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Abstract: This paper proposes a nonlinear flux linkage observer for the PMSM speed controls without
motion sensors, introducing the deviation among the real stator flux linkage and an estimated stator
flux linkage to suppress feedback and integral flux drift. In the position detection of an interior
PMSM without a speed sensor, the traditional back EMF integration method uses a pure integrator,
or LPF, to estimate the stator flux. Its inherent defects inevitably lead to inaccurate flux estimation,
which directly affects the estimation of the motor mover position, resulting in the decline in motor
control operation and the distortion of phase current. This paper uses an improved integrator with
adaptive compensation. The projected value of the stator flux linkage has been derived from the
estimated value of the rotor permanent magnetic flux linkage position angle and the algebraic model
(m-model) of the stator flux linkage, along with a synchronous coordinate system. The IPMSM
stator coil flux linkage obtained from the stator coil current and integral voltage models in the static
coordinate system is compared to form a feedback closed-loop to suppress the integral drift, and
using the cross-product approach of the actual and estimated flux linkage yields the projected value
of the IPMSM rotor speed and position through a PLL. Compared with the existing motion-sensorless
observers, the methodology proposed in this article is simple and exhibits better dynamic and
static estimation performance. Extensive and comprehensive MATLAB computer simulation and
experimental findings validate the proposed motion-sensorless control mechanism.

Keywords: interior permanent magnet synchronous motor; position sensorless control; phase-locked
loop; stator flux linkage; low-pass filter

1. Introduction

With the development of high-performance permanent magnet materials, power elec-
tronics devices technology, and microcontroller technology, the control and speed regulation
performance of the permanent magnet synchronous motor (PMSM) is improving and is
increasingly widely used [1]. In practical application, vector control is the most used control
strategy for PMSM. Generally, rotor position and speed information are achieved by installing
resolver or encoder sensors. However, the installation of sensors is restricted by environment,
increased space, and system cost and is vulnerable to electromagnetic interference. Therefore,
PMSM sensorless technology has been applied in harsh climates and in situations which are
sensitive to system costs. The relevant theories and research methods have been studied
in Ref. [2]. Even though the technology is an advanced, stable operation of ac drives, the
extremely low-speed zone remains a critical issue due to the low back EMF.

The widely accepted motion-sensorless control algorithms of PMSM are mainly divided
into algorithms ideal for moderate- and high-speed areas and algorithms suitable for low
or even zero speed. A position sensorless control technique is perfect for application in the
moderate- and high-speed range, including for flux estimation, the sliding mode observer
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(SMO), the model-reference adaptive approach, the extended Kalman filter, etc. [3–6]. These
algorithms are generally used for permanent surface magnet synchronous motors (SPMSM).
On the basis of the voltage flux mathematical model of SPMSM in static coordinates, the
back EMF is obtained, and the position angle of the rotor is estimated through the arctangent
function, or PLL. For the interior PMSM, due to the different inductance of the direct and
quadrature axes, the inductance in the static coordinate system is a function of motor rotor
angle position, which can make the design of the IPMSM sensorless control system much
more difficult [7,8]. Refs. [7,8] analyze the reason why the sensorless control method, suitable
for SPMSM, cannot be used for IPMSM, proposing an extended electromotive force (EEMF)
model ideal for IPMSM. After estimating EEMF, the position estimation of rotor flux can
be obtained from its phase, as is the case for the back EMF in SPMSM. The disturbance
observer is employed in Ref. [7] to calculate the extended back EMF. The arctangent operation
is utilized to compute the position of the rotor angle. The adaptive observer obtains the
estimated speed to realize the motion-sensorless position control of interior PMSM. However,
the parameter configuration method is complex, and the inverse tangent function is sensitive
to noise, which can easily cause the deviation of rotor position estimation. The research
in ref. [8], established on the extended back EMF model, uses the extended Kalman method to
compute the estimated EEMF, obtains the rotor position through the arctangent operation,
and realizes the motion-sensorless control of IPMSM. However, the design of the extended
Kalman method is complex, the amount of calculation is extensive, and the variance matrix
structure affects the algorithm’s convergence.

The above observation algorithm fails whenever the interior PMSM is at slow or zero
speed because the back EMF is low or equivalent to zero. The motion-sensorless method
of PMSM studied in the existing literature, at low velocity or even zero speed, mainly uses
motor saliency to determine the position angle of the rotor. The most typical algorithm
detects the high-frequency current response generated by a motor. It obtains the rotor’s
position information by injecting voltage or current excitation far higher than the fundamental
frequency of the IPMSM [9]. However, injecting high-frequency voltage or current will
produce torque ripple. In addition to the above high-frequency injection method, some open-
loop observation algorithms, such as V/F (voltage-frequency ratio) and I/F (current frequency
ratio) control strategies, exist. Unfortunately, these algorithms are unsuitable for high dynamic
response situations because they have no closed-loop system.

The EMF methodology is simple to implement and performs well across a broad speed
range, and the EMF estimate method based on a least-order observer has been widely
employed [10–12]. The least-order observer reconstructs the IPMSM voltage equation. This
method is simple to develop, but increases speed and position inaccuracies due to the lack
of self-feedback.

A pure integrator is a core part of the design of a classical rotor flux observer based on
the PMSM voltage and flux models [13,14]. Mismatched parameters, an incorrect integral
initial value, stator voltage, current detection faults, and converter interruption generate
high-frequency harmonics and DC offset in computed flux. Consequently, the estimated
rotor velocity and position angle are inaccurate due to the saturation effect because of the
incorrect initial integral value [15]. As a result, certain studies have optimized the pure
integration based on the rotor flux observer. In Refs. [14,15], a gradient approach based
on an initial flux condition analyzer is designed to calculate the rotor flux compensation’s
incorrect initial integral value [16,17], and new coefficient designs are used to strengthen
the stability of the rotor flux observer. Ref. [18] proposes a disturbance observer that utilizes
the stator flux integrator to obtain the rotor flux.

Due to the drift and saturation issues associated with back electromotive force (EMF)
integration, the LPF is typically utilized in place of the pure integrator [14]. While this
approach eliminates the DC component, phase shifts may occur in the projected equivalent
rotor flux linkage. As a result, the proposed method cannot precisely determine the rotor
speed and angular position. Ref. [19] uses a programmable cascaded LPF, which can
theoretically overcome the mitigation of the DC offset. However, this method has stringent
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requirements for selecting the cut-off frequency of the cascaded LPF, and it is not easy to
achieve ideal results in practice.

On the other hand, an SMO model is developed to enhance the precision and robust-
ness of motor speed and position estimations. Due to its inherent resilience and simplicity,
the sliding mode technique is a well-known and significant nonlinear control method.
The “chattering effect”, which can generally be mitigated by employing an LPF, is the
primary drawback of these approaches [4,20]. The motor speed and position are estimated
using the SMO method based on the active flux principle [21]. When combined with
high-frequency signal injection (HFSI), a zero-speed operation is achievable. In Ref. [22],
the super-twisting algorithm was introduced to improve the performance of steady-state
observation by reducing sliding mode chattering. The back-EMF 2nd-order sliding mode
observer is developed using the active flux to reconstruct the voltage model based on the
super-twisting technique.

Speed-adaptive full-order or reduced-order Luenberger observers are used to estimate
the stator current and flux vectors [17,23,24]. The speed is computed by feeding the
current error via a PI (proportional-integral) adaptation mechanism. A stable operation
of a reduced-order position angle observer with stator resistance adaptation at 30 r/min
with step load is reported in Ref. [17]. When combined with HFSI, a zero-speed operation
is achievable [25].

The 2nd-order integral flux observer with the frequency-locked loop (SOIFO-FLL)
approach is proposed in Ref. [26], reducing the amplitude, but not eliminating the DC offset.
The direct current component and high-order frequency harmonic can be eliminated by a
2nd-order integral flux observer with the frequency-locked loop (SOIFO-FLL), as reported
in Ref. [27]. A 2nd-order SOIFO-FLL computation process is complex. Additionally, an
improved rotor flux observer was proposed in Ref. [28], reducing the DC offset and high-
order frequency harmonics. However, this approach is ineffective during speed reversals
and may result in significant position estimation inaccuracy. In addition, a novel PLL-type
estimation scheme for the sensorless control of PMSM machines was proposed in Ref. [29].
The PLL observer employs the d-axis current error as an adjustment item for the 2nd-order
PLL position observer and the q-axis current error for the third-order extended speed
Luenberger observer to precisely control the motor speed in the absence of a position
sensor. However, this method is highly dependent on motor parameters, and the control
system is quite complex. Among the magnetic flux estimation methods, a paper applying
the active magnetic flux concept has been published, showing that rotor position estimation
is possible even in the slow-speed operation region [30,31]. Because the current estimation
error is fed back to estimate the magnetic flux, it is mandatory to use a current estimator.

Nevertheless, the presented current estimator is relatively complex, and the position
estimation performance deteriorates due to the error of the motor parameter [31]. The
proposed motion-sensorless control approach applies to various industrial applications,
including electric vehicles and servo systems. Its features include a broad speed range, easy
implementation, and the potential to reduce DC components and high-order frequency
harmonics. As a result, no additional parameter identification or disturbance suppression
structures are required. Remarkably, the proposed method can be applied in the 1.0–100.0%
range of rated speed. In contrast, 95.0% of motion-sensorless control techniques established
on the back-EMF estimate are inefficient, i.e., below 5.0% of the rated speed.

This article presents an improved IPMSM position sensorless system design scheme.
The projected value of the IPMSM stator flux linkage is calculated from an estimated value
of the rotor permanent magnetic flux linkage angle and the algebraic model (m-model)
of the stator flux linkage within a synchronous coordinate system. In the alpha-beta,
(α− β) frame, the IPMSM stator flux linkages obtained from the stator voltage and the
current integral models are compared to form a feedback closed-loop to suppress the
integral drift. The estimated IPMSM rotor position angle/speed values are obtained
using the cross-product of the actual and estimated flux linkage through the phase-locked
loop. Compared with the existing motor rotor position angle/speed estimation methods,
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the methodology proposed in this article is simple and has better dynamic and static
estimation performance. The MATLAB/Simulink and experimental outcomes show that
the suggested speed estimation algorithm works effectively, regardless of the variation in
machine parameters for different speed ranges and loads.

The structure of this article is as follows. Section 2 discusses the mathematical and stability
analysis of the presented rotational position and speed estimation technique. The presented
algorithm for a speed sensorless PMSM drive is implemented in MATLAB/Simulink, and
preliminary findings are shown in Section 3. The Myway PE-expert4 -based PMSM drive
laboratory prototype is used to verify the estimation method in the hardware. Section 4
presents the corresponding findings. The conclusion is presented in Section 5.

2. Theory and Application of Flux Observer with Phase Lock Loop

The stator flux measurement’s precision directly impacts the control system’s perfor-
mance. In the high-performance PMSM sensorless control system, the pure integrator, with
a simple structure, is employed to estimate the stator flux. Although the system structure
is simplified, efficient, and easy to implement, and the reliance on motor parameters is
reduced, the pure integrator observation method exhibits the initial value, DC offset, and
current sampling problem, causing harmonics amplification. At the same time, because
the pure integrator has no inhibitory effect on the DC component in the input signal, even
a small DC component will eventually lead to the saturation of the integrator. While the
motor is running, the direct current component can be created by sampling the stator
current. Therefore, the typical flux observer cannot precisely determine the rotor’s speed
and position. The LPF can solve the pure integrator problem in practical applications,
but can also lead to amplitude and phase inaccuracies in observing stator flux compared
with the actual flux. The inaccuracies may have an impact on the motor’s speed control
performance. In the position sensorless PMSM system, this article proposed an improved
flux observer design with a PLL, as shown in Figure 1. This article discusses its stability
analysis and design methods.
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In Figure 1, usα, usβ, isα, and isβ are the α-axis and β-axis components of the sta-
tor voltage and stator current of the motor in the static coordinate system, respectively.
θ̂ is the estimated value of the motor rotor angle obtained by the phase-locked loop, i.e.,
the estimated value of the rotor permanent magnet flux linkage orientation angle; the
corresponding coordinate system is called an estimated synchronous coordinate system,
ψ f is the permanent magnet flux linkage of the motor, îsd, and îsq is the projection value
of the stator current in the estimated synchronous coordinate system, ψ̂sd,ψ̂sq,ψ̂sα,ψ̂sβ; the

calculation is as shown in Figure 1. θ̂ = ]
^
ψs,

^
ψs = ψ̂sα + jψ̂sβ and ψs is the stator flux

obtained by integrating the voltage and current model of the motor; ψsα and ψsβ are the
projection values in the static coordinate system, θ = ]ψs, ψs = ψsα + jψsβ.
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Because the phase-locked loop has two integral links, when the motor speed is constant
(i.e., when the motor rotation angle is a ramp function of time), the static error of the phase-
lock loop is equal to zero to establish a steady-state solution of the system at this time

^
ψs(t) = ψ

∗
s (t);ψs(t) = ψ

∗
s (t);ψs = ψsα+jψsβ

]ψs(t) = θ(t) = θ∗(t);]ψ̂s =
^
θ(t) = θ∗(t)±2kπ

(1)

Since the system has multiple equilibrium points, it cannot be globally
asymptotically stable.

2.1. Stability Analysis of Flux Observer with the Phase-Locked Loop

Suppose the stator current of the motor is equal to zero (that is, no external load or
field weakening current, hereafter referred to as no load), namely isα = isβ = isd = isq = 0.
The stator voltage usα, usβ represents the electromotive force generated by the permanent
magnets of the rotor rotating on the stator winding.

Defining the error signal

ψ̃s(t) =
{

ψs(t)− ψ∗s (t)
}
=
{

ψsα+jψ
sβ

}
−
{

ψ∗sα+jψ∗sβ

}
(2)

˜̂ψs(t) =
{
ψ̂s(t)−ψ∗s (t)

}
=
{
ψ̂sα + jψ̂sβ

}
−
{
ψ∗sα+jψ∗sβ

}
(3)

~
θ(t) = {]ψs(t)−]ψ∗s } =

{
](ψ ∗s + ψ̃s

)
−]ψ∗s

}
= θ(t)− θ∗(t) (4)

~
^
θ(t) =

{
]ψ̂s(t)−]ψ∗s

}
=
{
]
(
ψ̂ s+ψ

∗
s
)
−]ψ∗s

}
= θ̂ (t)− θ∗(t) (5)

According to Figure 1, the corresponding equations are presented below
~
^
ψsα(t)
~
^
ψsβ(t)

 =

[
cosθ̂ −sinθ̂

sinθ̂ cosθ̂

][
ψ f
0

]
−
[

cosθ∗ −sinθ∗

sinθ∗ cosθ∗

][
ψ f
0

]
(6)

{
ψ̂s×ψs
|ψs|

∣∣ψ̂s
∣∣ − ψ∗s×ψ∗s
|ψ∗s ||ψ∗s |

}
=

ψ̂s×ψs
|ψs|

∣∣ψ̂s
∣∣ = sin(θ − θ̂) (7)

Appendix A contains the appropriate deduction of Equations (6) and (7). The error
model (large-signal nonlinear model) is shown in Figure 2.
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The error model (large-signal nonlinear model) shown in Figure 2 is a nonlinear time-
varying system in which the time-varying characteristic comes from the change of θ∗ time,
and the nonlinear characteristic comes from the cross-product and angle calculation. The
following discussion mainly applies the stability analysis method based on passivity.

In Figure 2, PI1(s) =
kP1s+kI1

s , PI2(s) =
kP2s+kI2

s , the error model of Figure 2 can be
further represented as shown by Figure 3. Near the origin

~
^
ψsα =

[
cos(θ∗+˜̂θ)− cosθ∗

]
ψ f ≈ −ψ f

[˜̂θsinθ∗
]

˜̂ψsα =
[
sin(θ∗+˜̂θ)− sinθ∗

]
ψ f ≈ −ψ f

[˜̂θcosθ∗
]

sin(θ̃− ˜̂θ) ∼= θ̃− ˜̂θ
(8)

~
θ = ]ψs −]ψ∗s = arcsin

ψsβ

|ψs|
− arcsin

ψ∗sβ
|ψ∗s |

(9)

Machines 2023, 11, x FOR PEER REVIEW 6 of 36 
 

 

0 1
s

sαψ

1
s

1PI

1PI

0

( ) ( )* *
s s s s

* *
s s s s

ˆ

ˆ

+ × +

+ +

 
 

ψ ψ ψ ψ

ψ ψ ψ ψ
2PI 1

s

sα f
ˆˆ ( ) cos( ) costψ ψ θ θ θ∗ ∗ = + −  


sβ f
ˆˆ ( ) sin( ) sintψ ψ θ θ θ∗ ∗ = + −  


ˆsin( )θ θ− 
θ̂

sβψ

sβˆ ( )tψ

sαˆ ( )tψ

 
Figure 2. A large-signal nonlinear model of the flux observer with a PLL. 

The error model (large-signal nonlinear model) shown in Figure 2 is a nonlinear time-
varying system in which the time-varying characteristic comes from the change of *θ  
time, and the nonlinear characteristic comes from the cross-product and angle calculation. 
The following discussion mainly applies the stability analysis method based on passivity. 

In Figure 2, P1 I 1
1

k s+kPI (s)=
s

, P2 I 2
2

k s+kPI (s)=
s

, the error model of Figure 2 can be 

further represented as shown by Figure 3. Near the origin 

ˆ ˆˆ

ˆ ˆˆ

ˆ ˆ

   − ≈ −      
   − ≈      

− ≅ −

=

=

 

 

  

* * *
sα f f

* * *
sβ f f

ψ cos(θ +θ) cosθ ψ ψ θsinθ

ψ sin(θ +θ) sinθ ψ ψ θcosθ

sin(θ θ) θ θ

 (8)

= − = −  
*

sβ sβ*
s s *

s s

ψ ψ
θ ψ ψ arcsin arcsin

ψ ψ
 (9)

 

0 P1 I1
2

P1 I1

P1 I1
2

P1 I1

P2 I2
2

k s k
s k s k

k s k
s k s k

k s k
s

+ 
 + + 
 +
 + + 
 +
 
 

sαψ̂

0

sβψ̂

( ) ( )

sα f

sβ f

* *
s s s s

* *
s s s s

ˆˆ ( ) cos( ) cos

ˆˆ ( ) sin( ) sin

ˆ
ˆsin( )

ˆ

t

t

ψ ψ θ θ θ

ψ ψ θ θ θ

θ θ

∗ ∗

∗ ∗

 
 

  = + −   
  = + −    
 + × +
 − =
 + + 





 
 

ψ ψ ψ ψ

ψ ψ ψ ψ

0

ˆsin( )θ θ− 

sαψ

sβψ

θ̂

 
Figure 3. The equivalent large-signal nonlinear model of the flux observer with a PLL. 

Firstly, the linearized model (small signal model) near the steady-state operating 
point is given. It is linear and time-varying and cannot be used to analyze the stability by 

Figure 3. The equivalent large-signal nonlinear model of the flux observer with a PLL.

Firstly, the linearized model (small signal model) near the steady-state operating
point is given. It is linear and time-varying and cannot be used to analyze the stability
by calculating the eigenvalue. However, it is difficult to solve the stability problem of the
equilibrium point of the nonlinear time-varying system using the small gain theorem.

From Equation (9) above, the expression ( ψsβ
|ψs| ) is further derived to obtain the linearization

model (small signal model) for the nonlinear model of the flux observer with a PLL, as follows

d
(

ψsβ

|ψs|

)
=

dψsβ|ψs| − ψsβd|ψs|
|ψs|2

=
1

|ψs|2

(
|ψs|·dψsβ − ψsβ

1
|ψs|

(ψsβ·dψsβ + ψsα·dψsα)

)

=
1

|ψs|2

(
dψsβ|ψs|2 − (ψsβψsαdψsα + ψsβψsβdψsβ)

|ψs|

)

=
ψsα

|ψs|2

(
ψsαdψsβ − ψsβdψsα

|ψs|

)
(10)
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Similarly, from Equation (9) above, the expression θ̃ is further derived to get the
linearization model near the steady state, as follows

dθ = 1√
1−
( ψsβ
|ψs |

)2
d
(

ψsβ
|ψs|

)
= |ψs|

ψsα

ψsα

|ψs|2
(

ψsαdψsβ−ψsβdψsα
|ψs|

)
= 1
|ψs|

(
ψsα
|ψs|dψsβ −

ψsβ
|ψs|dψsα

)
= 1
|ψs|

(
cosθ∗dψsβ − sinθ∗dψsα

)
(11)

Based on Equations (9)–(11), Equation (12) is derived as follows

θ̃ = ]ψs −]ψ∗s
θ̃ = arcsin

(
ψsβ
|ψs |

)
− arcsin

(
1
|ψ∗s |

ψ∗sβ

)
θ̃ ≈ ψ̃sβ.cosθ∗−ψ̃sα.sinθ∗

|ψ∗s |

(12)

Thus, the linearization model near the steady state is shown in Figure 4.
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Figure 4. Small-signal linearization model near the steady-state.

The linearized model near the steady state, shown in Figure 4, can also be equivalently
represented as the system in Figure 5. When the transfer function kP1s+kI1

s2+kP1s+kI1

kP2s+kI2
s2+kP2s+kI2

is

strictly positive in real-time, and the signal vector
[
−sinθ∗

cosθ∗

]
satisfies the sufficient excitation

condition, the origin of the system is asymptotically stable.
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Figure 5. The equivalent model of a small-signal model near the steady-state.

The stability problem of the large-signal nonlinear error model, shown in Figures 2 and 3,
is discussed below. For this reason, the error model in Figure 3 is expressed as an equivalent
form in Figure 6.
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The system in Figure 6 can be further expressed as the serial form of Figure 7.
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Figure 7. The series form of the error model.

The typical phase-locked loop system in the upper right corner of Figure 7 is stable,
with a static gain of 1, and there is enough bandwidth in the design to approximate it as

unity gain, showing θ̃ =

~
^
θ; therefore, the system shown in Figure 7 can be approximated

to the system shown in Figure 8.
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Small-gain theorems play a crucial role in stabilizing nonlinear feedback intercon-
nected systems as an essential application of L2 gain analysis. Many control issues involve
an input-output map from a disturbance input v to a regulated output y, which must be
minimal. With L2 input signals, the control system is designed to stabilize the input-output
map and minimize the L2 gain. In such cases, it is critical not only to be able to determine



Machines 2023, 11, 574 9 of 33

whether the system is finite gain L2 stable, but also to compute the L2 gain, or an upper
constraint on it. The necessary criteria for the stabilization and the weighted L2 gain are
derived. The feedback path of the system in Figure 8 consists of two nonlinear links in
series. Now, we calculate their L2 gain. Among them ψ̃sα, ψ̃sβ is the input nonlinear
time-varying link

θ̃ = ](ψ̃s+ψ∗s )−]ψ∗s (13)

It crosses the origin (when ψ̃s = 0, θ̃ = 0), as shown in Figure 9, in
∣∣∣θ̃∣∣∣ < π

2 , which is
within the range ∣∣ψ̃s

∣∣ ≥ ∣∣∣sinθ̃
∣∣∣|ψ∗s | (14)
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Figure 9. The gain of nonlinear link θ̃ = ](ψ̃s+ψ∗s )−]ψ∗s .

At no load ‖ψ∗s ‖ = ψ f , for scalar θ̃,
∣∣∣θ̃∣∣∣ = ∥∥∥θ̃

∥∥∥ (where ‖.‖ denotes a 2-norm, which is

‖x‖ =
√

n
∑

i=1
x2

i , |.| represents absolute value), resulting in∣∣∣θ̃∣∣∣∣∣ψ̃s
∣∣ ≤

∣∣∣θ̃∣∣∣∣∣∣sinθ̃
∣∣∣|ψ∗s | (15)

When θ̃ ∼= 0, 1
ψ f

is the minimum, and θ̃ 6= 0, then start to increase at θ̃ = ±π
2 ,

equivalent to π
2ψ f

.

Nonlinear time-varying link, with θ̃ as input

~
^
ψsα = ψ f

[
cos(θ ∗+θ̃

)
− cosθ∗

]
= −2ψ f

{
sin θ̃

2 sin 2θ∗+θ̃
2

}
~
^
ψsβ = ψ f

[
sin(θ ∗+θ̃

)
− sinθ∗

]
= −2ψ f

{
sin θ̃

2 cos 2θ∗+θ̃
2

} (16)


~
^
ψsα
~
^
ψsβ

 = ψ f

cos(θ ∗+θ̃
)
− cosθ∗

sin(θ ∗+θ̃
)
− sinθ∗

 = 2ψ f sin
θ̃

2

[
−sin 2θ∗+θ̃

2
cos 2θ∗+θ̃

2

]
(17)

It passes through the center of the circle of the vector |ψ∗s | (when θ̃ ∼= 0,

[˜̂ψsα˜̂ψsβ

]
∼= 0), and has∣∣∣ ˜̂ψs

∣∣∣∣∣∣θ̃∣∣∣ =
2ψ f

∣∣∣sin θ̃
2

∣∣∣∣∣∣θ̃∣∣∣ (18)
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When θ̃ 6= 0, the value of ψ f begins to decrease, equal to 0.6366 ψ f at θ̃ = ±π
2 . When

two links are connected in series, the gain of feedback link L2 is in the range of
∣∣∣θ̃∣∣∣ < π

2

1
|ψ̃s|

∣∣∣ ˜̂ψs

∣∣∣ = ∣∣∣ ˜̂ψs

∣∣∣
|θ̃| ×

|θ̃|
|ψ̃s| ≤

max∥∥∥θ̃
∥∥∥ 6= 0

∥∥∥ ˜̂ψs

∥∥∥
‖θ̃‖ ×

max∥∥ψ̃s
∥∥ 6= 0

‖θ̃‖
‖ψ̃s‖

=
2ψ f

∣∣∣sin θ̃
2

∣∣∣
|θ̃| × |θ̃|

|ψ∗s ||sinθ̃|

=
2ψ f

∣∣∣sin θ̃
2

∣∣∣
|ψ∗s ||sinθ̃| = 2.

∣∣∣sin θ̃
2

∣∣∣
|sinθ̃|

(19)

That is to say, the L2 gain of the nonlinear system in the feedback path in Figure 9 is

less than or equal to 2

∣∣∣sin θ̃
2

∣∣∣
|sinθ̃| when θ̃ ∼= 0 is equal to 1, and then its maximum value begins

to increase when the maximum value of θ̃ = ±π
2 is equal to 1.414.

The following is proof of the large-scale stability of the system shown in Figure 8,
using the theory of passivity.

Figure 10 shows the process of calculating ψ̃s from ˜̂ψs for the nonlinear system in the
feedback path of the system shown in Figure 8. From Figure 10, it can be seen that the
angle between ψ̃s and ˜̂ψs is always less than or equal to 90◦ (the figure shows 0 ≤ θ∗< 90

◦
,

0 ≤
∼
θ < 90

◦
, and the same can be proved for other situations

∣∣∠ψ̃s −∠ψ̃s
∣∣ ≤ 90

◦
), so

∫ T

0

[
ψ̃sα ψ̃sβ

]
.

[˜̂ψsα˜̂ψsβ

]
dt =

∫ T

0
ψ̃s × ˜̂ψs.dt > 0 ∀T > 0 (20)
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That is, the feedback block of the system shown in Figure 10 is passive. According to
the conclusion of system superstability, as long as the transfer function of the forward box
is equal to

kP1s + kI1

s2+kP1s + kI1
(21)
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it is strictly true, and the system in Figure 10 is asymptotically stable (exponentially stable).
The lower bound of the dot product ψ̃s. ˜̂ψs is given below. In

∣∣∣θ̃∣∣∣ < π
2 , within the range of

‖ψ∗s ‖.
∣∣∣∣sinθ̃

∣∣∣∣≤ ∥∥∥∥∼ψs

∥∥∥∥ and also
∣∣∣∠ψ̃s −∠ ˜̂ψs

∣∣∣ ≤ 90
◦ − 1

2 θ̃, so there is

∣∣∣∣∣cos(90
◦ − θ̃

2
)

∣∣∣∣∣|sinθ:|
∥∥∥ ˜̂ψs

∥∥∥‖ψ∗s ‖ ≤ ˜̂ψsψ̃s =
∥∥∥ ˜̂ψs

∥∥∥∣∣∣sinθ̃
∣∣∣‖ψ∗s ‖

∣∣∣∣∣sin
θ̃

2

∣∣∣∣∣ (22)

in
∣∣∣θ̃∣∣∣ < π

2 within range
∣∣∣∠ψ̃s −∠ ˜̂ψs

∣∣∣ ≤ 90
◦ − 1

2 θ̃, so there is

∣∣∣∣∣cos(90
◦ − θ̃

2
)

∣∣∣∣∣‖ψ∗s ‖∥∥∥ ˜̂ψs

∥∥∥ ≤ ˜̂ψs.ψ̃s =
∥∥∥ ˜̂ψs

∥∥∥.‖ψ∗s ‖
∣∣∣∣∣sin

θ̃

2

∣∣∣∣∣
3∣∣∣∣∣sin

θ̃

2

∣∣∣∣∣.∥∥∥ ˜̂ψs

∥∥∥2
(23)

That is to say, for a finite
∥∥∥ ˜̂ψs

∥∥∥, the lower bound of the dot product ˜̂ψs.ψ̃s tends to be

zero because
∣∣∣θ̃∣∣∣→ 0 , so it cannot provide excessive passivity for the system.

2.2. When the Stator Current of the Motor Is Not Zero

In this portion, we will discuss the system’s stability when the motor stator current
is not equal to zero (corresponding to the motor with external load or field weakening
operation, hereafter referred to as external load). For the convenience of description, the
system shown in Figure 1 is reconstructed in Figure 11. In the proposed method, there are
four integral function blocks (I–IV), as shown in Figure 11. The first and second, namely
I and II, are the integral blocks which are used for estimating the flux linkage observer, and
the third and fourth, namely, the III and IV integral blocks, are the PLL PI2 speed and angle
estimation integrals, respectively, which examine whether the system responses of the four
integrators in Figure 11 converge together at different initial values.
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Figure 11. Design of the flux observer with a PLL with external load. Figure 11. Design of the flux observer with a PLL with external load.

The analysis method is the same as before, assuming

ψ̂s(t) =ψ∗s (t);ψs(t) =ψ∗s (t)
]ψ̂s= θ̂(t) =θ∗(t)±2kπ;Rψs(t) = θ(t) =θ∗(t)

(24)

This is the steady-state solution of the system in Figure 11. Similarly, the system cannot
be globally asymptotically stable because it has multiple equilibrium points. We will take
the case of origin as an example.
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Defining error signal

ψ̃s(t) = ψs(t)− ψ∗s (t)˜̂ψs(t)=ψ̂s(t)− ψ∗s (t)

θ̃(t) = ]ψs(t)−]ψ∗s (t) = θ(t)− θ∗(t)˜̂ψ(t) = ]ψ̂s(t)−]ψ∗s (t) = θ̂(t)− θ∗(t)

(25)

According to Figure 11, the corresponding equations are presented below

˜̂ψs(t) = ψ̂s(t)− ψ∗s (t) =
{

T2s/2r(θ̂)LT2r/2s(θ̂)
[

isα
isβ

]
+ T2s/2r(θ̂)

[
ψ f
0

]}
−ψ∗s (t)

=

{
T2s/2r

(
θ∗ + θ̃

)
LT2r/2s

(
θ∗ + θ̃

)[isα
isβ

]
+ T2s/2r

(
θ∗ + θ̃

)[ψ f
0

]}
−
{

T2s/2r(θ
∗)LT2r/2s(θ

∗)

[
isα
isβ

]
+ T2s/2r(θ

∗)

[
ψ f
0

]}
{

ψ̂s×ψs
|ψs ||ψ̂s| −

ψ∗s×ψ∗s
|ψ∗s ||ψ∗s |

}
= ψ̂s×ψs
|ψs ||ψ̂s| = sin(θ− θ̂)

(26)

where

L =

[
Ld 0
0 Lq

]
,T2s/2r(θ

∗) =

[
cos(θ ∗

)
−sin(θ ∗

)
sin(θ ∗

)
cos(θ ∗

) ], T2r/2s(θ
∗) =

[
cos(θ ∗

)
sin(θ ∗

)
−sin(θ ∗

)
cos(θ ∗

)] (27)

Henceforth,

T2s/2r(θ
∗) =T−1

2r/2s(θ
∗) =TT

2r/2s(θ
∗)

T2s/2r(θ
∗+θ̃) =T2s/2r(θ

∗)T2s/2r(θ̃) =T2s/2r(θ̃)T2s/2r(θ
∗)

(28)

Similarly,

˜̂ψs(t) = T2s/2r(θ
∗)
{

T2s/2r(θ̃)LT2r/2s(θ̃)− L
}

T2r/2s(θ
∗)

[
isα

isβ

]
+
{

T2s/2r(θ̃)− I
}

T2s/2r(θ
∗)

[
ψ f
0

]
(29)

Obviously, for the SPMSM (Ld = Lq) let T2s/2r(θ̃)LT2r/2s(θ̃)−L = 0; therefore, it is the
same as the situation under no load.

ψ̃s(t)× ˜̂ψs(t) =
[

ψ̃sα(t)
ψ̃sα(t)

]t
[˜̂ψsα(t)˜̂ψsβ(t)

]
=

[
ψ̃sα(t)
ψ̃sα(t)

]t

(T2s/2r

(
θ̃
)
− I)T2s/2r(θ

∗)

[
ψ f
0

]
> 0 (30)

That is, for the hidden pole motor, in the error model, only the rotor error angle θ̃ is adopted.{
T2s/2r(θ̃)− I

}
T2s/2r(θ

∗)

[
ψ f
0

]
(31)

For any feedback action, the same linearization model and large-signal error model
exist near the static working point. The PMSM with load is the same as without load.
Figure 11 shows that the system is asymptotically stable. The above characteristics are
very important for the application of the flux observer with a phase-locked loop in the
asynchronous motor. At this time, the substitution inductance matrix L is a first-order
inertial dynamic system with equal diagonal elements, and the static gain is equal to the
mutual inductance among the stator and rotor of the motor, and the time constant is equal
to the rotor’s time constant.

For salient pole motors, Ld < Lq, hence
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[
ψ̃sα(t)
ψ̃sβ(t)

]
=

{[
Ldcos2θ̂ + Lqsin2θ̂ (L d − Lq)cosθ̂sinθ̂

(L d − Lq)cosθ̂sinθ̂ Ldsin2θ̂ + Lqcos2θ̂

][
isα
isβ

]
+

[
ψ f cosθ̂

ψ f sinθ̂

]}

−
{[

Ldcos2θ∗+Lqsin2θ∗ (L d − Lq)cosθ∗sinθ∗

(L d − Lq)cosθ∗sinθ∗ Ldsin2θ∗+Lqcos2θ∗

][
isα
isβ

]
+

[
ψ f cosθ∗

ψ f sinθ∗

]}
≈ (Ld − Lq)

[
−2cosθ∗sinθ∗ cos2θ∗ − sinθ∗

cos2θ∗ − sinθ∗ 2cosθ∗sinθ∗

][
isα
isβ

]
.˜̂θ+ ˜̂θ[−ψ f sinθ∗

ψ f cosθ∗

]
(32)

sin(θ̃− θ̂
:
) ≈ θ̃− ˜̂θ

θ̃ ≈ 1
|ψ∗s |

(cosθ∗ψ̃sβ − sinθ∗ψ̃sα)
(33)

Thus, there is the small-signal model shown in Figure 12. It can be seen that under load
conditions, unless Ld = Lq, the conclusion that the linearized small-signal model is stable
cannot be obtained by this method when the stator current of the motor is equal to zero.
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For the IPMSM Ld 6= Lq, to discuss the stability of the large signal system in Figure 11,
it is the same as that of no-load; it is considered that the frequency band of PLL is wide
enough; therefore, we replace it with unity gain because

˜̂ψs(t)=
{

T2s/2r

(
θ∗ + θ̃

)
L
[
T2r/2s

(
θ∗ + θ̃

)
− T2r/2s(θ

∗) + T2r/2s(θ
∗)
][ isa

issβ

]
+ T2s/2r

(
θ∗ + θ̃

)[ψ f
0

]}
−
{

T2s/2r(θ
∗)LT2r/2s(θ

∗)

[
isα
iss

]
+ T2s/2r(θ

∗)

[
ψ f
0

]}
=

{
T2s/2r

(
θ∗ + θ̃

)
LT2r/2s(θ

∗)

[
isα
iss

]
+ T2s/2r

(
θ∗ + θ̃

)[ψ f
0

]}
−
{

T2s/2r(θ
∗)LT2r/2s(θ

∗)

[
isα
iss

]
+ T2s/2r(θ

∗)

[
ψ f
0

]}
+ T2s/2r

(
θ∗ + θ̃

)
L
[

T2r/2s

(
θ∗ + θ̃

)
− T2r/2s(θ

∗)
][isα

iss

]
(34)

The above equations are represented in the system block diagram shown in Figure 13.
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Figure 13. The approximate system of Figure 11 when the dynamic of PLL is ignored.

Obviously, for a given stator current
[

isα
isβ

]
and

∣∣∣θ̃∣∣∣ ≤ π
2 , the static nonlinear systems of

the two feedback branches are finite gains and cross the origin. Among them, the operation

relationship of the nonlinear branch from ψ̃s(t) to
[

yα
yβ

]

T2s/2r(θ
∗+θ̃)

{
LT2r/2s(θ

∗)

[
isα
isβ

]
+

[
ψ f
0

]}
− T2s/2r(θ

∗)

{
LT2r/2s(θ

∗)

[
isα
isβ

]
+

[
ψ f
0

]}
(35)

The operational relationship with the first section

k > − ˜̂ψs(t) = T2s/2r(θ
∗+θ̃)

[
ψ f
0

]
− T2s/2r(θ

∗)

[
ψ f
0

]
(36)

is the same, as shown in Figure 10; therefore,

[
ψ̃sα(t) ψ̃sβ(t)

]
.
[

yα
yβ

]
=
[
ψ̃sα(t) ψ̃sβ(t)

]
T2s/2r(θ

∗+θ̃)

{
LT2r/2s(θ

∗)

[
isα
isβ

]
+

[
ψ f
0

]}
−T2s/2r(θ

∗)

{
LT2r/2s(θ

∗)

[
isα
isβ

]
+

[
ψ f
0

]}
 ≥ 0 (37)

and it is passive. However, the nonlinear branch from ψ̃s(t) to
[

zα
zβ

]
, although it has finite

gain and passes through the origin, is not passive. Next, the loop transformation method
is used to compensate for the feedback path’s insufficient passivity by using the forward
path’s excessive passivity.

For ψ̃s(t) to
[

zα
zβ

]
, the nonlinear branches of the system are
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[
zα
zβ

]
= T2s/2r

(
θ∗ + θ̃

)
L
[

T2r/2s

(
θ∗ + θ̃

)
− T2s/2r(θ

∗)
][ isα

isβ

]
[

zα
zβ

]
= T2s/2r(θ

◦)
[

T2s/2r

(
θ̃
)

LT2r/2s

(
θ̃
)
− T2s/2r

(
θ̃
)

L
]
T2s/2r(θ

∗)

[
isα
isβ

]

[
zα
zβ

]
= T2s/2r(θ

◦)



[
Ld· cos2 θ̃ + Lq· sin2 θ̃

(
Ld − Lq

)
cos θ̃ sin θ̃(

Ld − Lq
)

cos θ̃ sin θ̃ Ld sin2 θ̃ + Lq cos2 θ̃

]

−
[

Ld cos θ̃ −Lq sin θ̃

Ld sin θ̃ Lq cos θ̃

]
T2r/2s(θ

◦)

[
isα
isβ

]

= T2s/2r(θ
◦)



[
cos θ̃ − sin θ̃

sin θ̃ cos θ̃

][
Ld

Lq

][
cos θ̃ sin θ̃

− sin θ̃ cos θ̃

]

−
[

cos θ̃ − sin θ̃

sin θ̃ cos θ̃

][
Ld

Lq

]
T2r/2s(θ

◦)

[
isα
isβ

]

= T2s/2r(θ
∗)



[
Ld cos2 θ̃ + Lq sin2 θ̃

(
Ld − Lq

)
cos θ̃ sin θ̃(

Ld − Lq
)

cos θ̃ sin θ̃ Ld sin2 θ̃ + Lq cos2 θ̃

]

−
[

Ldd cos θ̃ −Lq sin θ̃

Ld sin θ̃ Lq cos θ̃

]
T2r/2s(θ

∗)

[
isα
isβ

]
¬

(38)

In the above formula,

[
Ldcos2θ̃ + Lqsin2θ̃ (L d − Lq)cosθ̃sinθ̃

(L d − Lq)cosθ̃sinθ̃ Ldsin2θ̃ + Lqcos2θ̃

]
−
[

Ldcos2θ̃ + Lqsin2θ̃ (L d − Lq)cosθ̃sinθ̃

(L d − Lq)cosθ̃sinθ̃ Ldsin2θ̃ + Lqcos2θ̃

]
−
[

Ldcosθ̃ −Lqsinθ̃

Ldsinθ̃ Lqcosθ̃

]
(39)

Use the Taylor series to expand around θ̃ = 0, ignoring the second-order infinitesimal
θ̃, and get[

Ldcos2θ̃ + Lqsin2θ̃ (L d − Lq)cosθ̃sinθ̃

(L d − Lq)cosθ̃sinθ̃ Ldsin2θ̃ + Lqcos2θ̃

]
−
[

Ldcosθ̃ −Lqsinθ̃

Ldsinθ̃ Lqcosθ̃

]
≈
[

0 Ld
−Lq 0

]
θ̃ (40)

Therefore, for small-angle estimation errors, the following equation is used[
zα
zβ

]
= T2s/2r(θ

∗+θ̃)L
[

T2r/2s(θ
∗+θ̃)− T2s/2r(θ

∗)
][isα

isβ

]
≈ θ̃T2s/2r(θ

∗)

[
0 Ld
−Lq 0

]
T2s/2r(θ

∗)

[
isα
isβ

]
(41)

In this way,
∣∣∣θ̃∣∣∣ ≈ 0 when substituting 1

‖ψ∗s ‖
∥∥ψ̃s

∥∥ ≥ ∣∣∣sinθ̃
∣∣∣. Let

[
ψ̃sα ψ̃sβ

][zα
zβ

]
≤
∥∥ψ̃s

∥∥∥∥∥∥[zα
zβ

]∥∥∥∥ ≤
∥∥ψ̃s

∥∥2

‖ψ∗s ‖

∥∥∥∥T2s/2r(ψ
∗)

[
0 Ld
−Lq 0

]
T2s/2r(θ

∗)

[
isα
isβ

]∥∥∥∥ (42)

Among these, the rotation transformations T2s/2r(θ
∗), T2r/2s(θ

∗) are orthogonal ma-
trices, and orthogonal transformation does not change the length of the vector, so the
calculation of the induced norm of the matrix is as follows (suppose Lq > Ld)
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∥∥∥∥T2s/2r(θ
∗)

[
0 Ld
−Lq 0

]
T2s/2r(θ

∗)

∥∥∥∥ =
sup
‖x‖ 6= 0

∥∥∥∥∥T2s/2r(θ
∗)

[
0 Ld
−Lq 0

]
T2s/2r(θ

∗)x

∥∥∥∥∥
‖x‖

=
sup
‖x‖ 6= 0

∥∥∥∥∥T2s/2r(θ
∗)

[
0 Ld
−Lq 0

]
T2s/2r(θ

∗)x

∥∥∥∥∥
‖T2s/2r(θ∗)x‖ =

sup
‖x‖ 6= 0

∥∥∥∥∥T2s/2r(θ
∗)

[
0 Ld
−Lq 0

]
y

∥∥∥∥∥
‖y‖ =

sup
‖x‖ 6= 0

∥∥∥∥∥
[

0 Ld
−Lq 0

]
y

∥∥∥∥∥
‖y‖

=

√
λmax

[
0 Ld
−Lq 0

]t [
0 Ld
−Lq 0

]
=

√
λmax

[
L2

q 0
0 L2

d

]
= Lq

(43)

Therefore, there is

[
ψ̃sα ψ̃sβ

][zα
zβ

]
≤

Lq‖is‖
‖ψ∗s ‖

∥∥ψ̃s
∥∥2 (44)

In this way, if the forward path transfer function in Figure 13 exhibits excessive passive
k > 0, the loop transformation method is applied, as shown in Figure 14. Its stability is
equivalent to that of the system shown in Figure 13 and the forward path transfer function
of the system in Figure 14.

kP1s+kI1
s2+kP1s+kI1

1− (k P1s+kI1)k
s2+kP1s+kI1

=
kP1s + kI1

s2+kP1s + kI1−((k P1s + kI1) k)
(45)

is strictly true, and the feedback path shows

ψ̃T
s (kψ̃s +y + z) = k

∥∥ψ̃s
∥∥2

+ ψ̃T
s y+ψ̃T

s z (46)
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Figure 14. Application of the loop transformation method to prove the stability of the system in 
Figure 11. 

Figure 14. Application of the loop transformation method to prove the stability of the system in Figure 11.

From the above results, when
∣∣∣θ̃∣∣∣ ≤ π

2 ψ̃T
s y ≥ 0, take

k >
Lq‖is‖
‖ψ∗s ‖

(47)



Machines 2023, 11, 574 17 of 33

when k
∥∥ψ̃s

∥∥2
+ ψ̃T

s z ≥ 0, the feedback path is also passive. Therefore, the system of

Figure 11 is asymptotically stable near the equilibrium point when the relation k >
Lq‖is‖
‖ψ∗s ‖

is satisfied in non-heavy loads and deep weak magnetic fields. For a closed-loop transfer
function composed of a PI regulator and an integrator

kP1s + kI1

s2+kP1s + kI1
(48)

the condition of strictly true, as kP1 = 2ξωn > 0, kI1 = ω2
n > 0, kP1

2 > kI1, namely
ξ > 0.5. In this way, it can be deduced that the above transfer function is not too passive
when ξ = 0.5, i.e., the maximum positive feedback coefficient is k = 0, which keeps the
closed-loop transfer function strictly positive real, and when ξ = ∞, the maximum positive
feedback coefficient k = 1 keeps the closed-loop transfer function strictly positive real as
shown in Appendix B.

The following content explains the stability region mentioned in the above results.
The matrix in formula () is

T2s/2r(θ
◦)

{[
cosθ̃ −sinθ̃

sinθ̃ cosθ̃

][
cosθ̃ sinθ̃

−sinθ̃ cosθ̃

][
Ld

Lq

]
−
[

cosθ̃ −sinθ̃

sinθ̃ cosθ̃

][
Ld

Lq

]}
T2r/2s(θ

∗) (49)

Its norm satisfies the relation

‖ T2s/2r(θ
◦)

{[
cosθ̃ −sinθ̃

sinθ̃ cosθ̃

][
Ld

Lq

][
cosθ̃ sinθ̃

−sinθ̃ cosθ̃

]
−
[

cosθ̃ −sinθ̃

sinθ̃ cosθ̃

][
Ld

Lq

]}
T2/2s(θ

∗) ‖

= ‖
[

cosθ̃ −sinθ̃

sinθ̃ cosθ̃

][
cosθ̃ sinθ̃

−sinθ̃ cosθ̃

][
Ld

Lq

]
−
[

Ld
Lq

][
cosθ̃ −sinθ̃

sinθ̃ cosθ̃

]
‖

= ‖
[

Ld
Lq

]{[
cosθ̃ sinθ̃

−sinθ̃ cosθ̃

]
− I

}
‖

=

√√√√λmax

{[
cosθ̃ − 1 −sinθ̃

sinθ̃ cosθ̃ − 1

][
cosθ̃ − 1 −sinθ̃

sinθ̃ cosθ̃ − 1

][
L2

d 0
0 L2

]

=

√√√√√√λmax


 L2

d

(
cosθ̃ − 1

)2
+ L2

qsin2θ̃
(

L2
d − L2

q

)(
cosθ̃ − 1

)
sinθ̃(

L2
d − L2

q

)(
cosθ̃ − 1

)
sinθ̃ L2

dsin2θ̃ + L2
q

(
cosθ̃ − 1

)2




(50)

The characteristic equation of the matrix in the radical on the right side of the last
equal sign in the above formula is

λ2 −
(

L2
d + L2

q

)[(
cos θ̃ − 1

)2
sin2 θ̃

]
λ + L2

dL2
q

[(
cos θ̃ − 1

)2
sin2 θ̃

]2
= 0 (51)

Its two characteristic roots are

λ1 =
[
(cosθ̃ − 1)

2
sin2θ̃

]
L2

q = 2(1 − cosθ̃
)

L2
q, λ2 =

[
(cosθ̃ − 1)

2
sin2θ̃

]
L2

d = 2(1 − cosθ̃)L2
d (52)

Assume Lq> Ld, then
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‖ T2/2r(θ
◦)

{[
cosθ̃ −sinθ̃

sinθ̃ cosθ̃

][
Ld

Lq

][
cosθ̃ sinθ̃

−sinθ̃ cosθ̃

]
−
[

cosθ̃ −sinθ̃

sinθ̃ cosθ̃

][
Ld

Lq

]}
T2r/2s(θ

◦)

== ‖
[

Ld
Lq

]
 (

cosθ̃
) (

sinθ̃
)(

−sinθ̃
) (

cosθ̃
) − I

 ‖
= Lq

√
2
(

1−
(

cosθ̃
))

= 2Lq

∣∣∣(sin θ̃
2

)∣∣∣x
(53)

when θ̃→ 0 , 2Lq

∣∣∣sin θ̃
2

∣∣∣→ Lqθ̃ , it is consistent with the results of the previous
small-signal model.

The above results demonstrate that the flux observer design with PLL is unsuitable
for the reluctance motor because the inductance of the two axes of the reluctance motor is
not equal, and the flux value of a motor is equivalent to the product of the stator current
times the inductance.

3. Simulation Results and Analysis

The velocity regulation system and block diagram of motion-sensorless control based
on the proposed method is depicted in Figures 15 and 16 respectively. The FOC, or vector
control, is utilized as the primary control scheme. Based on a fundamental model, Figure 15
depicts an overall block diagram of a vector-controlled electrical motor drive with motion
sensorless control. A sampled voltage and current are initially executed in the Clarke
transformation to obtain the fixed reference frame voltage and current. The proposed
method then provides the estimated rotor speed and position angle. The projected speed
is sent back to the speed control loop, while the estimated position angle is employed to
execute a rotating reference frame and inverse DQ transformation. This article proposes
an improved switching method that utilizes an S-type function as a switching function to
achieve a smooth state transition.
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êβ −

−
1PI

1PI

sαψ

sβψ s s

s s

ˆ
ˆ

×ψ ψ
ψ ψ

ˆsin( )θ θ−

−

−

^
sαψ

^
sβψ iα

iβ

θ̂

θ̂

Integral Flux 
linkage 
observer

Speed and 
Position 

extraction

Flux linkage 
observer

+

+
+
+

^
sαψ

^
sβψ

^ω

vα
vβ

 
Figure 16. A proposed motion-sensorless speed and position estimation block diagram. 

The amplitude of torque current, an S-type function, is used as the weight function 
during the angle-switching process. Select an S-type function: 

1( )
11

1 a
WT

e ω ω∗−
= −

+
 (54)

Among them *ω   is the given angular frequency of the motor, 1ω   is the corre-
sponding angular frequency when the weight changes to 0.5, and a  is a constant that can 
adjust the rate of change of the weight function. The variation curve of the weight function 
with angular frequency is shown in Figure 17. 

Figure 16. A proposed motion-sensorless speed and position estimation block diagram.

The amplitude of torque current, an S-type function, is used as the weight function
during the angle-switching process. Select an S-type function:

WT = 1− 1
1 + ea(ω1−ω∗)

(54)

Among them ω∗ is the given angular frequency of the motor, ω1 is the corresponding
angular frequency when the weight changes to 0.5, and a is a constant that can adjust the
rate of change of the weight function. The variation curve of the weight function with
angular frequency is shown in Figure 17.
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The simulated interior PMSM parameters are shown in Table 1. Observer gains are
shown in Table 2. Simulation/Simulink studies are conducted in this section to evaluate
the performance of the new proposed rotor position angle estimator.
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Table 1. The specifications for the IPMSM used in the Simulink simulation and the experiment.

Parameters Values

Poles 3

Stator phase resistance 0.1 Ω

Flux linkage 0.148 Wb

DQ-axis inductance 0.358/0.7 mH

Rated current 40 A

Rated speed 1000 r/min

Rated power 15 Kw

Moment of inertia of rotor 0.188× 10−2 kg.m2

Viscous damping 0.000 203 448 N.m.s

Table 2. Observer gains.

Parameters Values

kp of the speed controller 20

ki of the speed controller 2× 5× 10−1

kp of the PLL PI2 observer 1414

ki of the PLL PI2 observer 1× 106

kp of PI1 the observer 100

ki of PI1 the observer 200

A. Verification of Dynamic tracking performance

To verify the effectiveness of the proposed sensorless control algorithm and state-switching
strategy, a model was built using MATLAB/Simulink for simulation verification. Figure 18
illustrates the performance of the proposed scheme under speed command variations.

Simulation setup: A ramp with a slope of 1000 r/min/s is set for the speed at 0–1 s.
The speed increases from 0 r/min to 1000 r/min, and the speed is constant from 1–4.5 s.
The command speed is reduced from 1000 r/min to 600 r/min at a rate of −1000 r/min/s
at 4.5–5.5 s, and the speed is constant at 5.5–7 s; the motor is loaded with 10 Nm, and the
initial given torque current is 20.51 A.

Figure 18a,b show that the speed estimated by the method proposed in this article
can accurately track the actual value, with only a few speed estimation deviations be-
low 400 r/min. After the state switch is completed, the speed estimation deviation is
0. The speed estimation deviation only exhibits a small deviation when the speed or
torque current suddenly changes, which can be ignored. Figure 18c shows that in the first
0.4 s of the simulation, there is a certain deviation between the estimated and actual rotor
positions. After the state switch is completed, the estimation deviation converges quickly.
In the steady-state state, the estimation deviation of the rotor position is zero, and only
a small deviation is caused by a phase-locked loop when the speed or torque current
suddenly changes; overall, the simulation results show that the rotor position estimation
method proposed in this paper can accurately estimate the position and speed of the rotor.
Figure 19a shows that during the acceleration process, the torque current only fluctuates
slightly when the speed loop is switched at 0.4 s, without significant fluctuation or oscil-
lations. In the A-phase current curve shown in Figure 19b, there is no significant current
mutation; from the speed waveform in Figure 18a, it can also be seen that there is no
significant fluctuation in the speed during the state-switching process. The simulation
results verify the feasibility and effectiveness of the proposed sensorless control method
and state-switching strategy.
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Figure 19. Simulation results of the wide speed-range sensorless control system: (a) torque current-
waveform; (b) phase A current curve and its partially enlarged view.

B. Simulation results analysis of initial value

It is evident that the proposed design scheme in this article is a nonlinear system,
and its stability is related to the type of input (the system in Figures 1 and 11 is not
asymptotically stable under any stator voltage or current input). To verify the asymptotic
stability of the system in Figures 1 and 11 under sinusoidal voltage and current inputs, it
is only necessary to examine whether the system responses of the four integrators in the
figure converge together at different initial values. Figure 20 shows the simulation results
of the motor running at a constant speed of 30 rad/s with a load of 5 Nm. The system takes
the sinusoidal voltage and current of the motor as inputs, and the integrators I, II, III, and
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IV give different initial values of 0.1 Wb, 0.05 Wb, 40 rad/s, 5.9 rad, and 0.09 Wb, 0.06 Wb,
20 rad/s, and 0.6 rad, respectively.

From the simulation results, it can be seen that under the condition of sinusoidal
voltage and current input, and given different initial values of the four integrators, the
outputs of the four integrators in the system shown in Figures 1 and 11 can converge
together, i.e., they can converge to the equilibrium state. From this, it can be seen that the
design scheme shown in Figures 1 and 11 is asymptotically stable under sinusoidal voltage
and current inputs.

C. DC Disturbance Elimination

To further validate a proposed observer’s better DC elimination performance, results
under DC disturbances are investigated, i.e., taking the α-axis as an example. Figure 21
shows that no feedback is added when the stator back EMF contains a DC offset of 0.1 V. The
PI regulators (PI1)kp, and ki coefficients are tuned to zero, while in the feedback function, the
PI regulators (PI1)kp, and ki coefficients are adjusted to 100 and 200, respectively). However,
when there is feedback, the gains of the PI regulator (PI1) can be selected in a wide range,
and a good adjustment effect can be obtained. It is evident that when the stator flux linkage
deviation feedback is not added, the flux linkage integral output shows a serious integral
drift problem. After adding the feedback, the integral drift is well suppressed. Simulation
comparison has verified that this method can effectively suppress the integral drift problem
caused by DC bias.
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Figure 20. System response under different initial values: (a) α-axis flux linkage; (b) β-axis flux link-
age; (c) angular speed; (d) rotor position. 

Figure 20. System response under different initial values: (a) α-axis flux linkage; (b) β-axis flux
linkage; (c) angular speed; (d) rotor position.
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D. Verification of Robust Performance

The effectiveness of motion-sensorless control can be adversely affected, particularly
in the low-speed region, by position errors caused by motor parameter variations. To
verify the robustness of the motion sensorless control method proposed in the paper, the
direct axis inductance Ld is reduced by 20%, the permanent magnet flux linkage ψ f is
increased by 5%, and the quadrature axis inductance Lq parameter is reduced by 20%. All
the simulation tests applying parameter mismatch are carried out at a constant speed of
80 rad/s with load torque 5 Nm. The simulation results are shown in Figure 22. It can be
seen that under the condition of initial estimation bias when the system has no parameter
error, the steady-state rotor position estimation bias can converge to 0; when there is an
electrical parameter deviation in the system, there is a certain deviation in the estimated
rotor position, but the system is still stable. In the proposed scheme, model parameters Rs,
Ld, and Lq have a minimal effect on the angle error. The errors in ψ f result in a positional
error but do not affect the system’s stability. Using the voltage and current of the motor
loaded with 5 Nm, under variable speed operating conditions (as shown in Figure 23a)
as input, simulation was conducted under the same parameter deviation. The simulation
results are shown in Figure 23. Figure 2a shows the waveform of motor angular velocity
variation. It operates at a constant speed of 80 rad/s at 0–1 s, increases from 80-rad/s to
100 rad/s at 1–1.05 s, then runs at a constant speed, decelerates from 100 rad/s to 80 rad/s
at 2.95–2.98 s, and then runs at a constant speed. Figure 23b shows the scheme’s rotor
position estimation deviation curve from Figure 1, with and without parameter errors. It
can be seen from Figure 23b that the rotor position estimation deviation is 0 when there is
no electrical parameter deviation. In the presence of electrical parameter deviations, the
estimated deviation of the rotor position is −0.058 rad, when operating at a constant speed
of 80 rad/s, and −0.043 rad, when operating at a constant speed of 100 rad/s, and it is also
stable during acceleration and deceleration. The results of Figures 22 and 23 illustrate the
robust stability and performance of the scheme in Figure 1.
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4. Experimental Results and Analysis 
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4. Experimental Results and Analysis

Using the Myway Company’s PE-expert4 platform, an experimental study of the
proposed design observer’s operation was conducted. Power electronics and motor control
systems are developed and experimented with on the PE-Expert4 platform as shown in the
Figure 24. The platform uses Myway’s PE-View X integrated development environment in
conjunction with T.I.’s high-speed floating point DSP (TMS320C6657) as its core, facilitating
the development of a power converter and motor control system. A 14-bit A/D converter
acquires the current signal, the PWM uses a 10 kHz carrier modulation output, and the
motion-sensorless control strategy has a 100 µs control cycle. The stator voltage input of
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the rotor position estimation algorithm in the experiment is reconstructed from the motor
command voltage, and the DC bus voltage is 200 V shown in the Figure 25. The rotor
position is measured using the resolver. This position is not used for IPMSM speed control,
but only for comparison with the estimated position.
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Figure 25. Myway PE-expert4 experimental platform. (a) Inverter Unit MWINV-9R144; (b) MWACS-
PSIF-01 Signal Conversion Board.

To validate whether the initial operations strategy can smoothly start the motor, in
the experiment, the motor is initiated from a standstill and accelerated to a certain speed.
In the experiment, the IF control method is initially used to accelerate the IPMSM motor
from a speed of zero. The initial torque is specified as a current of 5 A, and the rotational
speed is specified as a slope of 160 r/min/s. During state transitioning, the corresponding
rotational speed is approximately 400 r/min and finally increases to 1000 r/min.

From Figure 26a, it is apparent that the estimated rotational speed can accurately follow
the actual rotational speed, and when changing from the current closed-loop rotational
speed open loop state to the current closed-loop rotational speed double closed-loop state,
the rotational speed rises steadily in accordance with the reference value, without any
abrupt changes or significant fluctuations, confirming the reliability of the rotational speed
estimation method and the efficiency of the state switching method. Figure 26b shows the
waveform of the actual position, estimated position, and estimated position deviation of
the rotor, respectively, after the motor speed stabilizes. Figure 26b demonstrates that the
estimated position follows the actual position accurately, and the estimated deviation is
less than 0.07 rad, indicating the precision of the algorithm’s estimated position.
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Figure 26. Experimental results of motor starting strategy test: (a) motor speed tracking curve; (b) 
rotor position and position estimation deviation at steady state. 

Figure 27 depicts the experimental results of the proposed observer dynamic perfor-
mance under the rated load of the IPMSM, with a step change in rotational speed of 100–
200 r/min. In the experiment, the motor was initially accelerated to 100 r/min and then 
maintained at a constant velocity. A dynamometer was used to apply a load of 15 Nm and 
provide a speed step command of 100–200 r/min at about 2.5 s. 

240

200

160

120
100

Sp
ee

d/
r/m

in

80

140

180

220

0
Estimated deviation of rotational speed: 20r/min/div

Estimated speed
Actual speed

0 1 2 3 4 5 6 7 8 9 10
 

(a) 

0
1
2
3
4

-1
-2
-3
-4

Actual position
Estimated position

2.12.0 2.2 2.3 2.4 2.5

0

2

4

-2

-4
0

Ro
to

r p
os

iti
on

/ra
d

0 1 2 3 4 5 6 7 8 9 10

Position estimation 
deviation 0.2 rad/grid

Time(s)  
(b) 

Figure 26. Experimental results of motor starting strategy test: (a) motor speed tracking curve;
(b) rotor position and position estimation deviation at steady state.

Figure 27 depicts the experimental results of the proposed observer dynamic per-
formance under the rated load of the IPMSM, with a step change in rotational speed of
100–200 r/min. In the experiment, the motor was initially accelerated to 100 r/min and
then maintained at a constant velocity. A dynamometer was used to apply a load of 15 Nm
and provide a speed step command of 100–200 r/min at about 2.5 s.
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good operating characteristics at low speeds due to the compensation and DC bias sup-
pression measures taken for inverter nonlinearity. To verify the lowest speed at which the 
method in this article can operate when the motor is under the rated load, the motor 
should be operated at low speed under the rated load. Through experimental testing, it 
was found that the algorithm in this paper can still achieve sensorless control of the motor 
at around 30 r/min with a load of 15 Nm. The estimated rotor position and speed are 
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Figure 27. Speed step test results under rated load: (a) motor speed and speed deviation waveform;
(b) rotor position and rotor position estimation deviation waveform; (c) torque current waveform.

Figure 27a depicts the IPMSM reference rotational speed, real rotational speed, es-
timated rotational speed, and estimated rotational speed deviation curves. The figure
demonstrates that the estimated rotational speed of the algorithm suggested in this article
can always follow the actual rotational speed of the IPMSM, and the estimated rotational
speed deviation is about 10 r/min in a steady state. When a given rotational speed step
changes, an estimated deviation of only about 20 r/min occurs at a given time. During the
process of increasing rotating speed, the estimated deviation of rotating speed is within
10 r/min for the majority of the time. Figure 27b depicts the waveforms of the real rotor
position, estimated rotor position, and estimated rotor position deviation. The figure shows
that the estimated rotor position value is nearly identical to the real value. In steady condi-
tions, the average estimated rotor position deviation is about 0.015 rad, with a fluctuation
amplitude of about 0.025 rad. When a given rotational speed step changes, the maximum
estimated rotor position deviation does not surpass 0.07 rad. By increasing the integration
coefficient in the phase-locked loop, error deviation can be reduced. The torque current
trajectory is depicted in Figure 27c. The figure shows that the torque current is always
around 40 A in a steady state, owing to a load of about 15 Nm. As the reference rotational
speed is changed in steps, the torque current rapidly rises to around the amplitude limit of
50 A, causing the rotational speed to increase. Whenever the rotational speed reaches the
desired magnitude, the torque current drops to around 40 A.

Although the proposed method is not applicable near zero speed, it may also have
good operating characteristics at low speeds due to the compensation and DC bias sup-
pression measures taken for inverter nonlinearity. To verify the lowest speed at which
the method in this article can operate when the motor is under the rated load, the motor
should be operated at low speed under the rated load. Through experimental testing, it
was found that the algorithm in this paper can still achieve sensorless control of the motor
at around 30 r/min with a load of 15 Nm. The estimated rotor position and speed are
shown in Figure 28.

Figure 28 show that the rotor position estimation value proposed in this paper can still
track the actual rotor position value when operating at 30 r/min with a rated load. The
rotor position estimation deviation fluctuates around 0 rad, with a maximum estimation
deviation of 0.06 rad. The speed estimation deviation fluctuates between 0–10 r/min. From
the experimental results, it can be seen that under a rated condition, the estimated values of
this method can accurately track the actual rotor position and speed, also exhibiting good
dynamic estimation performance. Under a rated load, the motor can achieve sensorless
operation at a low speed of 30 r/min. In summary, the position sensorless control method
and state-switching strategy proposed in this article are feasible and effective.



Machines 2023, 11, 574 30 of 33Machines 2023, 11, x FOR PEER REVIEW 32 of 36 
 

 

0

2

4

-2

-4
0

Ro
to

r p
os

iti
on

/ra
d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Actual position
Estimated position

0.2rad
Rotor position estimation 

deviation

Time(s)  
(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Sp
ee

d 
es

tim
at

io
n 

de
vi

at
io

n/
r/m

in

0

20

40
60

-20

-40

-60

Time(s)  
(b) 

Figure 28. Experimental results of motor operation under a rated load with 30 r/min: (a) rotor posi-
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5. Conclusions

The accurate rotor position angle estimation is essential to sensorless interior PMSM
vector control. Its estimation accuracy will directly affect the operational effectiveness of the
motor speed control system, especially its low-speed performance. A rotor angle and speed
estimation technique based on the improved integrator using an adaptive compensation
algorithm is proposed for the initial value problem and the DC bias problem of traditional
back-EMF sensorless position detection of interior PMSM. An estimated value of a stator
flux linkage has been obtained from the projected value of a rotor permanent magnetic
flux linkage angle and the algebraic model (m-model) of a stator flux linkage, along with a
synchronous coordinate system. An IPMSM sinusoidal stator flux linkage obtained from
the stator current and integral voltage models in the static coordinate system is compared
to form a feedback closed-loop to suppress the integral drift, and the estimated value of
the IPMSM rotor speed and angle is achieved by using a cross product of the two through
the phase-locked loop. An improved integrator flux observer is employed to remove
the DC component, as well as high-order frequency harmonics, to minimize an angle
error produced from current sampling and the converter’s nonlinearity. Compared to the
traditional flux linkage observer, the proposed approach can eliminate the adverse effects
of harmonics and the DC coefficient. The proposed method is relatively straightforward
and can be used in a slow-speed area. The MATLAB/Simulink and experimental results
demonstrate that the proposed model is robust for either rated or uncertain parameters.
The proposed method can more precisely estimate the motor rotor angle in the broader
speed range. Similarly, this technique is also applicable to the asynchronous motor. The
possibility of implementing motion-sensorless control of a synchronous reluctance motor
(SynRM) using the proposed technique will be further investigated.
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Appendix A

When the stator current of the motor is equal to zero (no load condition) isα = isβ =
isd = isq = 0, according to Figure 1, the corresponding equations are presented below

˜̂ψsα = ψ̂sα − ψ∗sα
ψ̂sα = ψ f cosθ̂

ψ∗sα = ψ f cosθ∗
(A1)

where θ̂ =

(∗
θ + ˜̂θ), and substituting into the Equation (A1) yields

ψ̂sα = ψ f cos
(∗

θ + ˜̂θ)
˜̂ψsα = ψ f cos

(∗
θ + ˜̂θ)− ψ f cosθ∗

˜̂ψsα = ψ f

(
cos
(∗

θ + ˜̂θ)− cosθ∗
)

˜̂ψsβ = ψ f

(
sin
(∗

θ + ˜̂θ)− sinθ∗
)

(A2)

Generally, if θ is the angle between the given vectors A and B, then the equation used
for the vector cross product is:

→
A×

→
B = |A||B|sin(∠A−∠B) (A2a)

Based on Equation (A2a), we can write Equation (A2b) as follows{
ψ̂s ×ψs

|ψs|
∣∣ψ̂s
∣∣ − ψ∗s ×ψ∗s
|ψ∗s ||ψ∗s |

}
=

ψ̂s ×ψs

|ψs|
∣∣ψ̂s
∣∣ = sin(θ − θ̂) (A2b)

Defining the error signal
ψ̂s = ψ∗s + ˜̂ψsα˜̂ψsα = ψ∗s − ψ̂s
∼
ψsα = ψsα −

∼
ψsα

ψs = ψ∗s + ψ∼s

θ̂ = θ∗ +
∼̂
θ

(A2c)

Substituting Equation (A2c) into Equation (A2b), we get

ψ̂s ×ψs∣∣ψ̂s
∣∣|ψs|

− ψ∗s ×ψ∗s
|ψ∗s ||ψ∗s |

=

(
ψ∗s + ˜̂ψsα

)
×
(

ψ∗s +
∼
ψs

)
∣∣∣(ψ∗s + ˜̂ψsα

)∣∣∣∣∣∣ψ∗s +
∼
ψs

∣∣∣ = sin(
∼
θ −

∼
ˆ
θ) (A2d)

The relationship between ˜̂ψsα and ˜̂ψsβ is shown in Figure A1.
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Figure A1. A large-signal nonlinear model of a flux observer with a PLL. 
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Appendix B

For the PLL design in Figure A1, when the intersection angle between ψs and ψ̂s
is minimal, we get ψ̂s ×ψs/

(∣∣ψ̂s
∣∣|ψs|

)
= sin(θ − θ̂) ≈ θ − θ̂; subsequently, the transfer

function of the phase-locked loop near the equilibrium point is

G(s) =
kps + ki

s2 + kps + ki
(A3)

kp and ki in Equation (A3) are the proportional gain and the integral gain. The
estimation performance is determined solely by the PI gains of kp and ki. In this paper, the
design proportion and integral coefficients are

kp = 2ξωn, ki = ω2
n (A4)

The damping coefficient of the system ξ = 0.707, ωn is the undamped oscillation
frequency of the system, and ωn is 1000 rad/s, based on the motor’s speed operating range.
Because the open-loop transfer function of PLL has two integral links, θ is the ramp input
for the step input of speed, which can achieve no static error, that is, θ − θ̂ → 0 in the
steady-state; for the ramp input of speed, θ is a parabolic input with static error, and the
size of the static error is inversely proportional to ki.
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