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Abstract: This work proposes a novel enriched finite element method (E-FEM) for structural dynam-
ics analysis. We developed the enriched 3-node triangular and 4-node tetrahedral displacement-based
elements (T-elements). The standard linear shape functions of these T-elements were enriched using
interpolation cover functions over each patch of elements. We also introduced and compared differ-
ent orders of cover functions; higher-order functions obtained higher computational performance.
Subsequently, the forced and free vibration analyses were performed on various typical numerical
examples. The proposed enriched finite element method generated more precise numerical results
and ensured faster convergence than the original linear elements.

Keywords: low-order linear element; interpolation cover function; enriched finite element method
(E-FEM); forced and free vibration analysis

1. Introduction

The recent use of FEM (finite element method) [1] has intensified in various engi-
neering fields. Low-order three-node triangular elements [2] and four-node tetrahedral
displacement-based elements [3] are commonly used in FEM due to its benefits of simple
construction in complex structures. However, conventional low-order T-meshes still have
defects in computational precision and sensitivity to mesh distortion. The “over-stiffness”
properties of these T-meshes often yield poor computational outcomes (higher nature
frequency) in the structural dynamics analysis. Significant research efforts are essential to
improve the performance of these T-meshes.

Liu et al. [4] proposed a well-known strategy that incorporated gradient smoothing
technology into the FEM. Based on alternative ways of constructing smoothing domains,
the “over-stiffness” stiffness matrix of conventional FEM could be appropriately softened to
a certain extent. Therefore, various S-FEMs [5–9] (Smoothed FEM) are proposed, including
alpha FEM (α-FEM), beta FEM (β-FEM), face-based smoothed FEM (FS-FEM), node-based
smoothed FEM (NS-FEM), edge-based smoothed FEM (ES-FEM), cell-based smoothed FEM
(CS-FEM) [10], among other variations. In contrast with corresponding FEM, S-FEM yields
more precise outcomes with higher convergence speed without increasing the relative
computational cost [11–14]. The NS-FEM harbors an excessive softening effect on the
system stiffness, resulting in unstable false shapes in structural dynamics analysis [11,12].
Unlike the “overly-stiff” FEM and the “overly-soft” NS-FEM model, the ES-FEM model has
a closely exact stiffness. Besides, the ES-FEM has good mesh distortion adaptability [13–17].
For this reason, the ES-FEM is selected for comparison with the proposed approaches.

Machines 2023, 11, 587. https://doi.org/10.3390/machines11060587 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11060587
https://doi.org/10.3390/machines11060587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0009-0019-7396
https://orcid.org/0000-0002-0909-7596
https://doi.org/10.3390/machines11060587
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11060587?type=check_update&version=2


Machines 2023, 11, 587 2 of 33

Another technique, the Enriched-FEM, was recently developed and used in various
fields, including crack propagation, wave propagation, acoustic problems, multi-physical
coupling, and solid mechanics. Bathe [18–22] and his colleagues first proposed this numeri-
cal approach to resolve issues in static analysis of solid mechanics and wave propagation.
Wu [23] et al. adopted the E-FEM to efficiently minimize dispersion error at high frequen-
cies and solve acoustic issues by applying the interpolation cover functions to improve
the convergence rate and precision of solutions. The pertinent numerical findings in-
dicate that the E-FEM may significantly minimize numerical dispersion error in wave
propagation and considerably manufacture stable and more precise numerical solutions.
Zhou [24] (2022) et al. utilized the E-FEM to analyze the dynamics of Magneto-electro-
elastic (MEE) smart structures. The E-FEM outcomes used to examine the multi-physical
coupling are consistent with the analytical analysis.

Furthermore, a variety of typical MEE-based specific examples have been used to
reveal how efficiently the current E-FEM handles multi-physical coupling issues, unlike
the conventional FEM. Li [25] and colleagues employed the supplementary interpolation
cover functions, which are constructed using appropriate polynomial bases, to improve the
performances of the traditional FEM at the same time handling 2D dynamic scenarios. As a
result, the gradient field of the issue under examination can be more precisely described,
and the initial linear approximation space of the conventional FEM can be considerably
enriched [18–27]. In summary, E-FEM has extensive application prospects.

Herein, we propose a novel enriched finite element method with 3-node triangular
and 4-node tetrahedral displacement-based elements for structural dynamic analysis. We
also introduce and compare different orders of the cover functions using the standard
FEM and recently developed ES-FEM. The enriched interpolation cover functions are
constructed rather flexibly using different orders of the base functions. Numerical examples
demonstrate that the proposed method provides more accurate numerical results and
ensures faster convergence, unlike the original linear elements.

The rest of the article is organized as follows. The fundamental FEM theoretical
formula and the E-FEM formula for structural dynamics analysis is thoroughly introduced
in Section 2. The performance of the E-FEM is assessed using several numerical examples
in Sections 3 and 4. The conclusions are given in Section 5.

2. Formula of the E-FEM

Imagine that a typical finite element mesh has been created to solve a physical issue.
The type of element and the mesh employed determine the precision of the sought-after
solution. In order to improve the finite element procedure, we use the numerical manifold
method’s earliest strategy and create tiny, overlapping sub-domains [28,29], where the finite
elements in the supplied finite element mesh are the common parts of the sub-domains. Due
to the interpolation covers utilized to cover each sub-domain, a higher-order interpolation
of the desired solution is made feasible, increasing the accuracy of the results. Since our
main goal is to enhance the performance of discretization utilizing these elements, we will
now consider the 2D and 3D analytical situations using, respectively, the 3-node and 4-node
low-order elements. Since they are trustworthy for both linear and nonlinear solutions, we
use the traditional low-order finite elements; their fundamental flaw is the lack of precision
in their results.

2.1. Theory of the E-FEM

The relevant issue domain is discretized using the common triangular elements with
N nodes. And the interpolation for a scalar field function d using the conventional FE
approximation takes the following form.

d =
N

∑
i=1

Nidi = Nd (1)
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where Ni denotes the piece-wise linear shape function and di stands for the nodal field
variable (see Figure 1a).
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Figure 1. The enriched cover interpolation sub-domains that employ a standard triangular mesh 
(a,b) and tetrahedral mesh (c,d) for E-FEM: (a) The cover region (𝛆௜) for enriched interpolation co-
vers and the typical linear interpolation functions (b) Local coordinates and physical coordinates of 
triangular element nodes; (c) Displacement of tetrahedral element node after introducing basis 
function; (d) The natural coordinate system of the tetrahedral element. 

The traditional finite element (FE) mesh is still used in the current E-FEM. As seen in 
Figure 1a, the global elements connected to the node 𝑖 which is designated as the cover 
region 𝛆௜ constitutes the support domain of the conventional linear nodal interpolation 
function in the standard FE interpolation. The following equation for the taken-in field 
variable 𝑑 at node 𝑖 improves the FE interpolation. 

Figure 1. The enriched cover interpolation sub-domains that employ a standard triangular mesh (a,b)
and tetrahedral mesh (c,d) for E-FEM: (a) The cover region (εi) for enriched interpolation covers and
the typical linear interpolation functions (b) Local coordinates and physical coordinates of triangular
element nodes; (c) Displacement of tetrahedral element node after introducing basis function; (d) The
natural coordinate system of the tetrahedral element.

The traditional finite element (FE) mesh is still used in the current E-FEM. As seen in
Figure 1a, the global elements connected to the node i which is designated as the cover
region εi constitutes the support domain of the conventional linear nodal interpolation
function in the standard FE interpolation. The following equation for the taken-in field
variable d at node i improves the FE interpolation.

Eq
i [d] = L

[
di ai1 ai2 ai3 · · ·

]T (2)
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in which L refers to the degree q polynomial bases that are applied over the cover region εi,
di denotes the conventional nodal variable, and

[
ai1 ai2 ai3 · · ·

]T is the extra unknowns
connected to the interpolation cover functions.

L =
[
1 xi yi x2

i xiyi y2
i . . . yq

i

]
(3)

where xi = x− xi and yi = y− yi are the relative coordinate values (xi, yi) calculated from
node i. (See Figure 1b)

Utilizing interpolation cover functions, we assign a group of full polynomial bases
to each cover region in order to enrich the traditional FE interpolation for the solution of
the variable d. Equation (2) can also be rewritten to provide a clear comparison with the
common FE interpolation.

Eq
i [d] = di +

[
xi yi x2

i xiyi y2
i . . . yq

i

]


ai1
ai2

ai3
...
aiq


︸ ︷︷ ︸

additional interpolation cover

(4)

The interpolation scheme of E-FEM, which differs significantly from the current
method from the traditional interpolation scheme of FEM, is shown to contain the additional
interpolation cover in Equation (4).

Then, the global approximation for the regional variable d can be obtained by

TEq
i [d] =

k

∑
1

(
3

∑
i=1

NiE
q
i [d]

)
=

k

∑
1

(
3

∑
i=1

Nidi +
3

∑
i=1

Hiai

)
=

k

∑
1

(
3

∑
i=1

Nidi +
3

∑
i=1

n

∑
j=1

Hi,jai,j

)
(5)

where k denotes the number of all nodes in Ω, Ni denotes the linear interpolation for the
nodes, i and j denote the additional degree of freedom in each node, and H is a matrix
mixed with a q-order interpolation function.

Hi = Ni
[
xi yi x2

i xiyi y2
i · · · yq

i

]
(6)

The current E-FEM will become the standard FEM, as demonstrated by Equations (2)
and (5) if the polynomial bases utilized only have the constant term 1 (i.e., q = 0). From
this vantage point, it is possible to think of the current interpolation of E-FEM as including
additional higher-order terms in addition to the traditional FE interpolation. The higher-
order interpolation of solutions can be achieved using this technique. As a result, even
with lower-order linear elements, a higher convergence rate and better numerical solution
accuracy can be obtained.

In this study, the interpolation cover functions contain first-order polynomial bases
[1 x y] (q = 1), second-order polynomial bases

[
1 x y x2] (q = 2) and second order poly-

nomial bases
[
1 x y x2 xy y2] (q = 2), and three, four, and six additional DOFs are then

introduced for each node for the 2D analysis, respectively. Then, four more DOFs will
be inserted for each node for 3D analysis, and the interpolation cover functions will be
first-order polynomial bases

[
1 x y z

]
(q = 1).

Any order of polynomial bases may be utilized with interpolation cover functions and
using high-order polynomial interpolation cover functions can also produce more accurate
numerical results. However, the high order interpolation cover functions could increase
the number of nodal unknowns and the computational cost.
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For the 2D and 3D solid problem, the above-formulated interpolation of the E-FEM
approach can be used to acquire the field variables d and v as follows:

dk
h =

6

∑
i=1

(Nidi + Hiau
i ), vk

h =
6

∑
i=1

(Nivi + Hiav
i ) (7)

where au
i and av

i denote the vectors that hold additional unknowns, ui and vi denote the
normal nodal unknowns as in the standard FEM.

Interpolation is enriched by using the unknowns arranged appropriately in the vector.
Then dk

h and vk
h become [

dk
h

vk
h

]
=

[
N H 0 0
0 0 N H

]
d
ad
v
av

 (8)

where H denotes the supplementary interpolation cover function matrix, N stands for the
conventional FEM interpolation function matrix, d and v are the typical nodal displacement
vectors, and av and ad stand for the additional unknown solution coefficient vectors.

Applying the common differentiation techniques to the derivatives of the displacement
in the interpolation of E-FEM,[

dk
h,x

dk
h,y

]
=

[
N,x H,x
N,y H,y

][
d
ad

]
,

[
vk

h,x
vk

h,y

]
=

[
N,x H,x
N,y H,y

][
v
av

]
(9)

where [
N,x H,x
N,y H,y

]
= J−1

[
N,r H,r
N,s H,s

]
(10)

where the usual FE formulation is used to generate the coordinate transformation between
the natural coordinate (r, s, t) and the physical coordinate (x, y, z) (see Figure 1d), and J is
the Jacobian matrix.

From the above formulas, the shape function matrix and the solid mechanical strain
matrix B can be expressed as follows.

Ni =

[
N Nx Ny Nx2 Nxy Ny2 01×3 01×3 01×3 01×3 01×3 01×3

01×3 01×3 01×3 01×3 01×3 01×3 N Nx Ny Nx2 Nxy Ny2

]
(11)

B = ∇Ni =

∂N/∂x ∂H/∂x 01×3 01×15
01×3 01×15 ∂N/∂y ∂H/∂y

∂N/∂y ∂H/∂y ∂N/∂x ∂H/∂x

 (12)

2.2. 3D Structural Element Construction Theory of the E-FEM

A 3D analysis domain Ω is discretized into several elements (taking the tetrahedral
element as an example, the 2D element has less freedom than the 3D element). The basis
function e of [1 x y z] is first introduced at the node of the tetrahedral element in accordance
with the characteristics of node displacement (Note: different types of basic functions can
be selected, here only the simplest [1 x y z] is taken as an example). The node displacement
of the element after introducing the basis function is shown in Figure 1c.

The node displacements are interpolated and described by:
ui = ui1 + xui2 + yui3 + zui4
vi = vi1 + xvi2 + yvi3 + zvi4

wi = wi1 + xwi2 + ywi3 + zwi4

 (13)
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Then the displacement of any point in the element is redescribed:

d =
N

∑
i=1

Nidi = Ni


ui1 + xui2 + yui3 + zui4
vi1 + xvi2 + yvi3 + zvi4

wi1 + xwi2 + ywi3 + zwi4

 = NE−FEMde
E−FEM (14)

where NE−FEM denotes the new shape function matrix and de
E−FEM denotes the node

displacement vector after rearrangement, which is expressed as:

{u11 u21 u31 u41 u12 u22 u32 u42 u13 u23 u33 u43 u14 u24 u34 u44 v11 v21 v31 v41 v12 v22 v32

v42 v13 v23 v33 v43 v14 v24 v34 v44 w11 w21 w31 w41 w12 w22 w32 w42 w13 w23 w33 w43 w14 w24 w34 w44}T

The basis function [1 x y z] is expressed as ET = [e1 e2 e3 e4]. It is possible to construct a
new shape function matrix NE−FEM from the rearranged node displacement vector de

E−FEM
as follows:

NE−FEM = NE (15)

where

N =

N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4

 (16)

E =

E1 E0 E0 E2 E0 E0 E3 E0 E0 E4 E0 E0
E0 E1 E0 E0 E2 E0 E0 E3 E0 E0 E4 E0
E0 E0 E1 E0 E0 E2 E0 E0 E3 E0 E0 E4

T

(17)

where
E0 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (18)

E1 = [e1 0 0 0 e2 0 0 0 e3 0 0 0 e4 0 0 0] (19)

E2 = [0 e1 0 0 0 e2 0 0 0 e3 0 0 0 e4 0 0] (20)

E3 = [0 0 e1 0 0 0 e2 0 0 0 e3 0 0 0 e4 0] (21)

E4 = [0 0 0 e1 0 0 0 e2 0 0 0 e3 0 0 0 e4] (22)

After obtaining the shape function of the augmented FEM, the geometric matrix of the
augmented FEM can be further written out:

B = LNE−FEM = LNE (23)

2.3. Dynamics Controlling Equations for Linear Elastic Solids

This section comprehensively introduces the discretization system equation and the
standard FEM formula of the solid mechanics’ problem in the hypothetical bounded domain
Ω. The standard Galerkin weak formula is given by:∫

Ω
(5δd)TD5 ddΩ =

∫
Ω
δdT

(∼
b− ρ

..
d− c

.
d
)

dΩ +
∫

ΓN

δdTtdΓ (24)

where5 is the differential operator,
..
d,

.
d, and d denotes the acceleration, velocity vectors,

and displacement vectors, respectively; the random virtual displacement vector is called

δd,
∼
b stands for the body force vector, D denotes the constant matrix, ρ and c stand for the

density and damping coefficients of the materials under consideration, and Γ denotes the
prescribed traction vector on ΓN which denotes the natural boundary condition.
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The matrix version of Equation (24) can be generated using the E-FEM interpolation
technique by:

M
..
d + C

.
d + Kd = F (25)

M =
ne

∑
i=1

∫
Ωi

NT
i ρNidΩ (26)

C =
ne

∑
i=1

∫
Ωi

NT
i cNidΩ (27)

K =
ne

∑
i=1

∫
Ωi

BT
i DBidΩ (28)

F =
ne

∑
i=1

∫
Ωi

NT
i bdΩ +

nb

∑
i=1

∫
τ

NT
i tdτ (29)

D =
E

1− v2

1 v 0
v 1 0
0 0 1−v

2

 (30)

where M, C, K, and D denote the matrix of global mass, the damping effects, the global
stiffness, and the material parameters, respectively, the global mesh’s total element count
and the number of elements on the Neumann boundary are indicated by the characters ne
and nb, respectively, F denotes the nodal force vector, Bi and Ni denote the strain gradient
matrix and the shape function matrix, respectively, Ωi stands for element i.

2.4. The Eigenvalue Problem of Free Vibration Analysis

If the damping effects (C = 0) are ignored, it is feasible to rewrite Equation (25) for
free vibration analysis by

M
..
d + Kd = 0 (31)

It is straightforward to determine that Equation (31) has the following basic solution,

d = dexp(jωt) (32)

where d denotes the amplitude of displacement distributions, j =
√
−1, and ω denotes the

angular frequency. We may obtain Equation (33) from Equations (31) and (32).

Kd−ωp
2Md = 0 (33)

The p-order natural frequency ωp and the corresponding modal shape can be deter-
mined by adding up the eigenvectors and eigenvalues of Equation (33). The solution to the
common eigenvalue problem is what Equation (33) indicates is the main goal of evaluating
free vibration problems.

2.5. The Dynamic Problem of Forced Vibration Analysis

The second-order time-dependent dynamic issues, regulated by the matrix equation
indicated in Equation (25), should be solved to perform forced vibration analysis [30,31].
Numerous other direct time integration strategies have been established in practice to solve
structural dynamic issues. The widely used Newmark approach, an unconditionally stable
direct time integration methodology, analyzes dynamic problems, and makes the following
assumptions. 

t+∆t
.
d = t

.
d +

[
(1− β)t

..
d + t+∆t

..
dβ
]
∆t

t+∆td = td + t
.
d∆t +

[(
1
2 − α

)
t

..
d + t+∆t

..
dα
]
∆t2

(34)
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where ∆t is the time step for the temporal integration and α and δ are the unknown
coefficients associated with the accuracy of the integration.

Additionally, the equilibrium equation at time t + ∆t following should also be utilized,

Ct+∆t
.
d + Mt+∆t

..
d + Kt+∆td = F (35)

These two parameters are utilized in this work since they will not add any numerical
dampening effects to the result when β = 1/2 and α = 1/4. Combining Equations (25)
and (34), when t + ∆t time arrives, we can acquire,(

4
∆t2 M +

2
∆t

C + K
)

t+∆td = M
(

4
∆t2

td +
4

∆t
t

.
d + t

..
d
)
+ C

(
2

∆t
td + t

.
d
)

(36)

After that, the whole numerical solution can be obtained by repeatedly applying
Equations (34) and (35).

3. Analysis of 2D Examples

First, we used 2D examples to evaluate and analyze the numerical convergence and
accuracy of E-FEM.

3.1. The Cantilever Beam

Unless otherwise stated, the global standard unit system is the foundation for all
physical units used in the current work. The numerical experiment of 2D free vibration
analysis was performed with a cantilever beam model (see Figure 2). We studied vari-
ous behaviors of E-FEM elements of a 2D cantilever beam with height D and length L.
The inputs used in the calculation included: Young’s modulus E = 2.1× 104 kgf/mm2,
thickness t = 1 mm, Poisson’s ratio v = 0.3, D = 10 mm, L = 100 mm, mass density
ρ = 8.0× 10−10 kgfs2/mm4. This was obtained by dividing the cantilever beam of Figure 2
into three types of meshes with different precision in Figure 3. Liu and Nguyen-Thoi, and
Nagashima have already examined this issue using NS-FEM and ES-FEM [32,33]; Liu and
Nguyen-Thoi used the node-by-node meshless (NBNM) approach; Liu and Gu utilized the
Gaussian radial function [34] and local radial point interpolation method (LRPIM) with
multi-quadrics (MQ) radial function.
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Figure 4. Comparison of calculation frequency accuracy of two modes: (a) Mode two; (b) Mode four;
(c) Mode two; (d) Mode four.

3.1.1. Convergence Study

FEM-T3, E-FEM-T3, E-FEM-T3N4, and E-FEM-T3N6 were used in MATLAB to evaluate
and calculate Mesh a, b, and c. Retrieving the frequencies of Tables 1–3 was possible in ten
different modes. The following is the expression for the relative error of natural frequency,
where n refers to the number of nodes, which is used to assess precision and convergence.

Table 1. Results of frequencies (Hz) of grid A (10× 1) (22 nodes, 20 elements).

Order FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM-
T3N3

E-FEM-
T3N4

E-FEM-
T3N6 References

f1 1708 992 1048 826 826 823 822
f2 9689 5791 6018 4997 4973 4938 4932
f3 12,908 12,834 12,833 12,834 12,833 12,827 12,824
f4 24,331 14,830 15,177 13,311 13,174 13,014 12,993
f5 39,193 26,183 26,362 24,523 24,111 23,670 23,611
f6 42,944 38,140 37,724 37,946 37,051 36,149 36,010
f7 64,559 38,824 38,559 38,482 38,473 38,453 38,444
f8 67,691 51,924 50,349 53,047 51,413 49,865 49,578
f9 90,810 62,345 60,827 64,059 64,032 63,990 63,913
f10 98,302 64,846 61,520 69,457 66,800 64,440 63,975
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Table 2. Results of frequencies (Hz) grid B (20× 2) (63 nodes, 80 elements).

Order FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM-T3N3 E-FEM-T3N4 E-FEM-T3N6 References

f1 1120 870 853 824 824 823 822
f2 6644 5199 5078 4945 4942 4935 4932
f3 12,852 12,830 12,828 12,828 12,827 12,825 12,824
f4 17,307 13,640 13,246 13,038 13,024 13,001 12,993
f5 31,173 24,685 23,783 23,729 23,687 23,629 23,611
f6 38,686 37,477 35,784 36,259 36,165 36,041 36,010
f7 47,342 38,378 38,298 38,455 38,454 38,448 38,444
f8 64,769 51,322 48,533 50,037 49,858 49,628 49,578
f9 65,365 63,585 61,527 63,996 63,991 63,975 63,913
f10 84,519 65,731 63,182 64,678 64,373 63,992 63,975

Table 3. Results of frequencies (Hz) of grid C (40× 4) (205 nodes, 320 elements).

Order FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM-T3N3 E-FEM-T3N4 E-FEM-T3N6 Reference

f1 907 835 827 823 823 823 822
f2 5431 5004 4950 4936 4935 4933 4932
f3 12,834 12,827 12,826 12,825 12,825 12,824 12,824
f4 14,286 13,174 13,006 13,002 13,000 12,994 12,993
f5 25,949 23,926 23,554 23,631 23,626 23,614 23,611
f6 38,511 36,462 35,778 36,046 36,035 36,014 36,010
f7 39,612 38,431 38,408 38,448 38,447 38,445 38,444
f8 54,647 50,150 49,029 49,638 49,619 49,584 49,578
f9 64,236 63,883 62,867 63,980 63,969 63,919 63,913
f10 70,685 64,561 63,774 64,007 63,985 63,976 63,975

Re =

∣∣∣∣∣ fnum − fre f

fre f

∣∣∣∣∣× 100% (37)

where the superscript “ref” means reference solution and the superscript “num” means
numerical solution.

Then, using lg(n) as the abscissa and Re as the ordinate, taking the former two modes
as examples, the relative error diagram of Figure 4 was obtained by comparing it with a
reference value. Tables 1–3 present a list of the frequencies calculated for the three meshes.

Figure 4 displays the natural frequency error of the second and fourth modes. In
addition, the convergence comparison concluding the FEM-T3, E-FEM-T3N3, E-FEM-T3N4,
E-FEM-T3N6, ES-FEM-T3, and FEM-Q4 are displayed in Figure 5. Based on the simulation
results, the second and fourth natural frequencies of E-FEM-T3, which include E-FEM-
T3N3, E-FEM-T3N4, and E-FEM-T3N6, have a considerably smaller error and a significant
accuracy than FEM-Q4, E-FEM, and ES-FEM. Compared to other methods for the same
mesh without adding new nodes, the performance of E-FEM in terms of calculation accuracy
is rolled over with an inaccuracy of only about a thousandth. Additionally, under the same
node and grid density, the accuracy of the E-FEM algorithm increases with increasing order
q or the number of terms N.
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Figure 6 displays the first to tenth eigenmodes concluded using the E-FEM element of
Mesh. These model diagrams are superior compared to ES-FEM [13,17,35].

Machines 2023, 11, x FOR PEER REVIEW 11 of 34 
 

 

with a reference value. Tables 1–3 present a list of the frequencies calculated for the three 
meshes. 

Figure 4 displays the natural frequency error of the second and fourth modes. In 
addition, the convergence comparison concluding the FEM-T3, E-FEM-T3N3, 
E-FEM-T3N4, E-FEM-T3N6, ES-FEM-T3, and FEM-Q4 are displayed in Figure 5. Based 
on the simulation results, the second and fourth natural frequencies of E-FEM-T3, which 
include E-FEM-T3N3, E-FEM-T3N4, and E-FEM-T3N6, have a considerably smaller error 
and a significant accuracy than FEM-Q4, E-FEM, and ES-FEM. Compared to other 
methods for the same mesh without adding new nodes, the performance of E-FEM in 
terms of calculation accuracy is rolled over with an inaccuracy of only about a thou-
sandth. Additionally, under the same node and grid density, the accuracy of the E-FEM 
algorithm increases with increasing order q or the number of terms N. 

Figure 6 displays the first to tenth eigenmodes concluded using the E-FEM element 
of Mesh. These model diagrams are superior compared to ES-FEM [13,17,35]. 

(a) (b) 

Figure 5. Convergence of the calculated frequency error of two modes: (a) Mode two; (b) Mode 
four. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

lg
(R
e)

1.3 1.5 1.7 1.9 2.1 2.3
-5

-4

-3

-2

-1

0

1

2

3

lg
(R
e)

Machines 2023, 11, x FOR PEER REVIEW 12 of 34 
 

 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 6. The top ten vibration modes of the cantilever beam calculated by E-FEM: (a) Mode one; 
(b) Mode two; (c) Mode three; (d) Mode four; (e) Mode five; (f) Mode six; (g) Mode seven; (h) Mode 
eight; (i) Mode nine; (j) Mode ten. 

3.1.2. Grid Distortion Sensitivity Study 
We give the distorted element mesh in Figure 7, and d is the distorted displacement. 
We can learn the following information by comparing relative errors of calculated 

frequencies, as shown in Figure 8 and Table 4. First, as deformation increases, the nu-
merical error of the E-FEM-T3 does not vary significantly, whereas the numerical error of 
the FEM-T3 and FEM-Q4 varies. Secondly, the E-FEM-T3 curve is the lowest, with the 
smallest relative error. Thirdly, the error curves formed by FEM-T3 and FEM-Q4 follow a 
similar trend, with the error increasing when distortion parameters are increased. 
Fourthly, the curves of E-FEM-T3 are close to parallel lines, indicating that grid defor-
mation has little effect on the error [36,37]. 

Figure 9 shows the two distorted grids established to assess the effect of grid quality 
on relative error. Three methods, FEM-T3, ES-FEM-T3, and E-FEM-T3, are shown in Ta-
bles 5 and 6. The enriched K-matrix and M-matrix of proposed E-FEM-T3 often yield 
better accuracy than that of FEM-T3 and Quad 4. Even for distorted grids, good results 
can be obtained using E-FEM-T3 elements. This is a significant benefit of the E-FEM-T3 
method. The result is valuable for the practical application of E-FEM-T3. Unlike the 
E-FEM method, E-FEM-T3 can yield better results; however, additional nodes are neces-
sary to increase the stiffness matrix. 

In practical engineering problems, grid distortion will also have a certain impact on 
calculation accuracy. The next sections further explore the capacity of the E-FEM-T3 to 
resist grid distortion. 

d

d

E-FEM-T3

 
Figure 7. Distorted element mesh. 

Table 4. Grid distortion sensitivity calculation results. 𝟐𝒅 𝒃⁄  FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM- 
T3N3 

E-FEM- 
T3N4 

E-FEM- 
T3N6 

References  

0.000 4256 2623 2947 870 851 829.0 822 
0.025 4413 2710 3163 875 853 829.5 822 
0.050 4560 2889 3413 890 856 829.7 822 

Figure 6. The top ten vibration modes of the cantilever beam calculated by E-FEM: (a) Mode one;
(b) Mode two; (c) Mode three; (d) Mode four; (e) Mode five; (f) Mode six; (g) Mode seven; (h) Mode
eight; (i) Mode nine; (j) Mode ten.
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3.1.2. Grid Distortion Sensitivity Study

We give the distorted element mesh in Figure 7, and d is the distorted displacement.

Machines 2023, 11, x FOR PEER REVIEW 12 of 34 
 

 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 6. The top ten vibration modes of the cantilever beam calculated by E-FEM: (a) Mode one; 
(b) Mode two; (c) Mode three; (d) Mode four; (e) Mode five; (f) Mode six; (g) Mode seven; (h) Mode 
eight; (i) Mode nine; (j) Mode ten. 

3.1.2. Grid Distortion Sensitivity Study 
We give the distorted element mesh in Figure 7, and d is the distorted displacement. 
We can learn the following information by comparing relative errors of calculated 

frequencies, as shown in Figure 8 and Table 4. First, as deformation increases, the nu-
merical error of the E-FEM-T3 does not vary significantly, whereas the numerical error of 
the FEM-T3 and FEM-Q4 varies. Secondly, the E-FEM-T3 curve is the lowest, with the 
smallest relative error. Thirdly, the error curves formed by FEM-T3 and FEM-Q4 follow a 
similar trend, with the error increasing when distortion parameters are increased. 
Fourthly, the curves of E-FEM-T3 are close to parallel lines, indicating that grid defor-
mation has little effect on the error [36,37]. 

Figure 9 shows the two distorted grids established to assess the effect of grid quality 
on relative error. Three methods, FEM-T3, ES-FEM-T3, and E-FEM-T3, are shown in Ta-
bles 5 and 6. The enriched K-matrix and M-matrix of proposed E-FEM-T3 often yield 
better accuracy than that of FEM-T3 and Quad 4. Even for distorted grids, good results 
can be obtained using E-FEM-T3 elements. This is a significant benefit of the E-FEM-T3 
method. The result is valuable for the practical application of E-FEM-T3. Unlike the 
E-FEM method, E-FEM-T3 can yield better results; however, additional nodes are neces-
sary to increase the stiffness matrix. 

In practical engineering problems, grid distortion will also have a certain impact on 
calculation accuracy. The next sections further explore the capacity of the E-FEM-T3 to 
resist grid distortion. 

d

d

E-FEM-T3

 
Figure 7. Distorted element mesh. 

Table 4. Grid distortion sensitivity calculation results. 𝟐𝒅 𝒃⁄  FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM- 
T3N3 

E-FEM- 
T3N4 

E-FEM- 
T3N6 

References  

0.000 4256 2623 2947 870 851 829.0 822 
0.025 4413 2710 3163 875 853 829.5 822 
0.050 4560 2889 3413 890 856 829.7 822 

Figure 7. Distorted element mesh.

We can learn the following information by comparing relative errors of calculated
frequencies, as shown in Figure 8 and Table 4. First, as deformation increases, the numerical
error of the E-FEM-T3 does not vary significantly, whereas the numerical error of the
FEM-T3 and FEM-Q4 varies. Secondly, the E-FEM-T3 curve is the lowest, with the smallest
relative error. Thirdly, the error curves formed by FEM-T3 and FEM-Q4 follow a similar
trend, with the error increasing when distortion parameters are increased. Fourthly, the
curves of E-FEM-T3 are close to parallel lines, indicating that grid deformation has little
effect on the error [36,37].
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Figure 9 shows the two distorted grids established to assess the effect of grid quality
on relative error. Three methods, FEM-T3, ES-FEM-T3, and E-FEM-T3, are shown in
Tables 5 and 6. The enriched K-matrix and M-matrix of proposed E-FEM-T3 often yield
better accuracy than that of FEM-T3 and Quad 4. Even for distorted grids, good results can
be obtained using E-FEM-T3 elements. This is a significant benefit of the E-FEM-T3 method.
The result is valuable for the practical application of E-FEM-T3. Unlike the E-FEM method,
E-FEM-T3 can yield better results; however, additional nodes are necessary to increase the
stiffness matrix.
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Table 4. Grid distortion sensitivity calculation results.

2d/b FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM-
T3N3

E-FEM-
T3N4

E-FEM-
T3N6 References

0.000 4256 2623 2947 870 851 829.0 822
0.025 4413 2710 3163 875 853 829.5 822
0.050 4560 2889 3413 890 856 829.7 822
0.075 4674 3052 3614 913 860 830.0 822
0.100 4762 3169 3758 939 863 830.3 822
0.150 4902 3296 3937 983 870 830.8 822
0.200 5023 3352 4052 1007 877 831.5 822
0.250 5137 3386 4141 1018 884 832.3 822
0.300 5248 3417 4221 1024 892 833.0 822
0.400 5468 3498 4366 1030 909 834.0 822
0.500 5688 3617 4499 1033 928 835.0 822
0.600 5910 3776 4623 1035 946 835.7 822
0.700 6134 3984 4741 1037 963 836.4 822
0.800 6361 4252 4856 1039 978 837.2 822
0.900 6591 4617 4968 1040 992 841.2 822
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Table 5. Computed frequencies (Hz) of distorted grids in Figure 9b.

Order FEM-T3 ES-FEM-T3 E-FEM-
T3N3

E-FEM-
T3N4

E-FEM-
T3N6 References

f1 1376 947 825 824 823 822
f2 8554 5663 4960 4946 4936 4932
f3 12,870 12,827 12,828 12,828 12,825 12,824
f4 21,883 14,726 13,112 13,036 13,004 12,993
f5 38,777 27,242 23,975 23,715 23,637 23,611
f6 40,231 38,194 36,927 36,214 36,059 36,010
f7 62,931 39,798 38,458 38,456 38,449 38,444
f8 67,377 54,754 51,329 49,958 49,668 49,578
f9 86,597 62,901 64,010 63,996 63,982 63,913
f10 94,872 72,378 66,640 64,569 64,080 63,975

In practical engineering problems, grid distortion will also have a certain impact on
calculation accuracy. The next sections further explore the capacity of the E-FEM-T3 to
resist grid distortion.

Figure 10 reveals a similar number of nodes in both uniform and distorted meshes,
in which a higher degree of irregularity causes a more distorted mesh. Tables 5 and 6
show the top 10 natural frequency outcomes from various elements using two distorted
meshes. The tables also include matching computation results from the uniform mesh
and reference solutions. The findings indicate that using the distorted mesh pattern will
significantly reduce the precision of the standard linear elements (FEM-T3 and FEM-Q4).
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Although the estimated numerical solutions are excellent when using the deformed mesh,
the present E-FEM-T3 method performs the best among all the factors considered. With a
larger irregularity indication, these conclusions become increasingly more obvious. The
E-FEM performs significantly better than the conventional FEM and ES-FEM. This indicates
that, unlike other elements, the current E-FEM-T3 has a larger tolerance for mesh distortion.

Table 6. Computed frequencies (Hz) of distorted grids in Figure 9c.

Order FEM-T3 ES-FEM-T3 E-FEM-
T3N3

E-FEM-
T3N4

E-FEM-
T3N6 References

f1 1584 1029 825 824 822 822
f2 9522 6227 4978 4944 4936 4932
f3 12,887 12,826 12,828 12,828 12,825 12,824
f4 24,124 15,611 13,283 13,030 13,002 12,993
f5 39,120 29,557 24,373 23,704 23,635 23,611
f6 47,170 38,019 37,259 36,235 36,078 36,010
f7 67,566 46,072 38,460 38,455 38,448 38,444
f8 74,501 61,371 53,065 49,995 49,708 49,578
f9 97,634 63,573 64,021 63,993 63,981 63,913
f10 102,709 76,854 70,025 64,674 64,180 63,975
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Figure 10. Grid distortion adaptability comparison.

Figure 11 shows the related E-FEM and FEM element solution times, and the relative
imprecision of the two natural frequencies. At the second natural frequency, the E-FEM-
T3N3 element converges at a rate of 0.82 slower than the FEM. Regarding the convergence
rate at the fourth natural frequency, the FEM element performs better than the E-FEM
element, standing at 1.71. As shown, the convergence rate of error relative to computation
time for the three E-FEM algorithms reduces as N increases. The accuracy of distorted and
standard meshes can be improved using a similar mesh to the E-FEM-T3 element. The
E-FEM-T3 increases the computation time by increasing the bandwidth of the total stiffness
matrix. Therefore, there is a significant urgency to strike a good balance between accuracy
and computational speed for the E-FEM-T3 approach.
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3.1.3. Forced Vibration Study

The E-FEM was used to investigate a benchmark cantilever beam problem using
the Newmark method for time stepping. A tip harmonic loading in the y-direction,
f (t) = cos ω f t, was applied to the beam. The numerical parameters used to consider
the plane strain problem included: E = 0.1, H = 1.0, L = 4.0, v = 0.3, α = 0.005, β = 0.272,
t = 1.0. The model comprised 100 units and 126 nodes, computing with an amplitude
time step of ∆t = 1. By analyzing the performance of E-FEM-T3, FEM-Q4, ES-FEM-T3,
and FEM-T3 in this model, the vibration periods of E-FEM-T3 and FEM-Q4, ES-FEM-T3
and FEM-T3 were highly consistent (Figure 12a). Furtherly the amplitude of E-FEM-T3
was larger than that of ES-FEM-T3, that of ES-FEM-T3 was larger than that of FEM-Q4,
and that of FEM-Q4 was larger than that of FEM-T3. The peak of each curve reached
FEM-T3 (526.4), FEM-Q4 (809.6), ES-FEM-T3 (843.8), E-FEM-T3N3 (858.8), E-FEM-T3N4
(873.7) and E-FEM-T3N6 (883.7). The larger the amplitude, the softer the model. Therefore,
the model accuracy of FEM-Q4 is higher than that of FEM-T3, with better convergence
efficiency. Similarly, E-FEM-T3 achieves higher model accuracy and better convergence
efficiency [38,39].
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Figure 12. Comparison of transient responses of a cantilever beam by E-FEM-T3: (a) Results of all
6 algorithms; (b) Analysis of the performance of 4 algorithms; (c) Multi-basis function curve of forced
vibration; (d) Partial enlarged view of Figure 12b; (e) Partial enlarged view of Figure 12c.
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3.2. A Shear Wall

Figure 13 illustrates how Brabbia et al. solved a straightforward model of a four-
opening shear wall with an assumed plane stress condition using the boundary element
approach. In Figure 14, 559 uniformed nodes remedied the issue. Young’s modulus
E = 1× 103, Poisson’s ratio v = 0.2, thickness t = 1, mass density ρ = 1, and these were
the pertinent values. Figure 14 presents the grid computed with 952 cells and 559 nodes.
As shown in Table 7, the E-FEM was used to calculate the natural frequencies of the first
10 modes. The E-FEM-T3 results are typically the ones closest to the reference solution
since the generated natural frequencies are significantly bigger than the FEM-T3, which is
excessively stiff. Considering that the natural frequencies are a reliable sign for determining
the stiffness of a model, the results mentioned above verify that the E-FEM-T3 has extremely
close-to-exact stiffness.
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Table 7. Natural frequencies (Hz) of a shear wall.

Order FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM-
T3N3

E-FEM-
T3N4

E-FEM-
T3N6 References

f1 0.1081 0.1044 0.1032 0.1021 0.1019 0.1014 0.1011
f2 0.3681 0.3580 0.3553 0.3520 0.3515 0.3504 0.3497
f3 0.3855 0.3839 0.3836 0.3830 0.3828 0.3826 0.3825
f4 0.6312 0.6029 0.5916 0.5839 0.5823 0.5788 0.5767
f5 0.8094 0.7773 0.7677 0.7587 0.7579 0.7549 0.7532
f6 0.9503 0.9275 0.9214 0.9135 0.9119 0.9103 0.9094
f7 1.0352 1.0061 0.9983 0.9898 0.9882 0.9865 0.9857
f8 1.1459 1.1247 1.1158 1.1106 1.1045 1.1021 1.1007
f9 1.2045 1.1673 1.1552 1.1450 1.1434 1.1404 1.1389
f10 1.2276 1.1944 1.1844 1.1760 1.1750 1.1720 1.1724
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We give the first 10 vibration modes of the shared wall computed using E-FEM in
Figure 15. It is obvious that the proposed E-FEM indeed behaves very well in predicting
the mode shape in free vibration analysis.
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Figure 16. The free vibration of the rod was analyzed under the assumption of plane 
stress state; the relevant calculation parameters included mass density ρ = 7800 kg/m3, 
Young�s modulus E = 10 GPa, and Poisson�s ratio 𝑣 = 0.3. Two set directions existed on 
the left inner circle of the rod. As shown in Table 8, E-FEM-T3 produced results equiva-
lent to those of the reference. Figure 17 shows the first 10-order eigenmodes obtained 
using the E-FEM-T3 element under Mesh A. These mode shape graphs efficiently match 
the ES-FEM-T3 plot. 
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3.3. A Connecting Rod

We established a simple connecting rod with a large and small opening, as shown in
Figure 16. The free vibration of the rod was analyzed under the assumption of plane stress
state; the relevant calculation parameters included mass density ρ = 7800 kg/m3, Young’s
modulus E = 10 GPa, and Poisson’s ratio v = 0.3. Two set directions existed on the left inner
circle of the rod. As shown in Table 8, E-FEM-T3 produced results equivalent to those of
the reference. Figure 17 shows the first 10-order eigenmodes obtained using the E-FEM-T3
element under Mesh A. These mode shape graphs efficiently match the ES-FEM-T3 plot.
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Table 8. First 10 natural frequencies (HZ) of a connecting rod.

Order FEM-T3 FEM-Q4 ES-FEM-T3 E-FEM-
T3N3

E-FEM-
T3N4

E-FEM-
T3N6 References

f1 158.4 144.6 140.9 144.8 142.1 141.2 140.7
f2 709.6 650.5 630.6 643.4 635.4 631.8 622.6
f3 1541.1 1535.2 1525.7 1555.4 1543.8 1535.4 1522.5
f4 1760.1 1644.7 1585.7 1578.5 1569.6 1565.5 1563.9
f5 3220.1 3028.4 2871.2 2897.3 2877.6 2857.3 2839.1
f6 3873.4 3797.9 3628.6 3586.1 3496.4 3484.1 3468.1
f7 4832.3 4503.2 4104.1 4259.5 4151.6 4040.5 3986.3
f8 5478.4 5274.7 4932.2 4996.4 4866.8 4846.3 4821.2
f9 5760.9 5473.5 4994.5 5017.9 4977.8 4957.9 4936.5
f10 6495.1 6177.8 5953.1 6251.6 6131.9 6081.5 6050.5
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Figure 18 depicts the first 10 vibration modes of the shared wall computed using 
E-FEM. It is clear that the suggested E-FEM performs admirably in predicting mode 
shape in free vibration analysis. 
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Figure 17. Mesh A of the connecting rod.

Figure 18 depicts the first 10 vibration modes of the shared wall computed using
E-FEM. It is clear that the suggested E-FEM performs admirably in predicting mode shape
in free vibration analysis.
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4. Analysis of 3D Examples

This section comprehensively explores the computational accuracy and computational
efficiency of E-FEM in 3D models. We used two numerical examples: a cantilever beam
structure and an engine connecting rod. The modes of the two numerical examples were
calculated using the FEM, ES-FEM, and E-FEM, respectively.

4.1. The Cantilever Beam

Figure 19 shows the structure diagram of the cantilever beam with the geometric
parameter of 0.12 m × 0.12 m × 0.72 m. The blue area represents the constrained surface.
In the current analysis, we used the following material properties in calculations: elastic
modulus E = 70 GPa, Poisson’s ratio v = 0.33, density ρ = 2700 kg/m3. First, we analyzed the
calculation accuracy, which was discretized into a grid model with 752 nodes (Figure 19b).
For comparison, the model was discretized into an extremely fine mesh (71,771 nodes and
25,200 elements) in ANSYS to obtain the reference solution.

Table 9 shows the first 15 modal eigenvalues of the cantilever beam, and the relative
error is shown in Figure 20, indicating the smallest relative error of E-FEM, hence the
highest calculation accuracy among the three methods.



Machines 2023, 11, 587 23 of 33Machines 2023, 11, x FOR PEER REVIEW 24 of 34 
 

 

 
Figure 19. A cantilever model: (a) geometric model (b) mesh. 

Table 9 shows the first 15 modal eigenvalues of the cantilever beam, and the relative 
error is shown in Figure 20, indicating the smallest relative error of E-FEM, hence the 
highest calculation accuracy among the three methods. 

Table 9. Eigenvalues of the first 15 modes of the cantilever beam. 

Order FEM ES-FEM E-FEM Reference  𝑓ଵ 207.73  190.47 189.30  188.67 𝑓ଶ 286.97  276.23  275.90  275.14 𝑓ଷ 1060.39  957.89  936.74  935.04 𝑓ସ 1155.80  1069.11  1058.69  1055.70 𝑓ହ 1445.77  1397.85  1393.07  1390.50 𝑓଺ 1786.54  1782.74  1781.27  1779.90 𝑓଻ 2823.05  2627.97  2597.55  2591.50 𝑓  3187.11  2876.26  2811.92  2806.40 𝑓ଽ 3318.56  3207.69  3189.32  3185.40 𝑓ଵ଴ 4798.67  4488.68  4420.82  4412.30 𝑓ଵଵ 5323.91  4811.58  4692.26  46,820 𝑓ଵଶ 5343.23  5180.15  5137.22  5133.40 𝑓ଵଷ 5373.71  5307.97  5299.98  5296.20 𝑓ଵସ 6963.50  6517.56  6397.92  6386.80 𝑓ଵହ 7500.03 6764.03 6581.80 6564.10 

Figure 19. A cantilever model: (a) geometric model (b) mesh.

Table 9. Eigenvalues of the first 15 modes of the cantilever beam.

Order FEM ES-FEM E-FEM Reference

f1 207.73 190.47 189.30 188.67
f2 286.97 276.23 275.90 275.14
f3 1060.39 957.89 936.74 935.04
f4 1155.80 1069.11 1058.69 1055.70
f5 1445.77 1397.85 1393.07 1390.50
f6 1786.54 1782.74 1781.27 1779.90
f7 2823.05 2627.97 2597.55 2591.50
f8 3187.11 2876.26 2811.92 2806.40
f9 3318.56 3207.69 3189.32 3185.40
f10 4798.67 4488.68 4420.82 4412.30
f11 5323.91 4811.58 4692.26 46,820
f12 5343.23 5180.15 5137.22 5133.40
f13 5373.71 5307.97 5299.98 5296.20
f14 6963.50 6517.56 6397.92 6386.80
f15 7500.03 6764.03 6581.80 6564.10
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We show the E-FEM calculation of the first 8 modes of a cantilever beam in Figure 21.
It is apparent that the proposed E-FEM indeed behaves extremely well in predicting the
mode shape.
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The cantilever beam was divided into four different sizes of grids to confirm the mesh
robustness of E-FEM, with the number of nodes being 153, 399, 752, and 1135. The proposed
E-FEM was used to analyze the natural frequency of the grid model, and the findings of
FEM and ES-FEM are useful in the comparative analysis [31]. The fifth and 10-order natural
frequencies were selected as research objects, and the relative error curve with the number
of grid nodes was drawn (Figure 22). Therefore, based on Figure 22: (1) The three numerical
methods are convergent; (2) Under a similar number of grid nodes, the calculation error of
E-FEM is smaller than that of FEM and ES-FEM. The numerical example shows that E-FEM
has good numerical convergence and accuracy.
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Figure 22. Convergence comparison: (a) Mode five; (b) Mode ten.

To investigate a numerical method, we need to analyze its computational efficiency.
The same four kinds of grids are used. Figure 23 [32,33] shows the comparison of the
calculation efficiency of three different methods (the ratio of the average error of the first
15 modes to time). It can be seen from the figure that the computational efficiency of E-FEM
is higher than that of ES-FEM and FEM.
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4.2. Engine Connecting Rod

In this section, we performed a modal analysis of an automobile engine connecting
rod to confirm the applicability of the proposed method. Figure 24 displays the geometric
model of the connecting rod, and the small end of the connecting rod is a fixed constraint.
The material parameters include E = 210 GPa, v = 0.28, and ρ = 7900 kg/m3. The engine
connecting rod is discretized into a grid model with 1045 nodes and calculated by three
different numerical methods. Notably, the results of 78,526 nodes and 50,491 T-10 elements
calculated by ANSYS [34,35] served as reference solutions.
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Table 10 shows the results of the first 15 natural frequencies [36,37]. In addition,
FEM was used to calculate the fine mesh model with 5135 nodes; Figure 25 shows the
relative errors of the first 15 free mode eigenvalues calculated by E-FEM, ES-FEM, and
FEM. Based on the curves and data, the error of the results calculated by E-FEM was
significantly smaller than that computed by ES-FEM and FEM, unlike the first 15 modal
eigenvalues computed. Therefore, algorithm correctness in dealing with complex models
can be preliminarily established. Figure 26 shows the first eight modes.

Table 10. First 15 modal eigenvalues of connecting rod.

Order FEM ES-FEM E-FEM FEM (Fine) Reference

f1 582.14 528.66 525.51 541.21 522.99
f2 620.30 557.66 552.29 570.38 551.98
f3 1420.51 1105.39 1071.56 1160.39 1053.10
f4 3848.07 3571.62 3539.52 3624.49 3509.70
f5 4650.39 4152.56 4121.00 4256.49 4099.30
f6 5092.29 4688.78 4599.24 4751.62 4527.90
f7 8137.86 7794.29 7744.57 7881.27 7715.50
f8 10,191.39 8462.14 8271.87 8877.15 8104.20
f9 10,948.29 9737.92 9521.96 10,126.97 9242.10
f10 11,277.62 9977.75 9800.76 10,134.92 9624.20
f11 12,190.94 10,549.44 10,423.65 10,812.64 10,191.00
f12 15,146.03 12,015.30 11,664.54 12,570.43 11,327.00
f13 17,553.76 15,962.76 15,766.72 16,389.37 15,587.00
f14 19,701.50 17,353.71 17,125.72 17,825.40 16,870.00
f15 21,737.13 18,887.72 18,588.77 19,513.86 18,040.00
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Figure 25. Relative error of first 15 modal eigenvalues of connecting rod.
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Figure 26. First 8 modal shapes of connecting rod calculated by E-FEM: (a) Mode one; (b) Mode two;
(c) Mode three; (d) Mode four; (e) Mode five; (f) Mode six; (g) Mode seven; (h) Mode eight.

4.3. Automobile Front Suspension Arm

This section explores the applicability of the proposed method in calculating the
complex geometric model of the front suspension arm. The geometric model of the front
cantilever is shown in Figure 27, with fixed constraints on the blue surface. The material
parameters are E = 69 GPa, v = 0.3, ρ = 2700 kg/m3. The results of 54,087 nodes and
34,791 T-10 elements calculated by ANSYS were used as reference solutions.
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Figure 27. Vehicle suspension arm model: (a) geometric model (b) mesh.
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In addition, FEM was used to calculate the fine mesh model with 5497 nodes, and the
outcomes were compared using the three numerical approaches. Table 11 shows the results
of the natural frequencies of the first 15 orders. In addition, the relative errors of free mode
eigenvalues of the first 15 orders calculated by ES-FEM, FEM, and E-FEM are presented in
Figure 28. According to the curves and data, the error of the results calculated by E-FEM
was remarkably smaller than that computed by ES-FEM and FEM compared to the first
15 modal eigenvalues computed. Therefore, the reliability of the algorithm in dealing with
complex models can be established. Figure 29 shows the first eight modes.

Table 11. Eigenvalues of the first 15 modes of the suspension arm.

Order FEM ES-FEM E-FEM FEM (Fine) Reference

f1 193.75 159.44 157.18 167.46 155.32
f2 993.98 881.23 862.16 914.48 848.42
f3 1089.25 952.41 945.81 960.43 937.93
f4 1188.08 978.71 962.14 1018.88 950.71
f5 1877.99 1717.52 1703.89 1748.93 1686.60
f6 2134.42 2088.82 2080.74 2091.49 2063.20
f7 2675.84 2217.36 2163.85 2301.22 2130.50
f8 2792.76 2342.92 2291.51 2419.86 2256.90
f9 3279.08 2935.65 2906.53 3001.27 2863.10
f10 3790.99 3206.87 3105.93 3306.54 3055.20
f11 3857.71 3557.73 3526.29 3610.49 3478.20
f12 5209.41 4433.95 4348.32 4554.320 4289.50
f13 5422.11 4927.43 4863.51 5013.80 4734.90
f14 6159.29 5218.63 4981.44 5324.24 4878.10
f15 6637.36 5724.11 5529.93 5848.54 5451.40
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5. Conclusions

Based on the traditional FEM, this paper introduced a new basis function and proposed
an improved E-FEM. The introduction of new shape functions, geometry matrices, stiffness
matrices, and mass matrices improves variable displacement in the triangle and tetrahedral
elements of classic FE. The considered numerical experiments can provide the following
valuable insights: (1) The technique is used in 2D and 3D free vibration modal analysis, as
well as comprehensively compares and analyzes computational efficiency, accuracy, and
mesh distortion adaptability. E-FEM-T3 displays high accuracy, good convergence, and
significant adaptability to grid distortion with four examples, i.e., the cantilever beam,
connecting rod, shear wall, and automobile front suspension arm, under the presumption
of not increasing too much calculation. (2) In the forced vibration study, E-FEM-T3, ES-
FEM-T3, FEM-Q4, and FEM-T3 harbor extremely consistent vibration periods, whereas
E-FEM-T3N6 has a highest amplitude, followed by E-FEM-T3N4, E-FEM-T3N3, ES-FEM-
T3, FEM-Q4, and FEM-T3. The E-FEM-T3 has higher calculation precision and better
adaptability to grid distortion by comparing computational efficiency to mesh distortion of
the above methods in three different 2D models. (3) The proposed E-FEM-T3 element is
also less sensitive to mesh distortion than other traditional elements, resulting in reliable
numerical results, even when highly distorted models are used. Mesh distortion cannot
always be avoided in engineering applications with complicated geometry; therefore, the
current method is particularly well suited to these scenarios. (4) Although the current
E-FEM-T3 requires no additional nodes compared to the high-order elements, it is more
expensive numerically since larger system matrices are formed with more unknown nodal
unknowns. Nevertheless, the current E-FEM-T3 still has better calculation precision and
efficiency for free and forced vibration analysis solutions. (5) As the number of additional
degrees of freedom increases, the convergence rate of the error relative to the calculation
time for the three types of E-FEM-T3 solutions decreases; the higher the accuracy, the
better the convergence, and the greater the adaptability to the distorted meshes can also
be obtained.
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