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Abstract: Navigating in a perpetually changing world can provide the basis for numerous challenging
autonomous robotic applications. With a view to long-term autonomy, visual place recognition (vPR)
systems should be able to robustly operate under extreme appearance changes in their environment.
Typically, the utilized data representations are heavily influenced by those changes, negatively
affecting the vPR performance. In this article, we propose a sequence-based technique that decouples
such changes from the similarity estimation procedure. This is achieved by remapping the sequential
representation data into the distance-space domain, i.e., a domain in which we solely consider the
distances between image instances, and subsequently normalize them. In such a way, perturbations
related to different environmental conditions and embedded into the original representation vectors
are avoided, therefore the scene recognition efficacy is enhanced. We evaluate our framework under
multiple different instances, with results indicating a significant performance improvement over
other approaches.

Keywords: visual place recognition; changing environments; sequence matching; localization; navigation

1. Introduction

The utilization of autonomous mobile robots promises to revolutionize numerous
industrial and domestic fields. Navigating safely through the environment is of utmost
importance for the majority of those applications. Yet, at the center of every navigation
module lies a localization framework, the purpose of which is to determine the platforms’
position relative to their environment. In the vast variety of related approaches, visual
localization [1] holds a vital role and can offer an edge over the alternatives [2–4], depending
on the nature of the underlying problem.

The task of visual place recognition (vPR) describes the process of searching a visual
scene into a database of mapped places in order to locate a match, should one exist [5].
Multiple methods have been proposed to address this task, offering adequate results [6].
However, in most cases, their employment in a continuously running scenario significantly
limits their performance both in terms of scalability [7] as well as the change in the en-
vironment due to the difference in the visual conditions [8] or the existence of dynamic
objects [9]. In spite of applications where the observable environment can be assumed to
have a constant state, long-term practices should be able to recognize places under severe
environmental changes [10–12].

With this article, we propose an unsupervised long-term visual place recognition
technique which utilizes sequential observations to reinforce the individual scene repre-
sentations. We argue that those individual representations are not a direct depiction of
the content of the environment, but are heavily affected by the observed visual conditions.
The aim of this work is to alleviate the aforementioned condition effect and thus improve
the performance of vPR. This is achieved by remapping the image encodings from the
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descriptor-space to the distance-space and subsequently normalizing the produced sig-
nals. In such a way, any existing constant noise between the underlying representations
is removed prior to the matching process. Thus, the scene’s structure is captured in a
similar manner between the database and query observations, alleviating the effects of
environmental changes. More specifically, the main contributions of this work can be
summarized as follows:

1. Introducing a process for data manipulation in the distance-space domain, with a
view to solve the vPR problem;

2. Offering a concept for a descriptor-agnostic procedure for long-term vPR practices, uti-
lizing multiple sequential observations and generalizing place-specific representations
into different and unseen environments;

3. Providing insights about the utilization of image sequences for scene representations;
4. Using multiple datasets to evaluate the behavior of the proposed method under

different situations, such as velocity and viewpoint fluctuations, varied environments,
as well as observed conditions, etc.

In the following section we briefly analyze the related literature, wherein we situate
this work. In Section 3, an intuitive explanation of this framework is presented, followed
by an extensive description of its implementation details. Subsequently, Section 4 features
the method’s evaluation procedure, while Section 5 presents the conclusions, a discussion
of the key findings and a prompt for possible extensions.

2. Related Work

A vPR framework should be able to efficiently map the observed environment, so that
later impressions of a place can be easily identified and retrieved, despite any condition-
related changes in its appearance. During navigation, a robot constantly perceives its
environment via repetitive discrete sensor readings. Those discrete readings—in this article
considered as images—can be used as a source of information relative to the place they
were observed. Representing a visual scene with encodings of that information is a fairly
popular technique in the vPR challenge [6,7].

Employing local features, i.e., individual patches within the image [13], one can detach
the extracted information from the underlying viewpoint-related spatial structure of the
scene, enabling the matching of different poses of the same content observations [14–17].
On the other hand, utilizing the spatial relationship of the extracted information on the
image plane may limit the viewpoint tolerance but can significantly improve the matching
quality of places with major condition-related differences [8,18–20].

While the single-view scene encodings can provide a natively simple vPR method
with satisfactory results, augmenting the input data with information from temporally close
observations can significantly improve the final outcome. A way of utilizing the sequential
information of an observation is to reinforce or weaken the belief that a matched place is
a true positive detection. This can be achieved by observing whether or not temporally
close observations are matched to the same place or are scattered in the database [11,21,22].
This technique (sequence-based matching) is highly effective, especially in cases prone to
perceptual aliasing, and it can be used as an extra layer to filter out uncertain detections.

Furthermore, appending scene information from sequential and discrete observations
into a single representation vector, or exploiting the spatial relationship of the visual clues
beyond the two-dimensional plane, so as to form the sequence-based representations of
a place, can enhance the amount of the extracted information [23–26]. However, merging
sequential data without some kind of supervision can introduce noise, degrading the place
recognition performance. Thus, several methods have adopted a sequence generation
module to filter out noisy visual clues [21,27].

In a similar manner, our method utilizes multiple successive frames to reinforce the
perception of the observable scene. Although the lack of a sequence generation module
unavoidably introduces some kind of noise, the proposed framework is able to achieve
state-of-the-art performance.
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3. Method
3.1. Intuition

The purpose of place recognition is to map the environment and speculate whether
or not a scene has been seen in the past. To achieve that, each scene has to be somehow
abstracted. In this subsection, we will attempt to intuitively analyze the overall pipeline of
describing a visual scene in place recognition.

Ideally, we would like to measure the similarity of the scenes based on their content.
Unfortunately, the available scene perception methods fail to identify the whole of the
underlying information. Furthermore, the process of capturing this information, the condi-
tion of the environment, as well as the utilized encoding method can significantly affect
the produced representation. Building on that intuition, our method aims to remove the
condition effect from the final similarity result of the matching between two scenes. This
is achieved by remapping the representation vectors from the description-space into the
distance-space, while appropriately representing them, so as for matching assessment to be
feasible (Figure 1). In this context, the distance-space is the domain where observations
are represented as their distance from a given target. Thus, instead of directly measuring
the similarity between scenes, we utilize the relative distance of sequential readings from a
common reference. Typically, the calculated relative distance among a specific pair of repre-
sentation vectors could be generated by a multitude of different vectors, thus decreasing
its distinctiveness. In contrast, using sequences of those relative distance values generates
highly improbable combinations to be observed randomly. This way, a mutual frame of
reference is provided allowing a fair matching. With the reference image belonging into
the first ’query’ scene, the produced distance vector of the second one can be intuitively
perceived as a similar vector displaced by an approximately constant coefficient. This
coefficient originated from the difference in environmental conditions between the query
frame and the second scene, and it is not present in the first scene’s vector. Therefore,
a normalization scheme is employed to remove this component, discarding the condition
effect prior to the matching procedure.

Figure 1. An overview of the proposed method. First, the distances between the representations of
the frame of interest and both the query (q) and database (db) sequences, are calculated, forming
the new distance-space representations Q and DB. Then, the normalization process takes place,
regularizing the produced distance signals to lie within the same range. Finally, the similarity among
the frame at timestep t and the database is estimated by sliding the newly formed Q signal over the
normalized DB one and computing their cross-correlation (star symbol).

3.2. Implementation

As already mentioned, in order to effectively compare visual scenes, some sort of
representation vectors should be generated from the captured images. Considering the
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marginal effect of the employed representation method in our work, without loss of
generality, we assume that the image representation vectors have been already generated.

Let us define a given database (db) as a stream of all seen scenes represented by
multidimensional vectors, with ldb indicating the length of db. In addition, we consider a
query trajectory as a similar stream, from which we form the query sequences (q), by se-
lecting a vector of the image of interest concatenated with its adjacent ones. Given the
above, we transform both the database and the query sequences into a one-dimensional
time-series. In specific, considering the image of interest at time t, we compute its distance
from each image in db as well as each corresponding one in q. Using the following for-
mulas, the new query Q = [. . . , Qi, . . .], ∀i ∈ {i ∈ N : t− w ≤ i ≤ t + w} and database
DB = [. . . , DBj, . . .], ∀j ∈ {j ∈ N : 0 ≤ j ≤ ldb} signals result from:

Qi = 1− q̂i · q̂t

||qi|| · ||qt||
, ∀i ∈ {i ∈ N : t− w ≤ i ≤ t + w}, (1)

DBj = 1− d̂bj · q̂t

||dbj|| · ||qt||
, ∀j ∈ {j ∈ N : 0 ≤ j ≤ ldb}, (2)

where w represents half the size of the sliding window containing the adjacent images
in the query stream. The upper plot in Figure 2 shows a snapshot of the produced one-
dimensional signals on a sample subset of the Nordland [12] dataset. It can be observed
that the database signal tends to match the query one, displaced by a constant component.

Figure 2. A formed query (Q) representation signal along its database (DB) correspondence on
the Nordland dataset [12], before (upper row) and after (middle row) the normalization procedure.
Using Q as a sliding window over DB, the cross-correlation results (lower row) of those signal pairs
demonstrate that the normalized ones, produce a crisp similarity peak, vigorously indicating a query
match in the database.

By utilizing the process of template matching, i.e., calculating the similarity of the
template Q over DB, one can deduce meaningful information regarding the origin of the
query signal in the database. Although, due to the non-standardized amplitude of those
signals, the resulting similarity can be severely affected (Figure 2). To that end, a z-score
normalization [28] is applied over both signals, to express the underlying data relative to
their mean and standard deviation values, thus eliminating the observed displacement on
the amplitude (vertical) axis, as shown in the middle plot of Figure 2. The z-score function
is defined as:
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zs(x) =
(x− µ)

σ
, (3)

where x represents the data, whilst µ and σ are the mean value and the standard deviation
of that data, respectively.

Finally, the process of identifying the similarity (S) between the query Q and the
database DB signals is performed by calculating the correlation of the normalized Q with
the DB representations. In particular:

S = zs(DB) ? zs(Q), (4)

with ? notating the cross-correlation operation between the two signals. The output of (4),
as well as the matching result of the equivalent non-normalized DB and Q signals are
shown in the lower plot of Figure 2.

4. Evaluation

A robust place recognition framework should be able to recognize scenes under severe
environmental changes. In this section, we assess the behavior of the proposed method in
several critical aspects of such a system.

4.1. Datasets

1. The Nordland dataset: to evaluate the framework’s resilience in recognizing visual
scenes under different seasonal conditions, the Nordland dataset [12] was employed.
Its content features front-facing images of a 729 km long railway journey, captured
in four seasons. Moreover, due to the rail-moving camera, this dataset minimizes
the viewpoint variations between each trajectory. For this evaluation, we selected
the test partitions [8] of the summer and winter trajectories, each comprising of 3450
synchronized frames.

2. The Oxford dataset: in contrast to the one-to-one image correspondence of the Nordland
tracks, the Oxford RobotCar dataset [10,29] contains routes from the central Oxford
with inconsistent velocities and viewpoints. The data were captured by a car-mounted
sensor during different conditions. From the available data, we chose the central view
of the front-facing camera of the day and night trajectories (parts 01 of 2015-02-17-
14-42-12 and 2014-12-16-18-44-24, respectively). Moreover, due to faulty GPS signal,
we discarded the first 2000 frames, resulting in two routes, each one consisting of
4000 images. Within the trajectory, the mean traveled distance between two successive
frames is 0.26 m.

3. The COLD dataset: unlike the above-mentioned datasets, the COLD collection (se-
quence 1 of the Freiburg set) [30] comprises of indoor routes, depicting an office-like
environment at different time periods. Similar to the Oxford dataset, its trajectories
are asynchronous and they exhibit several viewpoint mutations. Within this work, we
selected the sunny and night instances, containing 1598 and 1911 images, respectively,
with a mean step distance equal to 0.04 m.

From the above three cases, the COLD dataset was not considered during the evalua-
tion of our proposal’s behavior over different parameterizations since its respective results
were less informative. However, it is considered in order to provide a distinct scenario for
our assessment when comparing against the state-of-the-art.

4.2. Metrics

To examine the performance of our approach, we need to quantify and compare
the produced results. Among the plethora of available metrics, in this section we utilize
precision-recall and their area under curve (AUC) metrics [31].
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4.3. The Parameter w

As described in Section 3.2, the length of the query observation depends on the pa-
rameter w, which denotes half the window size (in terms of the number of images) around
frame t. Figure 3 contains the precision and recall curves we obtained, by varying a
similarity threshold over score S for different values of w on the Nordland and Oxford
datasets. The employed image representations for this experiment were generated using
the NetVLAD method [18]. Whilst changes in w do not seem to significantly affect the
framework’s performance on the Nordland routes (Figure 3a), higher values tend to pro-
duce better results on the Oxford ones (Figure 3b). This can be explained as a consequence
of the non-synchronous frames acquisition of the latter dataset among its trajectories. More
specifically, comparisons among highly dissimilar places, i.e., distant from time t, introduce
noise during the cross-correlation operation in (4), degrading the final outcome. Yet, larger
sequences can accumulate additional information about the observed place and thus re-
inforce the underlying representations, leading to enhanced performance. Furthermore,
as mentioned in Section 3.1, representing an observation using a single value offers trivial
distinctiveness. On the contrary, aggregating multiple values from a sequence of observa-
tions produces a highly distinctive combination that leads to greater matching performance.
Indeed, the results confirm this prediction, as in both datasets higher w values tend to
produce better results.

(a) (b)

Figure 3. The resulting precision and recall curves of our method on the Nordland (a) and the Oxford
(b) datasets, for various values of parameter w. The utilized ground truth radius is R = 10 and R = 40
for Nordland and Oxford datasets accordingly.

4.4. Different Descriptors

To evaluate the descriptor-agnostic comportment of our framework, we tested a couple
of different image encoders. More specifically, we employed the NetVLAD encoder [18],
which constitutes a popular well-established network choice for vPR tasks [32,33] and
the histogram of oriented gradient (HOG) [34] technique, i.e., a classical unsupervised
method utilized by many contemporary systems in the field [17,35,36]. Figure 4 shows the
performance of the proposed method, in terms of the change-rate of the AUC score over
the raw representations, while feeding different descriptor types as an input. The AUC
change-rate is calculated using:

cr =
s− r

r
, (5)

with s indicating the AUC score of our method. The values r were obtained by varying a
threshold over the similarity metrics among NetVLAD and HOG descriptors, respectively,
and computing the corresponding AUC scores. In this manner, the AUC change-rate
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indicates the performance improvement provided by our technique regardless of the
underlined description approach, with higher values of the w parameter consistently
performing much better than the baseline.

(a) (b)
Figure 4. Performance evaluation over different representation methods, with the applied metric
being the AUC score change-rate of our method over the raw descriptors’ one in (a) the Nordland
and (b) the Oxford datasets. The used ground truth radius is R = 10 and R = 40 respectively.

4.5. Sequence Shuffling

When revisiting a place, images of the environment do not always appear in the same
order as its initial observation. In this subsection, we introduce a case study wherein we
randomly shuffle the observed images during the query time to emulate such an event.
This operation adds noise to the similarity estimation of (4), thus degrading the overall
performance. For this case study, we chose to run the experiments on the Nordland
dataset due to its one-to-one frame correspondence, as well as the consistent viewpoint
of the captured images. Moreover, we fix the parameter w at an average performing
query window (w = 105). In Figure 5, we plot the AUC score of such experiments, using
different percentages of shuffled images from the query sequence. As presented, despite the
high percentage of randomly shuffled images within the query observation, the proposed
method manages to maintain great results, while outperforming the raw descriptors’ score.

Figure 5. The AUC score of the proposed method, while randomly shuffling a different percentage of
the images within the query sequence, alongside the single-image NetVLAD descriptors’ result. The
applied ground truth radius is R = 10. Despite the large percentage of shuffled images, our method
manages to maintain great results, outperforming the raw descriptors’ score.

4.6. Execution Time

The significance of the place recognition module in the robot navigation pipeline
places it under real-time execution constraints. Table 1 shows the mean execution time per
image of every part of our system while processing the Nordland dataset, with NetVLAD-
generated encodings. As outlined, our method manages to improve the raw NetVLAD
descriptors’ performance with minimal overhead. The experiments were performed using
a Python-based on an 8-core 7-7700K CPU @4.20 GHz and 32 GB of memory.
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Table 1. Execution time per image of our method. The data were captured using NetVLAD-generated
image representations from the Nordland dataset.

µ ± σ (ms)

Distance Calculation 17.76 ± 0.55
Normalization 0.28 ± 0.04
Similarity Estimation 0.26 ± 0.08

Total 18.31± 0.68

4.7. Comparison with State-of-the-Art

Whilst the proposed framework demonstrates promising results, it is important to
compare them with the performance of similar state-of-the-art techniques, so as to of-
fer an integral understanding regarding its placement within related works in the field.
For that purpose, the sequence-based representation method of Delta Descriptors [25]
was employed, being the most relevant state-of-the-art approach; alongside the computed
raw single-image NetVLAD descriptors, to form the comparison study of this subsection.
Figure 6 outlines the benchmark results of the tested methods against the selected datasets,
in terms of the precision and recall curves. Similarly, Table 2 exhibits the same results in a
single benchmarking value, in terms of AUC score. Note that for the above results, the re-
quired place recognition ground-truth was obtained by accepting true-positive matches
with the database instance lays within a certain radius R from the query one, in terms
of frames for the Nordland and meters for the Oxford and COLD datasets. As shown,
the proposed method tends to outperform both the state-of-the-art, as well as the baseline.
Moreover, it is worth noting the slightly reduced efficacy relative to the general trend, when
using a lower radius for accepting true-positive matches as per the ground-truth. Such
a reduction is mainly owed to the multi-frame observations, which are embedded in the
used representations, offering a reliable yet imprecise estimate of the correct place in the
database. Lastly, the execution time of both methods can be considered minimal, with Delta
Descriptors performing slightly slower at 20.47 ms, as reported by deploying the publicly
available source codeon the same hardware.
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Figure 6. Precision and recall curves of the proposed method, along Delta Descriptors and the raw
NetVLAD vectors, in different datasets. Parameter R, indicates the radius of correct matches around
the ground-truth, in terms of frames for the Nordland dataset and meters for the Oxford and COLD
ones. As shown, our method tends to outperform the compared methods in the tested datasets.

4.8. Query Window as a Time Trace

So far, we have analyzed the performance of the proposed method while placing the
query image in the center of the q sequence. In such a layout, the representation benefits by
incorporating images from the trajectory without over-extending to frames far from t, thus
limiting the drawback of including noise by matching highly dissimilar places, as described
in Section 4.3. Yet, in scenarios where the most recent image needs to be utilized for vPR,
the described layout is not feasible. For those cases, we modify the query sequence as
Qtt = [..., Qi, ...], ∀i ∈ {i ∈ N : t− 2w ≤ i ≤ t} using:

Qi = 1− q̂i · q̂t

||qi|| · ||qt||
, ∀i ∈ {i ∈ N : t− w ∗ 2 ≤ i ≤ t}. (6)

We conducted the same experiments described in Section 4.7 employing the modified
query sequence Qtt. Table 3 shows the results of the time trace window experiment.
As observed, the AUC score slightly deteriorates in comparison to the results from Table 2,
as well as the top-performing window sizes tend to shift to smaller w values. The presented
outcome is expected, as a consequence of the abovementioned limitation regarding the
added noise in the query sequence.

Figure 6. Precision and recall curves of the proposed method, along Delta Descriptors and the raw
NetVLAD vectors, in different datasets. Parameter R, indicates the radius of correct matches around
the ground-truth, in terms of frames for the Nordland dataset and meters for the Oxford and COLD
ones. As shown, our method tends to outperform the compared methods in the tested datasets.
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Table 2. The AUC score of the proposed method, along Delta Descriptors and the raw NetVLAD
vectors, in different datasets. Parameter R indicates the radius of correct matches around the ground-
truth, in terms of frames for the Nordland dataset and meters for the Oxford and COLD ones.

Nordland Oxford COLD Nordland Oxford COLD
R = 10 R = 40 R = 2 R = 4 R = 15 R = 1

Delta Descriptors 0.626 0.166 0.913 0.621 0.147 0.914
NetVLAD raw 0.215 0.438 0.957 0.203 0.401 0.946
Ours w = 25 0.767 0.351 0.914 0.725 0.267 0.898
Ours w = 45 0.813 0.499 0.969 0.752 0.367 0.961
Ours w = 105 0.823 0.714 0.990 0.760 0.580 0.951
Ours w = 305 0.779 0.799 0.988 0.736 0.751 0.896

4.8. Query Window as a Time Trace

So far, we have analyzed the performance of the proposed method while placing the
query image in the center of the q sequence. In such a layout, the representation benefits by
incorporating images from the trajectory without over-extending to frames far from t, thus
limiting the drawback of including noise by matching highly dissimilar places, as described
in Section 4.3. Yet, in scenarios where the most recent image needs to be utilized for vPR,
the described layout is not feasible. For those cases, we modify the query sequence as
Qtt = [. . . , Qi, . . .], ∀i ∈ {i ∈ N : t− 2w ≤ i ≤ t} using:

Qi = 1− q̂i · q̂t

||qi|| · ||qt||
, ∀i ∈ {i ∈ N : t− w ∗ 2 ≤ i ≤ t}. (6)

We conducted the same experiments described in Section 4.7 employing the modified
query sequence Qtt. Table 3 shows the results of the time trace window experiment.
As observed, the AUC score slightly deteriorates in comparison to the results from Table 2,
as well as the top-performing window sizes tend to shift to smaller w values. The presented
outcome is expected, as a consequence of the abovementioned limitation regarding the
added noise in the query sequence.

Table 3. The AUC score of the proposed method, using the time trace window approach, in different
datasets. Parameter R indicates the radius of correct matches around the ground-truth, in terms of
frames for the Nordland dataset and meters for the Oxford and COLD ones.

Nordland Oxford COLD Nordland Oxford COLD
R = 10 R = 40 R = 2 R = 4 R = 15 R = 1

w = 25 0.664 0.415 0.914 0.602 0.381 0.753
w = 45 0.642 0.618 0.913 0.590 0.483 0.686
w = 105 0.735 0.497 0.693 0.687 0.372 0.352
w = 305 0.848 0.577 0.455 0.825 0.225 0.384

5. Conclusions

The autonomous operation of mobile robots in highly mutable environments consti-
tutes a great challenge. Severe appearance changes can significantly limit their navigation
ability, thus prohibiting their use in many real-world applications. The article at hand
proposed a sequence-based unsupervised vPR technique, capable of operating under severe
environmental changes, with the aim to support the navigation procedure of autonomous
mobile robots in real-life scenarios. In contrast to the single-frame solutions, utilizing
multiple observations to form a single representation significantly enhanced the quality of
the produced results. Furthermore, by utilizing the distance-space representation and nor-
malization, our method managed to robustly match scenes across different environmental
conditions, without explicit training or parameterization.

Although our method manages to produce superior results along a multitude of
environments, observed under challenging conditions, a trade-off between quantity and
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quality is realized. As described in Section 4.3, the w parameter regulates the number of
observations incorporated in the query representation. While higher values of w augment
the useful information leading to enhanced matching performance between the query
scene and the database, a noise generated from the matching of inconsistent frames amid
the associated sequences degrades the final outcome. Furthermore, due to the decreased
distinctiveness of the generated distance vectors (Section 3.1), the utilized sequence sizes
tend to be quite large. Depending on the specifics of the application, this peculiarity poses
a consideration.

As part of future work, we intend to extend our framework with the utilization of
an automated sequence generation module. Such a module should suppress the above-
mentioned noise, as well as improve the achieved performance for identifying the exact
revisited database instance, as explained in Section 4.7.
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