight controllers.

7. Future Work

This work offers a broad landscape for future implementations of neural controllers
for UAVs. For future offline training, we recommend training recurrent models for flight
control by using the most realistic engine physics available to gather data, thereby providing
more robustness. Our controller remained stable during testing, but we found that it was
unsuitable for non-explored aerodynamic effects (Section 4.3.6).

Moreover, we propose implementing our best model within an online training algo-
rithm with Pybullet, such as deep Q-network (DQN), deep deterministic policy gradient
(DDPG), or advantage actor–critic (A2C), utilizing our developed open-source library for
simulating neural controllers. To enhance the main trouble for our controller, which is
the steady-state error, we recommend implementing a loss function that considers the
accumulated error with the set-point signal and the basic control evaluation parameters
(such as the customized function F1 for evaluating controller performance).

It is important to acknowledge that relying solely on offline training is unlikely to
address these details, as supervised learning theory suggests that the behavior of our neural
controller will be limited to replicating the proficiency of the sample controller at best. By
embracing our proposed future work and incorporating online training algorithms, we
aim to optimize the neural controller to exhibit the best behavior based on the defined loss
function rather than merely imitating the behavior of a sample controller.
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This future work proposal, where we implement our model within an online training
algorithm, is motivated by the potential to save time and computational resources in
developing a proficient flight neural controller. Research suggests that achieving complex
behaviors such as stable flight control in a UAV through online training alone can be a
slow process. Therefore, leveraging the existing convergence capability of our neural
controller towards set points during flight can facilitate a more efficient online training
experience, enabling us to refine control details and further enhance the performance of the
neural controller.
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