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Abstract: Hybrid electric propulsion, using batteries for energy storage, is making significant inroads
into railway transportation because of its potential for notable fuel savings and the related reductions
in greenhouse gases emissions of hybrid railway traction over non-electrified railway lines. Due
to the inherent complexity of hybridized powertrains, combining different power conversions and
energy storage capabilities, the corresponding operation of their energy management needs to be
precisely optimized in order to achieve the minimum possible fuel consumption. Having this in
mind, this paper proposes a real-time energy management control strategy for a diesel–electric
hybrid locomotive based on the optimization results obtained by means of a dynamic programming
optimization algorithm aimed at fuel consumption minimization while honoring the battery state-
of-charge constraints and powertrain physical constraints. The final optimization result, expressed
in terms of the optimal battery state-of-charge reference (target), is used as an additional input into
the state-of-charge controller within the real-time energy management system. The subsequent
simulation analysis shows clear fuel economy improvement with 22.9% of fuel savings obtained for
the locomotive featuring a hybrid powertrain equipped with batteries over the conventional one.

Keywords: hybrid electric locomotive; mountain rail route; control variables optimization; advanced
transportation technologies; fuel economy; optimal control

1. Introduction

About twenty percent of globally produced fossil fuels are consumed by the transport
sector [1], thereby making it the second largest source of global carbon dioxide (CO2)
emissions [2]. Since the environmental influence of the transport sector is quite perceptible
and has a negative impact on the processes related to the greenhouse effect [3], innovative
drive technologies are being developed with the aim of reducing CO2 emissions. Recently,
there have been many efforts to electrify the transportation sector that show great potential
for making the entire transportation system more efficient, cleaner, and less dependent
on fossil fuels [4]. By including renewable energy sources such as hydro-electric power
plants [5], along with the intermittent but still more abundant sources of wind energy
and solar (photovoltaic) energy, in the overall transport energy mix, further reductions in
greenhouse gas emissions and air pollution can be achieved [6].

The electrification of the railway transportation system is already well established
and it began almost simultaneously with the development of the electricity distribution
system. This can be observed through the mass production of electric locomotives that
started back in the 1930s [7]. In the electrified railway system, electricity is distributed
through a dedicated low (0.75 kV to 3 kV DC) or medium (15 kV to 25 kV AC) voltage
distribution system, either in the form of an overhead line or a third rail, which supplies
the necessary power to the electric locomotive for hauling. Therefore, electric locomotives
can work without the primary source of energy on board and inherently have a higher
power-to-weight ratio then their diesel-based counterparts [8]. Another advantage of the
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electric locomotive is its ability to recover some portion of the kinetic energy of longitudinal
motion through regenerative braking [9].

Due to significant capital investments associated with installing brand new electrical
power distribution infrastructures, many lengthy and low-traffic density railway lines in
Europe are still not electrified [10]. On the other hand, the railway track components are
quite durable, so the useful calendar lifetime of certain segments of the railway infrastruc-
ture can be up to 150 years [11]. Therefore, if the infrastructure for which electrification is
currently not profitable, is still in good overall condition (not deteriorated enough to be
replaced), it may be advantageous to utilize it as it is until favorable conditions are met
for its electrification. Thus, according to [12], diesel–electric traction, which does not rely
on the outboard power supply, is likely to be employed on such railway lines for at least
another thirty years. One way to make such diesel-powered locomotives more eco-friendly,
especially with respect to CO2 neutrality efforts, is to use alternative fuels and bio fuels [13],
whose production is regrettably still rather limited and also more costly than diesel fuel
production from oil [14].

Using different energy storage technologies within diesel–electric powertrains can en-
able significant improvements in the energy efficiency, thereby reducing fuel consumption
and greenhouse gas (GHG) emissions. Such hybridization of the powertrain is achieved by
adding an appropriately sized battery system for energy storage [15], which can be used
for kinetic energy recuperation during braking or the battery can be recharged during low-
power-demand periods. Alternative energy storage technologies suitable for the hybridiza-
tion of rolling stock are also considered in the literature, such as: flywheels [16], hydrostatic
energy storage systems [17], ultracapacitors [18], and hybrid battery–ultracapacitor energy
storage systems [19]. Typically, the above energy storage systems have had a limited energy
storage capacity and have primarily been used to harvest the kinetic energy of a railway
train during braking over short distances. The electrical plus hydrostatic hybrid power-
trains can be particularly useful in the harvesting of the train’s kinetic energy at low speeds
where it is far more effective that the regenerative braking using traction electrical motors
alone [20]. The conceptual design of a hybrid locomotive for heavy traction is given in [21],
where different electrical energy storage systems, such as electrochemical batteries and
ultracapacitors, are analyzed and compared, while reference [22] illustrates the advantages
of applying battery-powered hybrid locomotives for heavy traction over mountain railway
routes. Thus far, such battery-hybrid electrical powertrains have only been introduced
in prototype locomotives [23] which are primarily used for shunting purposes in railway
yards [24].

Hybrid powertrains typically comprise two or more different energy sources. There-
fore, many variants of the hybrid powertrain structures are utilized nowadays [25]. How-
ever, fully hybridized locomotive powertrain systems are usually based on the series
powertrain configuration, consisting of an internal combustion engine, main generator,
electrochemical battery, and one or more traction motors [21]. The complexity of hybrid
powertrains provides a significant degree of freedom in power flow control, so many
questions are still open that are related to powertrain structure selection, components
sizing, and energy management control, all of which influence the powertrain cost and
efficiency [26]. Finding the fuel-optimal control laws, and the related theoretical minimum
of fuel consumption, requires the optimization of the control variables using a suitable
mathematical model [26] and proper optimization tools to find the time-dependent control
variables which minimize the overall fuel consumption, while at the same time satisfying
the physical constraints of all the powertrain components [27].

There are many methods for optimizing control variables. Of these, the dynamic
programming (DP) approach [28] is preferred in the literature [29] due to its unique ability
to find a globally optimal solution, albeit that its utilization is typically restricted to lower-
order systems due to the numerical complexity of its implementation. For example, in
reference [30], DP-based optimization results are used to tune the controller parameters for
the fuel cell electric vehicle powertrain. In reference [31], the DP algorithm is paired with



Machines 2023, 11, 589 3 of 16

an evolutionary (genetic) algorithm in order to simultaneously optimize the component
size and energy consumption for a hybrid electric bus while, in reference [32], the DP
algorithm is used to find the optimal control sequence of the hybrid energy storage system
within the fully electric bus using model predictive control (MPC) and cloud computing.
In reference [33], a multi-objective DP method was developed to optimize the performance
of a solar thermal power plant equipped with a thermal energy storage system, while
reference [34] proposes the use of DP for optimal transformer sizing for the anticipated
load waveform profile characterized by notable harmonic distortion. Reference [35] com-
bines the DP algorithm with an Internet of Things (IoT) controller for the optimal use of
energy sources in a load-sharing household equipped with rooftop solar PV panels. Refer-
ence [27] introduces the so-called cascade optimization concept, which is based on the joint
utilization of the DP algorithm and the so-called back propagation through time (BPTT)
gradient optimization algorithm, wherein the DP is used to find the “coarse” solution to
the optimization problem, which is subsequently refined by using the gradient-based BPTT
optimization approach. The cascade optimization approach has shown clear potential
for improving the optimization convergence rate compared to the DP algorithm without
affecting the accuracy of the optimal solution.

Since railway freight transport is inherently predictable due to its a priori known
timetables, speed limitations along the track, and railway track elevation profiles, it can
substantially benefit from optimization analyses aimed at improving the fuel economy and
energy efficiency of a battery-equipped diesel–electric locomotive, having an additional
degree of freedom in terms of energy management. The optimization end result can then
be used to define the optimal operating schedule of the battery-hybridized powertrain
over the considered railway track compared to conventional freight haul. Having this in
mind, the hypothesis of this paper is that, by using the DP optimization results in terms
of the optimal battery state-of-charge as the reference for the state-of-charge controller
within the real-time energy management system, the energy efficiency of a freight train
can be increased for the highly demanding railway route investigated in this study. The
optimization algorithm is implemented in C programming language and is integrated with
the previously developed model of the freight train used for the assessment of railway
freight haul energy efficiency [22]. The entire model is also implemented and simulated in
the MATLAB/SimulinkTM 7.0 software environment.

The paper is organized as follows. Section 2 presents models of conventional and
hybrid locomotives used to haul a freight train over a mountain railway route characterized
by a realistic elevation profile, and it also provides a brief description of the dynamic
programming algorithm used in this paper. Section 3 presents the optimization and simula-
tion results of the proposed freight train model supplemented with an optimized battery
state-of-charge reference, along with an evaluation of the energy efficiency improvement.
A discussion and concluding remarks are given in Sections 4 and 5.

2. Materials and Methods

This section outlines the diesel–electric and hybrid–electric locomotive simulation
models used as a basis for the implementation of the optimization algorithm. It also outlines
the freight train return trip driving scenario for the investigated mountainous railway route
which is subsequently used in the optimization study.

2.1. Conventional Diesel–Electric Locomotive Model

The quasi-static model of a conventional diesel–electric locomotive is based on a
scalable model developed in [22], which has been derived using field measurements for a
similar railway vehicle powertrain [36] and available data from the literature such as in [37].
The components of the powertrain are appropriately dimensioned to meet the traction
characteristics and power requirements of the HŽ 2062 series of diesel–electric locomotives
(1.6 MW, 103 t), which are currently the backbone of diesel–electric freight transport within
the national railway company [38]. The locomotive mathematical model used in this study
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is given by the block diagram in Figure 1, and it comprises the following characteristic sub-
models: train driver (engineer), locomotive powertrain, and train longitudinal dynamics,
which are framed in gray.
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The driver model (implemented as a proportional control term characterized with the
proportional gain KDr) determines the throttle Notch position and brake command Brk using
the difference between the target speed vref and the actual train speed (velocity) v, as ex-
plained in [22]. Integer Notch values, corresponding to actual discretized driver commands
with 8 constant-power settings for the engine-based propulsion (see Figure 2) [37], are
obtained by quantizing the driver model output. Although the braking action can be con-
tinuously controlled, it is also quantized because it would be more intuitive to implement
symmetrical control actions for driving and braking, especially if using electrodynamic
braking via a dissipation resistors network, which can also feature discrete dissipation
power ratings for different resistor configurations [37]. Thus, the traction power command
is quantized into 8 driving levels (from 1 to 8), 8 braking levels (from −1 to −8), and a
single idling setting (Notch = 0). When the electrodynamic braking cannot provide sufficient
braking power to maintain the train speed in the vicinity of the target speed, mechanical
brakes are also engaged, as explained in [22].
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The powertrain is modeled by using the static characteristics derived in [22], which
are also shown in Figure 1. The engine is modeled as a static fuel consumption map
that estimates the amount of fuel for selected Notch (engine power) values. The traction
map block in Figure 1 denotes the traction force Ft as output, with train speed v and
driver-based Notch selection used as map inputs. The traction force curves for each Notch
value are derived from the traction power values (negative values would be obtained in
the case of regenerative braking). This block also shows the maximum traction force of
the locomotive for 100%, 75%, and 50% adhesion, thus illustrating the limiting effect of
adhesion on the traction characteristic [39], which is predominant in the region of low train
speeds characterized by high power demands [40]. The required electric traction power
can be calculated by multiplying the traction force and the speed of the train, and the
mechanical-to-electrical power conversion efficiency is shown in Figure 2. Such a definition
of efficiency implicitly includes the energy consumption of on-board pumps, fans, and
air compressors, and can also be used when modeling the mechanical-to-electrical energy
conversion associated with regenerative braking via traction electric motors [22].

The longitudinal dynamics of the entire train in Figure 1 is represented by the move-
ment of the lumped mass ma of the train (a point mass train representation) [22], which
includes the total traction force Ft (driving or electrodynamic braking force), mechanical
braking force Fb, and the resistance force due to movement and the component related to
the gravitational force in the direction of motion. The motion resistance block calculates
aerodynamic and rolling resistance forces where wk [N/t] and wr [N/t] are the specific
resistance coefficients of longitudinal and curvature motion, respectively. These specific
drag coefficients for a heavy freight train and the average curvature drag are defined
in [40] as wr + wk = 29.99 + 0.0025(v + 12)2, where v is train speed (longitudinal velocity) in
kilometers per hour.

The gravitational force component is calculated from the track slope and the total
weight of the train as magsinα, where sinα is the ratio between the change in height and the
associated distance traveled as (sinα = (hn+1 − hn)/(ln+1 − ln)).

2.2. Hybrid–Electric Locomotive Model with Battery Energy Storage

The proposition of this work is that the realization of a hybrid–electric locomotive can
be performed by retrofitting a conventional 103 ton (103,000 kg) locomotive equipped with
a diesel–electric powertrain rated at 1.6 MW by adding an adequate battery storage system
and also by reducing the engine-generator block to the same base chassis [38]. A quasi-static
model of such a hybrid–electric locomotive has been developed in [22]. It is represented
by a block diagram in Figure 3, which includes the same subsystems as the conventional
locomotive (again modeled as static maps, see Figures 1 and 2), alongside the additional
battery energy storage system and its rule-based state-of-charge (SoC) controller. The model
uses the same train speed and Notch input data to calculate the electrical transmission
power Pt. It is also assumed that the power conversion efficiency of the battery-hybridized
traction powertrain is equal to the conventional locomotive case, for simplicity reasons.
The engine-generator for the battery hybrid locomotive is downsized (scaled by a factor
0.8 [22]), and it produces the electrical power Pg for each Notch setting according to Table 1
under the control of the energy management system. Note that the diesel engine operation
with Notch settings 1, 2, and 3 is avoided in the case of the battery-hybridized powertrain
due to relatively low power and low fuel/energy efficiency associated with those modes of
operation (cf. Figures 1 and 3).
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Table 1. Hybrid–electric locomotive scaled diesel engine and generator set data from [22].

Throttle Position Main Engine Power
Pmg (kW)

Generator Power Pg
(kW) Fuel Rate

.
mf (g/s)

P0—IDLE 6.43 0 2.5704
P1—Notch 4 632.77 566.49 40.8315
P2—Notch 5 787.15 694.13 51.6475
P3—Notch 6 965.83 844.70 64.2834
P4—Notch 7 1161.70 1004.73 79.8195
P5—Notch 8 1312.80 1121.67 94.4690

The difference between the power Pg produced by the motor-generator and the trans-
mission power Pt represents the input to the battery model which is transferred directly
via a common direct current (DC) link. The battery energy storage model is derived from
the battery equivalent electrical circuit of the battery electrochemical cell, as shown in [41],
and its structure is illustrated by the block diagram in Figure 3. This model calculates the
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battery state-of-charge (SoC) based on the battery power demand and the known battery
parameters (internal resistances and open-circuit voltage, whose SoC-related characteristics
are also known). In this model, the positive input power values correspond to the discharge
operation and the cell power is determined by dividing the total battery power by the
number of battery cells Pcell = Pbatt/Ncell. The open-circuit voltage Uoc and the internal
resistance R are represented by non-linear characteristics in terms of SoC (Figure 3, see
also [22]). Battery sizing was previously performed in [22] and resulted in a total battery
energy storage system capacity of 900 kWh, and a total weight of the battery system of
9450 kg. The battery’s aging effects and its state-of-health, which have long-term effects
on the reliability and driving safety of electrified vehicles [42], have been considered by
oversizing the battery to be able to meet the driving mission energy requirements within
the expected calendar and cycle life of the battery system [22].

The power flow control (energy management) strategy is based on the rule-based
controller shown in Figure 3 (also developed in [22]). The controller uses the required
transmission power Pt and the power request PbR of the battery SoC controller to calculate
the required power PgR which needs to be provided by the main motor-generator. This
required power value is then passed to the Notch selector map in order to select a discrete
value of NotchRB which is then used by the engine generator block. This block calculates the
electrical power Pg and fuel consumption rate for each value of NotchRB according to Table 1.
Note that, in the case when the requested power PgR is lower than the power produced
when NotchRB = 4 is selected, the engine is put in idle mode. Although this is less fuel
efficient than turning the engine off, it is more practical than the frequent on/off operation
of such a heavy-duty diesel engine, which would impose increased engine maintenance
requirements and would require notable re-starting power from the battery [43].

The SoC controller (Figure 3) commands the battery charging/discharging power
demand. It is characterized by the proportional gain KSoC = 26,796 and a dead-zone
∆SoC = 0.26%. The latter is introduced to avoid controller output “chattering” due to noise
when the control error eSoC = SoCR − SoC is near zero. As indicated in [22], a variable SoC
reference calculated based on the elevation profile could account for the variable potential
energy of the freight train via the variable energy storage capacity (variable SoC), and has
been defined as follows [22]:

SoCh = SoCbh −
h− hmin

hmax − hmin
· (SoCbh − SoCbl), (1)

where SoCbl = 41.51% and SoCbh = 53.63% represent the minimum and maximum values
of the variable battery SoC target, in the case of a fully-loaded freight train, h is the rail-
way track elevation profile, and hmin and hmax are its minimum and maximum values,
respectively.

Therefore, a variable SoC reference is also proposed herein. However, in this work it is
based on the DP optimization whose goal is to find the globally optimal state-of-charge
time profile (denoted as SoCDP). This approach is also compared herein with the approach
utilizing a variable SoC reference based on the elevation profile (see Figure 3).

2.3. Optimization Procedure

This section outlines the hybrid locomotive control variable optimization procedure
using the dynamic programming (DP) algorithm applied to a simplified (backward-looking)
model of the freight train wherein the battery state-of-charge is the only state variable.

2.3.1. Optimization Problem Formulation

The optimization goal is to minimize the energy (diesel fuel) consumption over the
predefined time interval 0 ≤ t ≤ tf on the selected railway route. During this process, the
transmission components’ constraints, battery SoC bounds, and the SoC terminal condition
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need to be always satisfied. Therefore, the cost function for this optimization problem can
be defined as:

min m f =
∫ t f

t0

.
m f (NotchDP)dt. (2)

The above cost function is subject to the inequality constraints related to battery state-
of-charge minimum and maximum values, and the traction power constraints are defined
as follows:

SoCmin ≤ SoC ≤ SoCmin
NotchDP,min ≤ NotchDP ≤ NotchDP,max

(3)

While also satisfying the terminal constraint corresponding to the battery charge
sustainability (achieving the same battery SoC at the beginning and at the end of the
driving mission):

SoC(t0) = SoC
(

t f

)
. (4)

The traction power Pt is treated as the known input variable to the backward model for
optimization purposes (vin(t) = Pt(t)). The control input to be optimized is the engine notch
command and is defined as the control variable u(t) = NotchDP(t), taking on six discrete
values corresponding to different throttle positions (see Table 1). The battery SoC and fuel
mass flow dmf/dt are treated as model outputs (vector y(t) = [SoC(t) dmf/dt]T), and the
battery SoC is also the only state variable within the model (i.e., x = SoC). Therefore, the
process model for optimization is rewritten into the following state-space form:

.
x = f (x, u, vin), (5)

y=g(x, u), (6)

With the scalar function, f, and the vector function, g, defined by the battery state-
of-charge model, and the sub-models of the individual components of the freight train as
described in the previous section.

2.3.2. Outline of Dynamic Programming Algorithm

The unique feature of the DP algorithm is that it can provide the globally optimal
solution [28]. For the algorithm to be implemented, the state variable Equation (5) needs
to be transformed from the continuous-time representation into its discrete-time counter-
part. The Euler method of time-discretization is used to transform the continuous-time
state equation into the difference equation form with the sampling time (integration step)
T = 1 s [27]. The control and state variables are discretized into Nu and Nx possible values
with strictly defined upper and lower bounds. Note that the NotchDP is an integer variable
(NotchDP ∈ {0,4,5,6,7,8}) therefore it already assumes discrete values. The initial and final
condition on the battery SoC are set to x(0) = x(tf) = 0.6479 (SoC(0) = SoC(tf) = 64.79% of
the full battery charge). This value is chosen to be aligned with the starting value of the
realistic energy management control strategy.

The other parameters of the DP optimization algorithm are listed in Table 2. Some
of those parameters are directly related to physical constraints (such as the battery SoC
bounds and cost function weighting factors), whereas others define the optimization grid
density. Among the latter, the number of grid points with respect to time and control
variable partitioning are predefined by the train model simulation duration tf (Nt = tf/T,
T = 1 s is used herein), and throttle command discretization (Nu = 6 utilized throttle
positions, see engine block in Figure 3). Thus, to achieve a reasonable trade-off between the
computational time and optimization precision, a Nx = 200 grid density has been chosen
for the state variable in this study. For more detailed elaboration on the DP optimization
procedure, the reader is kindly referred to reference [27].
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Table 2. DP optimization parameters.

Parameter Value

Lower SoC bound SoCmin 0.20 (20%)

Upper SoC bound SoCmax 0.95 (95%)

Grid points with respect to time Nt 30694

Grid points with respect to control input Nu 6

Grid points with respect to state variable Nx 200

2.4. Considered Driving Mission

The railway track elevation above the sea level h (black solid line) and speed limits
vlimit (green dotted line) for the mountainous railway route traversed by the freight train,
during the round trip between the towns of Oštarije and Knin in the Lika region in Croatia,
are shown in Figure 4. The elevation, h, and speed limits, vlimit, were defined in [22]
using free online tools, such as the GPS Visualizer utility software [44] and speed limits
database [45]. The considered driving scenario for the route defined in Figure 4 was carried
out considering the freight train to consist of seven fully loaded 90 t cargo wagons, i.e.,
the maximum loading capacity of a single diesel–electric locomotive for the very railway
route [38].
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3. Optimization and Simulation Results

This section shows the optimization and simulation results of the fully loaded train
configuration hauled by a hybrid–electric locomotive over the proposed mountainous route,
compared against the conventional diesel–electric locomotive-based haul benchmark.

3.1. Optimization Results

Figure 5 shows the time responses of the input, control, system state, and output
variables. Figure 5a shows the input vin(t) = Pt(t) of the backward model, that is, the traction
power derived from the locomotive longitudinal dynamics and train driver model (Figure 1)
driving over the pre-defined rail route (Figure 4). The battery SoC is the single state variable,
and is shown in Figure 5b, while the optimized control variable (u(t) = NotchDP engine
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command) is shown in Figure 5c. The fuel consumption shown in Figure 5d is obtained by
integrating the model output fuel rate as follows:

Vf =
1
ρ f

∫ t f

0

.
m f dt, (7)

where ρf = 850 kg/m3 = 850 g/L is the diesel fuel density (grams per liter).
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The battery SoC, shown in Figure 5b, represents the optimum SoC solution. The pre-
sented time trace shows that SoC is maintained within the prescribed bounds (Table 2). Its
final value, however, is slightly below the initial one (SoC(t0) = 64.79% vs. SoC(tf) = 63.70%),
although the optimization requires that the exact value SoC(tf) = 64.79% ought to be ob-
tained at the end of the optimization cycle, i.e., SoC(t0) = SoC(tf). The latter may be ascribed
to the limited resolution of the discretized variables used within the DP algorithm (i.e.,
DP optimization space quantization). Thus, the obtained optimal SoC solution is used as
a SoC target (reference) value for the SoC controller within the hybrid locomotive model
(Figure 3), which is elaborated in more detail in the next subsection.

Note also that the optimized control variable NotchDP shows that the engine operates
mostly at the idling, Notch = 6, or Notch = 7 throttle positions. Notch = 4 and Notch = 5
are relatively rarely used, while the use of Notch = 8 is completely avoided. This can be
attributed to the fuel efficiency of each Notch position and the power requirements, wherein
Notch positions 6 and 7 both have high fuel efficiencies, while also providing ample power
for the train propulsion (see engine block in Figure 3). Further note that, instead of idling,
the engine may have been turned off, thereby achieving additional fuel savings. However,
it would be highly impractical to have a frequent on/off operation of such a large diesel
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engine, as previously explained. Note also that the Notch positions below Notch = 4 (except
for Notch = 0, i.e. engine idling position) are not considered because they have already been
determined to be highly inefficient [22].

3.2. Simulation Results for the Case of Battery-Hybrid Locomotive

The driving mission of the fully loaded freight train utilizing the conventional and
hybrid locomotive-based freight haul has, again, been simulated for the previously used
driving scenario shown in Figure 4, which resulted in the same driving characteristics (i.e.,
train acceleration, velocity, and traction power requirement) due to the utilization of an
identical driver model and traction characteristics. Within the battery-hybrid locomotive,
the available electrical transmission power Pt includes the main electric generator power Pg
and battery power Pbatt. The electric generator power production depends on the generator
control strategy. Figure 6 shows the main electric generator power production Pg for the
three different control strategies considered herein. In particular, Figure 6a shows the
power production of the generator Pg,h when the SoC reference is calculated based on the
elevation profile alone, Figure 6b shows the power production of the generator Pg,DP when
SoC reference is based on the DP optimization results, and Figure 6c shows the power
production of the generator Pg,DPO within the DP optimization framework. In all above
cases, the power production is directly related to Notch commands according to Table 1.
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Figure 7 shows the simulation results of the comparative freight train driving missions
with the conventional diesel–electric locomotive hauling used as a benchmark against which
the battery-hybrid locomotive equipped with rule-based powertrain control is analyzed
(see Figure 3 and reference [22]). Figure 7a shows the SoC trace when the elevation-profile-
based state-of-charge reference SoCh from [22] is used, while the battery SoC trace for the
case of DP-optimal SoCDP reference is shown in Figure 7b. In the case when the freight
train is accelerating and climbing, the generator predominantly covers the high power
requirements (cf. Figures 4 and 6). In the latter case, however, the maximum output power
of the downsized diesel engine cannot fully cover the required traction power, which
mandates an additional discharging of the battery energy storage, whose SoC starts to
decrease in turn (cf. Figures 4 and 6). In the case when the regenerative braking regime
is commanded to the power train (e.g., for the purpose of decelerating the freight train or
to maintain constant train velocity during driving downhill), the battery energy storage
takes on the excess power for its charging and its SoC is thus increased. The results in
Figure 6a show that, in the case when the SoC reference is based on elevation profile alone,
the engine operates between a fully open throttle and idling. This is due to the use of the
rather unfeasible SoC reference based on elevation profile alone, although this type of SoC
reference has been shown to yield better results compared to the case when a constant
SoC value is used [22]. Therefore, when the actual SoC value is below the reference, the
engine-generator tries to compensate by operating at full power (cf. Figures 6a and 7a).
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On the other hand, when the DP optimal SoCDP reference is used, the SoC target
following is much more effective (see Figure 7b) and the engine-generator set operates
at lower power settings (see Figure 6b). This is because the SoCDP reference represents
a feasible solution obtained by the DP optimization and the SoC controller can follow it
closely. As mentioned above, in the case when the DP-optimization-based SoC reference is
used, the engine-generator set operates at more efficient throttle positions (i.e., below the
maximum power), thus outputting lower power at higher fuel efficiencies (cf. Figure 6 and
the engine-generator block in Figure 3).

As expected, the variable SoCDP target results in better SoC following compared to the
case of the elevation-based SoCh target because, in the former case, the SoC target is adjusted
according to the optimization rules which consider the powertrain constraints. Moreover,
the SoCDP reference also results in an improvement in fuel efficiency (cf. Table 2) that is
very close to the optimization result, denoted as SoCDPO. Figure 7c shows the comparative
fuel consumption plots for the conventional locomotive and its battery-hybrid counterparts
with battery SoCh and SoCDP reference adjustment.

4. Discussion

The final aggregate fuel consumption results are listed in Table 3, illustrating the
advantages of a locomotive powertrain equipped with battery energy storage in terms of
fuel consumption reduction when optimized SoC target adaptation is used. In particular,
the fuel efficiency of the already quite efficient battery-hybrid diesel electric locomotive
has been further improved by about 7.2% through using the offline-optimized battery
SoC reference trajectory. Moreover, its fuel efficiency, with respect to the locomotive with
conventional diesel–electric traction, is improved by about 22.9%. Due to the inherent
determinism of rail transport, such as its known timetables and parameters of train con-
figurations, as well as the a priori known profile of the railway line, this approach may
be able to notably increase the efficiency of hybrid electric locomotive-based traction and
further reduce the fuel consumption of the hybridized rolling stock.

Table 3. Comparative SoC and fuel consumption data from simulation.

Locomotive
Battery SoC [%] Fuel Consumption [L]

SoC(t0) SoC(tf) Vf

Conventional - - 2761
Hybrid (SoCh) 64.79 56.73 2295

Hybrid (SoCDP) 64.79 63.81 2130
Hybrid (SoCDPO) 64.79 63.70 2119

Therefore, it can be concluded that:

• The model can predict the effect of different SoC target values on fuel consumption;
• For the optimized SoC target values, the controller can maintain battery SoC within the

prescribed bounds while honoring the SoC boundary condition, while simultaneously
achieving optimal fuel consumption;

• The energy management strategy can be significantly enhanced by simply incorporat-
ing the desired battery SoC trajectory data obtained by means of the DP optimization.

Note, however, that rail freight hauling might be sensitive to load variations (see [40]),
and rail vs. wheel adhesion characteristics, as indicated in [46]. Even though this aspect
of railway freight haul has not been investigated here, it represents the next step in the
optimization analysis of railway freight haul for both conventional and battery-hybridized
locomotive-based traction. Furthermore, the verification of the proposed approach would
largely benefit from the collection of representative experimental data from the currently
operating conventional diesel–electric locomotive fleet, which could then serve as a realistic
benchmark for the validation of the proposed optimization study. However, such field test-
ing requires substantial preparations and is subject to stringent time and safety constraints,
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as well as security and confidentiality requirements due to the specific nature of rail freight
business operations.

5. Conclusions

In this paper, the previously developed model of the battery-hybrid diesel–electric
locomotive used for heavy freight haul over a demanding mountainous railway route
is extended with an additional optimized battery state-of-charge (SoC) reference for the
locomotive energy management system. The optimal SoC trajectory has been obtained
by means of a dynamic programming (DP) optimization algorithm incorporating a pri-
ori known and readily available railway track elevation and speed limits profiles. The
thus-obtained SoC trajectory has been subsequently fed to the battery SoC controller to
calculate the required engine throttle control action during freight haul over the demanding
mountainous railway track. The resulting throttle commands are ultimately used within
the freight train model to simulate the behavior of the hybridized locomotive power train
and to evaluate its fuel consumption.

The overall results have shown that if the optimized SoC target values are used in the
energy management strategy then an additional 7.2% gain of the hybridized powertrain fuel
efficiency can be expected, whereas the fuel savings obtained compared to the conventional
diesel–electric locomotive-based freight haul reach 22.9%. The potential advantage of such
an approach is in the inherent determinism of the rail freight haul, whose key parameters
are related to the freight train configuration and the overall load, and in the a priori known
railway line configuration (i.e., its elevation profile). Thus, the proposed approach could
notably increase the energy (fuel) efficiency of the hybridized rolling stock, especially over
the demanding railway routes characterized by notable elevation variations.

Future work may entail the numerical optimization of different driving mission ve-
locity profiles and different loads to investigate whether the optimal SoC trajectory can
be determined from the physical railway track profile, speed limitations, and other train
configuration parameters and control strategy robustness analysis, especially regarding
variable traction conditions on the railway track. Moreover, the current study could be
further expanded through recording the representative experimental data from the cur-
rently operating conventional diesel–electric locomotive fleet, which would then serve as a
realistic benchmark case.
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