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Abstract: Robust control has been successful in enabling flight stability and performance for UAVs.
This paper presents a simple explainable robust control design for UAV platforms with non-minimum
phase (NMP) zero characteristics in their model. The paper contributes to economic (simple) robust
control design by addressing the NMP model’s characteristics via Internal Model Control (IMC)
and its impact on the UAV pitch response performance. The proposed design is compared with a
Parallel Feedback Control Design (PFCD) scheme for the same vehicle platform, for fair comparison.
Simulation results illustrate the achievement of the proposed control designs for the UAV platform;
only the pitch control is addressed. A by-product of this work is the interpretation of different ways
of manipulating the non-minimum phase plant model, so-called ‘modelling for control’, to enable
the simple controller design. The work in this paper underpins the simplicity and robustness of the
IMC technique for the NMP UAV platform, which further supports the explainability of the control
structure relative to performance.

Keywords: unmanned aerial vehicles; robust control; explainability; non-minimum phase zero; time
delays; internal model control

1. Introduction

Zeros are a fundamental aspect of systems and control, and there has always been
a certain fascination with their unstable nature, or so-called non-minimum phase. Non-
minimum phase zeros, if one describes them in a slightly exaggerated way, could be seen
as “silent but lethal”, given that they tend to be one of the worst features a dynamic
system possesses (especially for designing simple linear control), albeit researchers devel-
oping control methodologies savour the design challenge presented by these kinds of zero
characteristics [1].

Various practical systems have dynamics that exhibit non-minimum phase character-
istics, from process control [2] (e.g., thermal processes where time delays are approximated
by non-minimum phase zero system dynamics), to aerospace systems (e.g., altitude of an
aircraft, tail-controlled missile) [3], to maritime systems (e.g., pitch control of underwater
vehicles) [4], to mechanical systems (e.g., pole balancing type systems) and ground vehicle
applications (e.g., nulling control of tilting rail vehicles) [5].

Non-minimum phase zeros, depending on their location on the s-plane, impose system
performance challenges to designing effective controls. Non-minimum phase zeros, just
like time delays, impose bandwidth constraints (i.e., limit the controller gain). The time
domain response of an otherwise stable system with an odd number of non-minimum
phase zeros initially moves in the opposite direction from the desired set point, before
proceeding towards the set point direction. In fact, Åström discusses the limitations of
control performance due to NMP zeros in his well-known article [6].

That control of UAV platforms to enable advanced air mobility applications [7,8],
is of great interest, is not in doubt. The control literature includes a plethora of related
work; we concentrate on more recent examples from the literature on the control of small
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fixed-wing UAVs (with NMP zeros). From the more generic viewpoint of UAV dynamic
control design, a very recent paper explores the implementation of of linear and nonlinear
control methods for controlling an X3D quadrotor’s intended translation position and
rotation angles while hovering, including the design, implementation and evaluation of
the controller’s effectiveness [9]. Safwat et al. in [10] investigated a robust nonlinear flight
control system for a small fixed-wing UAV against uncertainties and external disturbances,
with a particular view towards GNC. Wang et al. in [11] concentrated on robust H-infinity
attitude control for a quadrotor (modelling in 3D). The control of UAV platforms that
exhibit non-minimum phase characteristics in their models is also addressed by the research
community. Elkhatem et al. [12] explored a robust control approach (combining fractional-
order and LQR) for a fixed-wing UAV platform with NMP zeros, also considering actuator
faults. Both the UAV platform and the control approach are different from those proposed
in this paper. Work in [13] concentrated on fixed-wing UAV platforms (with non-minimum
phase zeros) and basic controllers via root locus; the authors followed a rigorous analysis
approach in their paper. Both the UAV platform and the control approach are different
from those proposed in this paper. Work in [14] discussed bicopters with NMP zeros but
focused on designing H-infinity loop shaping control. From the references presented here,
the interest in smaller UAV platforms is also evident.

To the best of the author’s knowledge, this paper represents the first rigorous attempt
to present classical Internal Model Control (IMC) design and its explainability in the
context of small fixed-wing UAVs with non-minimum phase (NMP) zero characteristics,
particularly for the UAV platform example considered here for attitude control.

IMC is a well-known inverse-based systematic controller design framework that
seeks to strike a balance between system performance and robustness [15]. It is based on
the Q-parametrisation (or Youla parametrisation) of all stabilizing controllers for a given
dynamical system [16–18]. IMC is an attractive approach, building upon the simplicity of
classical feedback control design for obtaining controllers that meet practical robustness
and performance requirements. This paper leverages this feature for the attitude control
of UAVs.

The current paper contributes to robust control design by addressing the UAV platform
NMP model’s characteristics via Internal Model Control (IMC). The particular emphasis is
on the impact of the proposed simple control design solutions on the UAV pitch response
performance. A by-product of the work is the suggestion of multiple ways of represent-
ing the non-minimum phase plant model, so called ‘modelling for control’, to assist the
controller’s design steps. The work in this paper underpins the simplicity and robustness
of the IMC technique and its explainable controller structure linked to the UAV pitch
control problem.

2. Methodology and Structure of The Paper

The design of simple and robust controllers for UAV systems, especially when their
dynamics are affected by NMP zero characteristics, is still an open issue and is paramount
for the maintenance of robustly stable dynamic operations of the vehicle platform. This
enables safety in applications that UAVs are used for [19]. While there is a defined structure
for flight control (auto-pilot architecture), the way controllers are designed also varies
depending on the specific UAV platform technology (e.g., fixed-wing, rotors, VTOL, tail-
sitters [20]). In addition, and in particular with the advent of AI/ML based control for
UAVs, “explainable” control (design/solution) offers advantages [21]. The methodology
of controller design also depends on the UAV technology/application, and not much work
has been previously published regarding IMC control strategies for NMP UAV systems.

This paper proposes internal model-based robust control design in an explainable
manner (here, we refer to explainability in the sense of how the considerations of modelling
for control are linked to the controller design structure for the UAV attitude control problem
and its relation to achieved performance/robustness), utilising the Internal Model Control
philosophy for an NMP aerial vehicle platform. The performance of the controller is
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assessed using simulations and is discussed alongside a recent PFCD proposed design for
the same vehicle platform.

2.1. Methodology

The methodology followed in this paper is based on three main steps. Firstly, the (NMP)
UAV model and its model representation (for control design) are presented. The control
problem is that of controlling the UAV pitch angle.

The second step consists of controller synthesis. A two-degrees-of-freedom (DoF)
IMC control method is followed, in order to benefit from its explainability relating to the
designed controller structure. Finally, the proposed controllers are assessed and discussed
alongside a recently proposed PFCD scheme for the same UAV platform.

Extensive simulations and discussion of the results are provided to evaluate the
efficacy and extent of the performance benefits of the proposed solutions. The proposed
solutions, given their explainable and simplified structure, provide an attractive framework
for practising control engineers, i.e., a more direct method of “refined” classical control
design for such UAV platforms.

2.2. Overview of Constraints Imposed by NMP Zeros on SISO Control Loop Shaping

Systems with NMP zeros impose challenging constraints on control system design.
Åström discussed fundamental limitations on control performance in his European Journal
of Control tutorial paper (the interested reader is referred to [6] for details). The discussion
was limited to Single-Input–Single-Output (SISO) systems for an archetypal two-DoF (-ve)
feedback control setup having loop TF L(s) = P(s)C(s) (where P(s) is the plant TF and
C(s) is the controller block). Bode’s ideal loop shape ( note that in general, n is considered
fractional order and such a transfer function relationship is explored in fractional order
control; however, fractional order control is not considered in this paper) was emphasised,

i.e., a loop TF of the form Lbi(s) =
(

s
ωgc

)n
where ωgc is the gain crossover frequency

and n the slope of the amplitude curve (although this can be a somewhat conservative
assumption, simplifying the analysis). The outcome was key results (inequalities) for the
gain crossover frequency for minimum phase and non-minimum phase systems.

Here, we present only the crossover frequency inequality for NMP systems, with the
same assumptions as in [6], for simplicity. In the equations below, P(s) = Pmp(s)Pnmp(s)
is the minimum phase/NMP plant factorisation, with |Pnmp(jω)| = 1 and arg Pnmp(jω)
being negative. The achievable bandwidth is characterised by the gain crossover frequency,
referred to as ωgc. The NMP system’s crossover frequency inequality is

arg L( jωgc) = arg Pnmp(jωgc) + arg Pmp(jωgc) + arg C(jωgc) ≥ −π + φm

where φm is the Phase Margin. Taking Pmp(s)C(s) as equal to Bode’s ideal loop TF,

arg Pnmp(jωgc) + arg C(jωgc) ≈ ngc
π

2
,

hence, the inequality becomes

arg Pnmp(jωgc) ≥ −π
(

1 +
ngc

2

)
+ φm

where ngc is the slope of the loop TF at the gain crossover frequency. The typical upper
bound of achievable crossover frequency for a system with a single NMP zero at location
s = z+ will be

ωgc

z+
≤ 1

2
tan
(

π
(

1 +
ngc

2

)
− φm.

)
Note that it is more challenging to control systems with slow NMP zeros (as bandwidth
decreases with decreasing zero frequency); similarly, time delays impose an upper bound
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on achievable bandwidth [6]. This section presents the importance of NMP zeros and their
location in dynamical systems, especially from an LTI viewpoint.

2.3. Structure of the Paper

The paper is structured as follows: In Section 3, we present the model of the system
and describe its various representations (i.e., modelling for control) for synthesizing con-
trollers. In Section 4, we describe the control design setup, and briefly introduce the PFCD
approach from [22] which is used for comparisons with the proposed scheme. Section 5
presents the proposed Internal Model Control (IMC) design. We present the results of
the proposed controllers alongside the PFCD strategy for the same model in Section 6,
and draw conclusions on the presented work in Section 7.

3. UAV Platform and Modelling for Control

The UAV system model utilised for the work is a tailless UAV (with elevon control
surfaces) and was proposed in [23]. The schematic of the UAV and its directions can be
seen in Figure 1.

x

y

z

ϕ

ψ

θ

Figure 1. UAV schematic (elevons on wings shown in darker grey shade).

The UAV model has been extensively reported in [23] (the interested reader can refer
to the paper for more details). For completeness, we state the basic UAV structure here:
the wingspan is 1.2 m, the sweep angle is 30 deg, UAV length is 0.45 m and UAV weight is
approx. 0.85 kg. Brushless motors are the propulsion mechanisms, enabling speeds of up
to about 25 m/s. Pitch and roll manoeuvring is enabled by two elevons.

The pitch and roll system dynamics for the UAV platform were obtained using system
identification via experiments (a PixHawk flight controller was used in the experiments
by the authors). The assumptions made by the authors in their paper [23] were: (i) the
UAV is moving at a given speed with respect to the ground, (ii) the longitudinal and lateral
dynamics are considered to be decoupled, (iii) a linear model in the vicinity of the operating
condition applies.

In this paper, we concentrate specifically on the control of the UAV pitch response,
given its important NMP zero characteristics. A system identification analysis in [23]
showed that a second-order TF with a time delay was sufficient to characterise the pitch
response of the UAV (a similar TF structure also applies for the roll response, but including
minimum phase zero; however, roll control is not considered in this work. Of course,
the proposed control concepts can be followed for the roll response control problem,
which poses fewer performance constraints due to not having NMP zero characteristics);
with control input, the normalised elevons command δe and output the pitch rate q. For the
system identification details, the interested reader is referred to [23]. The transfer function
is given below:

Qd(s) ≡
Q(s)
∆e(s)

=
(−106.2s + 677)e−0.0632s

s2 + 13.69s + 416.7
=

1.6247(1− 0.1569s)
(1 + 0.0329s + 0.0024s2)

e−0.0632s. (1)
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Equation (1) (note that in the case of the pitch angle response, Θδe(s) = s−1Qδe(s)) presents
the pitch rate transfer function in time-constant format. Such a representation is not the
norm in transfer function modelling of aerospace vehicle models, but it is useful here to
illustrate the importance of the various time constants in the model. Note that all closed-
loop simulations are performed using the original model from [23], with the actual time
delay (see (1)). However, controllers are designed based on relevant so-called“modelling
for control” approximations. Moreover, note that the time delay in the original model is
defined by the sampling used in experiments of model identification (i.e., a slower sampling
time results in an increased time delay). For the UAV platform, the frequency range of
interest is between 2 and 40 rad/s.

Modelling for Control

The work in this paper also contributes to ways of representing the transfer function
Qd ≡

Q(s)
∆e(s)

for control design (the pitch rate TF is discussed here, as it is used to design
the control for the rate feedback). Different plant model representations enable flexibility
in controller design; this is advantageous via the IMC method, which results in controller
structures of varying complexity, with simple controller architecture being favourable in
terms of “explainability” and easier for practical implementation. While the discussion
here is on the pitch rate channel, we also present a special case of manipulation of the
model for the pitch angle channel.

Below, we present a series of Qd TF versions in time-constant format (this is currently
a usual practice in process control design, especially when it comes to IMC control method
applications [24]). Specifically, we present different ways in which the non-invertible
portion of the TF model can be represented for control design. For visualisation purposes,
the Pole-Zero (PZ) maps of the different TF model versions are shown in Figure 2, while
the step (to unity amplitude step input) responses are listed in Figure 3a,b (the latter for the
Pade approximations) for easy viewing.

• Pade approx. 1st order of Qd:

Qdp1(s) =
1.6247(1− 0.1569s)(1− 0.0316s)

(1 + 0.0316s)(1 + 0.0329s + 0.0024s2)
. (2)

• Pade approx. 2nd order of Qd:

Qdp2(s) =
1.6247(1− 0.1569s)(1− 0.0316s + 0.00033s2)

(1 + 0.0316s + 0.00033s2)(1 + 0.0329s + 0.0024s2)
. (3)

• Pade approx. 3rd order of Qd:

Qdp3(s) =
1.6247(1− 0.1569s)(1− 0.01361s)(1− 0.018s + 0.00016s2)

(1− 0.01361s)(1 + 0.018s + 0.00016s2)(1 + 0.0329s + 0.0024s2)
. (4)

• Overall time delay (combined NMP zero approx. as time delay and original time delay):

Qds1(s) =
1.6247

(1 + 0.0329s + 0.0024s2)
e−0.22s. (5)

• Rational approximation of Qds1 (Taylor expansion) to pure NMP zero:

Qds2(s) =
1.6247(1− 0.22s)

(1 + 0.0329s + 0.0024s2)
. (6)

• Approx. original time delay by first-order Taylor expansion as extra NMP zero:
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Qds3(s) =
1.6247(1− 0.0632s)(1− 0.1569s)

(1 + 0.0329s + 0.0024s2)
. (7)

• Take (5) and represent worst case time delay as slow pole approximation:

Qds4(s) =
1.6247

(1 + 0.22s)(1 + 0.0329s + 0.0024s2)
. (8)

• Take Qd and represent only the pure time delay as slow pole approximation:

Qds5(s) =
1.6247(1− 0.1569s)

(1 + 0.0632s)(1 + 0.0329s + 0.0024s2)
. (9)

Figure 2. Pole–zero map of the various Qd (pitch rate) TF versions.

Clearly, the TF (order) complexity (numerator, denominator polynomial order; rational
and/or non-rational elements included) varies, with this resulting in controllers of varying
complexity via Direct Synthesis (DS) or model-based control methods [25].

A comparison of the frequency responses (Bode magnitude and phase plots) of the
different TF models is shown in Figure 4. This is important as it illustrates how the non-
compensated system stability margins vary with the manipulation of the TF model and the
trade-off between simplicity and conservativeness introduced in the different TF model
versions (compared with the original model). The characteristics of the different plant TF
models are detailed in Table 1.

Modelling for control is an important step in IMC designs, and from the comparison,
Qdp3 seems the better approximate representation of the original TF Qd; however, the Qdp3
structure complexity (numerator, denominator polynomial order) will map to the model-
based controller design. The Plant TF simplification id: Qds2 shows good agreement (phase
plot) up to around a frequency of 10 rad/s, while introducing GM conservativeness (this
is due to the virtually slower NMP zero introduced by combining the original NMP zero
and the NMP zero approximation of the time delay). To maintain a rational model TF with
the smallest possible numerator and denominator polynomials, Qds2 is the representation
selected for controller design. (Note that the pitch angle TF can be obtained by integrating
the pitch rate.)
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(a) Response to normalised unit step elevon input (approximated versions; no control yet).

Step response

A
m
p
li
tu
d
e

Time (seconds)

(b) Response to normalised unit step elevon input (Pade approximation versions; no control yet).

Figure 3. Step response comparison of model simplifications for the pitch rate transfer function Qd.

Table 1. Qd (no controller included yet) model representation results.

Response Indexes

TF OS/US Ts Tr PM GM

[%] [sec] [sec] [deg] [dB]

Qd 84.6 OS 0.812 0.025 −115@109 rad/s −3.08@78.8 rad/s
Qdp1 77.8 OS 0.802 0.203 133@109 rad/s −16.8@16.4 rad/s
Qdp2 84.4 OS 0.822 0.188 19.2@109 rad/s 1.8@133 rad/s
Qdp3 84.8 OS 0.812 0.206 −58.1@109 rad/s −2.48 @83.9 rad/s
Qds1 32.6 OS 0.763 0.067 10.5@30.8 rad/s 0.506@31.5 rad/s
Qds2 111 US 0.765 0.02 −83@151 rad/s −20.7@21.9 rad/s
Qds3 313 OS 0.802 - - −20.7@17.2 rad/s
Qds4 - 0.88 0.447 111@6.6 rad/s 6.94@21.9 rad/s
Qds5 38 OS 0.662 0.043 −130@43.6 rad/s −14@17.2 rad/s

(1) OS: Overshoot; US: Undershoot; Ts, Tr settling, rise time; PM/GM: Phase margin/Gain margin (negative:
reduction margins) for pitch rate feedback closure. (2) Unit step time-domain response for pitch rate. (3) Qds3 due
to initial kick in the response, negligible Tr, and due to phase advance nature, no PM. (4) Qds4 no OS due to slow
pole characteristics. (5) The equivalent TF for pitch angle Θd followed by multiplication with s−1.
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(a) Comparison with Qdp1, Qdp2, Qdp3. (b) Comparison with Qds1, Qds4.

(c) Comparison with Qds2, Qds3, Qds5. (d) Margins of Qd, Qds2.

Figure 4. Frequency response comparison of model versions for the pitch rate TF Qd.

4. The Feedback Control Setup

Two-degrees-of-freedom controller design is at the heart of this paper. Here, the
generic 2-DoF feedback (with reference feedforward) control setup is presented and forms
the basis for the proposed UAV-targeted (pitch) control design. Note that the proposed
control approach is compared with a recently proposed PFCD design for the same UAV
example by [22]. The PFCD setup of [22] is briefly discussed, as it is used only for compari-
son purposes.

4.1. Generic 2-DoF Control Setup Preliminaries

The generic 2-DoF control setup (with reference feedforward) is shown in Figure 5.
As shown in Figure 5, we can use the following options to design the Kff,r(s) (feedfor-

ward) and Kf(s) (feedback) controllers independently [26,27]:

Kff,r(s) = G−1
yu_(s)Fr(s); Kpf,r(s) = Gyu+(s)Fr(s)

Gyu_(s) is the invertible and Gyu+(s) the non-invertible part of the plant (the plant is
factorised as Gyu(s) = Gyu_(s)Gyu+(s)). The portion Fr(s) is included to guarantee that
Kff,r(s) is a proper TF. In the case of “ideal feedforward”, Kff,r(s) = G−1

yu (s), Kpf,r(s) = 1.
The concept of reference command feedforward is used here.

In term of robustness, again referring to Figure 5,

E = S
(

Kpf,r − GyuKff,r

)
︸ ︷︷ ︸

S′ff,r

R− SD (10)
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(s) dropped for simplicity, with S =
(
1 + GyuKf

)
the sensitivity function, while S′ff,r is the

feedforward sensitivity for the rate. Kpf,r, Kff,r selection is performed to enable independent
feedback and feedforward controller design, with the ideal feedforward S′ff,r = 0. Feedback
control, performance-wise, is effective as far as ‖S‖ < 1; similarly, ‖S′ff,r‖ < 1 denotes
feedforward effectiveness in improving performance [27].

R(s)
Kf(s) Gyu(s)

U(s)E(s)

Kff,r(s)

Kpf,r(s)
Y (s)

D(s)

feed-forward

pre-filter fdbk controller

Figure 5. Typical 2-DoF feedback control framework.

4.2. Proposed Feedback Control Scheme for the UAV Platform Example

The proposed feedback control setup for the UAV platform is shown in Figure 6,
with feedforward on the pitch rate loop and a simple pitch angle controller completing the
outer loop. An optional feedforward for the pitch angle is also shown, for completeness.
The proposed scheme is based on the 2-DoF approach, and Figure 6 allows for independent
design of the relevant UAV-targeted feedback controllers (for the pitch rate controller,
and as an option for the pitch angle controller). The feedback controllers are designed via
the IMC method.

RQ(s)
Kf(s) Qd(s)

U(s)
EQ(s)

Kff,r(s)

Kpf,r(s)
Q(s)

feed-forward (rate)

pre-filter (rate) fdbk controller (rate)

s−1
Θ(s)

P (s)

Shaping pitch
rate

H(s)

Kθ
ff,r(s)

Kθ
pf,r(s) Kθ(s)

Eθ(s)RΘ(s)

fdbk controller
(pitch angle)

feed-forward (angle) - optional

pre-filter (angle)
- optional

Figure 6. UAV pitch angle control loop (disturbance channel is shown) for the proposed control approach.

4.3. Parallel Feedback Control Design (PFCD) for Comparison

PFCD was originally discussed in [28], and a PFCD-based design for this specific UAV
system model was presented in [22]. We compare the results of the proposed IMC-based
design with the design outcome from [22]. The authors designed the following feedback
control elements: Gyu(s) = −106.2s+677

s2+13.69s+416.7 ; Capf(s) = e−0.0632s (links to the plant rather than
the controller); sgn() = +1.

Cqpf(s) = s
1.4199

0.01s + 1
; Kfcq(s) =

0.3085(s + 0.0032)
s

; Kffq(s) = 0.01; Kfc`(s) = 2.5

The relevant time-domain and sensitivity plot (freq. domain) response results for PFCD
are shown in Figure 7, in the results section (for the purpose of comparison is shown in
Figure 8, with the proposed controller approach).
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(a) no disturbances (b) disturbance on pitch angle

(c) disturbance on pitch rate (d) freq. domain sensitivity plots

Figure 7. PFCD time domain response (disturbances applied independently).

Rq(s) Yq(s)
Gyu(s)

s× Cqpf(s)

U(s)

Kfcq(s)
E(s)

Kffq(s)

feed-forward

fdbk controller

Capf(s)sgn()
Ũ(s)

Yqp(s)parallel compensation

Kfcθ(s)
Rθ(s)

1
s

Yθ(s)

H(s) P (s)

Figure 8. The PFCD architecture control feedback setup (adapted from [22]), for comparison.

5. Internal Model NMP Zero UAV-Targeted Control Design
5.1. Internal Model Control in a Nutshell

Internal Model Control (IMC) is a systematic controller design framework that uses an
inverse-based approach to address a system’s performance and robustness [15]. The popu-
larity of IMC is evident in its frequent application in process control, particularly in the
tuning of complex PID control loops [29–31]. Examples of IMC’s effectiveness include its
use in control problems with time delays [32] and in feedforward control for disturbance
attenuation [33]. IMC formulations vary and include SISO and MIMO formulations [34],
continuous- and discrete-time approaches [35], and linear and nonlinear methods [36,37],
as well as bespoke IMC structures for fault-tolerant control (e.g., generalised IMC) [38].
In this paper, we focus primarily on the SISO linear control approach.

Utilizing plant (model) information is important in IMC design, and it involves the
investigation of the plant transfer function structure to enable explainability for the control
design (i.e., how the model structure selection impacts performance). For very complex
models, appropriate model reduction techniques are necessary. Rivera [39] presented a
rigorous perspective on model reduction within an IMC framework, while Skogestad [24]
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proposed simple rules for model reduction and PID controller tuning in process control
industry examples. The design principles of IMC have been developed through experience
and lessons learned, mainly in process control applications. Mechanical or electromechani-
cal natural systems, such as those in the aerospace vehicle control domain, typically with
oscillatory modes, present a unique challenge compared with process control systems. IMC
design for such systems can be informed by process control principles and good practice.

In terms of IMC-related applications to UAV systems, few can be found in the current
literature; these relate both to rotors and fixed-wings. In particular, Bouzid et al, in their
work [40], looked into the equivalence of IMC and PI control structures by proposing
an IMC filter to ensure PI structure. The authors applied their proposed approach to
a quadrotor trajectory-following problem with atmospheric disturbance. Work in [41]
addressed a quadrotor attitude-control problem, comparing various IMC-PID control
tuned versions, i.e., Chien–Hrones–Reswick, Cohen–Coon, and Ziegler–Nichols-based
controllers. Gao et al. [42] proposed, again for a quadrotor UAV, a combined IMC and
tracking differentiator approach for robust attitude control and trajectory tracking. Chen
and co-authors, in their paper, proposed an adaptive IMC approach and used a fixed-
wing UAV landing control problem example to illustrate their proposed approach [43].
The aforementioned papers are rather different to the approach taken in this one, which
concentrates on the more classical control interpretation of IMC. Moreover, the available
papers with some links to IMC for UAV systems do not extensively discuss methods
of TF model representation in the design stages. Additionally, no work discussing the
explainability of IMC control structure for such a UAV platform exists. These are the areas
that this paper strongly contributes to.

Figure 9 illustrates the IMC feedback setup, where Gyu is the actual plant and G̃yu
the model representation. In the figure, the disturbance input channel is also shown. We
can start by setting G̃yu = Gyu, although this model will normally be an approximation
of the true plant. It is important to note that we can design the feedback controller and
feedforward control sections independently, as discussed earlier.

R(s) Y (s)
Q(s) Gyu(s)

G̃yu(s)

U(s)E(s)

D(s)

Figure 9. IMC feedback control setup (Q(s) IMC filter).

We can summarise the design approach for IMC in the following way: the plant
(model) is divided into two parts, the first part being minimum phase (invertible), while the
second part contains non-invertible elements, such as non-minimum phase zeros and/or
delays. These two parts can be represented as follows:

Gyu(s) = Gyu+(s)Gyu_(s) (11)

with Gyu_(s) as the minimum-phase (i.e., invertible) model for the control portion, and Gyu+(s)
the portion that is non-invertible. Hence, based upon model inversion, the IMC filter Q(s)
is selected as

Q(s) = G−1
yu_(s)F(s) (12)
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F(s) facilitates the properness properties of the filter, and a common choice is
F(s) = 1

(τf s+1)n , which guarantees the properness of Q(s) by selecting n and a tunable time

constant τf for controller design (although integrating processes require slightly different
considerations, as seen in [44]). This is used as a starting design point, but for oscillatory
systems, F(s) may need to include damped modes via a pole/zero combination for proper-
ness (note that this will increase the structure complexity). The classical feedback controller
equivalent (represented in the dashed box in Figure 9) can be derived as follows:

K f (s) = Q(s)
[
1− Gyu(s)Q(s)

]−1

= G−1
yu_(s)F(s)

[
1− Gyu(s)G−1

yu_(s)F(s)
]−1

= G−1
yu_(s)F(s)

[
1− Gyu+(s)F(s)

]−1 (13)

The structure of F(s) will undoubtedly add to the complexity of the feedback controller
K f (s). Note that time delays in (13) are approximated by a first-order Taylor expansion.
Considering ideal conditions, F(s) defines a “model reference” response.

5.2. IMC Control with No Rate Feedback

We start by presenting a single-feedback-loop strategy using the pitch angle output
only (the control setup for this approach is the same as shown in Figure 6 with the grey
area box set to Qδe(s)). Applying IMC will lead to a simple P + I type feedback controller
for the pitch angle loop. The plant TF in this case is

Θd(s) = s−1Qδe(s) =
−106.2s + 677

s(s2 + 13.69s + 416.7)
e−0.0632s

=
1.6247(1− 0.1569s)

s(1 + 0.0329s + 0.0024s2)
e−0.0632s. (14)

Equation (14) presents the pitch angle transfer function (TF) in time-constant format. Note
that this TF is of integrating form. Due to its integrating TF nature, a simplified approxima-
tion (here, we add the RHP-zero z = 1

0.1569 as extra time delay; the denominator polynomial
(τ2s2 + 2ξτs + 1) is approximated by (τs + 1)2 (τ = 0.05), then τ is injected as an extra
time delay (partially following the approach in [24])) in the form of a pure integral with a
time delay is

Θ̃d(s) =
1.6247

s
e−0.27s. (15)

The above approximation is in the form G̃ix(s) =
k′1e−θ̃′1s

s for the pitch angle, and, using
the IMC process, a P + I type controller (i.e., a special case of a first-order system with
delay, but with time constant→ ∞) is formed. Note that the invertible part of G̃ix(s) is the
portion excluding the delay. For completeness, the Bode plots for TF (14) and (15) can be
seen in Figure 10. The IMC-based PI controller is thus given by

CPI1(s) =
1

k′1
(
τc + θ̃′1

)(1 +
1

4(τc + θ̃′1)s

)
(16)

with the integral time constant obtained from simple SIMC (Skogestad IMC) rules [24] (this
is sometimes referred to as SIMple Control).

τI = 4(τc + θ̃′1) (17)

In the case of PI controller design, τc is the only design parameter that needs tuning.
Its initial value is set to the given effective delay, i.e., θ̃′1. Increasing τc results in a more
robust, but slower, response. We use the 2-DoF design setup, as shown in Figure 5, with the
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transfer function (15) used for the feedforward and pre-filter, i.e., Kff,r, Kpf,r. Note that
assuming “perfect control” yields

Y(s) = Kpf,rR(s) (18)

The following selection applies for the 2-DoF IMC pitch control design ((s) is dropped
for simplicity)

Fr =
1

1 + 0.3825s + 0.05063s2 ;
Kff,r = Θ̃−d Fr,
Kpf,r = Θ̃+

d (s)Fr
(19)

Fr assumes a desired CL pitch angle step response settling time of approx. 1 s and
0.85 damping (it also avoids having an all-pass pre-filter), while Θ̃−d and Θ̃+

d follow from the
above considerations. The former is the invertible part of Θ̃d; the latter is set to (1− 0.27s)
for rational TF. Under ideal conditions, one expects pitch angle track following with a set-
tling time of around 1 s. Closed-loop response results for different τc are shown in Figure 11
(one can see that τc ≈ 0.27 s provides appropriate tracking performance). Figure 12 presents
the frequency domain results for this simple approach, i.e., a CL sensitivity plot (including
feedforward sensitivity) and robustness achievement (a Nyquist plot).

Figure 10. Comparing Bode plots of plant model (14) (red) and (15) (blue).

Figure 11. IMC–s time domain resp. (top-left, clockwise): τc = 0.0675 s, 0.135 s, 0.54 s, 0.27 s.
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(a) Sensitivity plots (b) Nyquist plot

Figure 12. Closed–loop frequency domain results for IMC–s with τc = 0.27 s.

5.3. IMC Control with Inner Loop (Pitch Rate Feedback) Included

Traditionally, a cascaded control design is executed for UAV systems, i.e., a pitch rate
feedback for the inner loop and then an outer loop pitch angle feedback (note that the
typical inner-loop based approach was also followed in [22]).

The feedback control setup is shown in Figure 6, with the emphasis of the feedforward
on the pitch rate loop, while a simple pitch angle controller completes the outer loop
(however, the scheme also shows optional feedforward and pre-filter blocks for the pitch
angle). Note that, as mentioned earlier, the setup in Figure 6 allows for independent design
of the feedback controller.

The IMC-based design begins by considering the pitch rate (inner loop) feedback,
i.e., in a 2-DoF approach, such as that shown in Figure 5. Then, the outer pitch angle loop is
closed by designing the controller Kθ(s). It is worth noting that, following the above 2-DoF
design for the pitch rate inner loop, the pre-filter Kpf,r for the pitch rate will also serve as a
“shaper” (or pre-compensator) for the outer loop (see Figure 6).

5.3.1. Inner Loop (Pitch Rate)

Proceeding to the inner loop design, no outer loop is closed yet. RQ(s) is the rate
ref. input and Q(s) the rate output, while the simplest plant transfer function to consider
for the IMC-based design is (6), i.e., TF Qds2(s) reflects a close approximation of (5). This
forms a rational expression overall, with the MP zero characterising a “worst case delay
approximation” (original NMP zero with the original time delay included (note that, even
in the case of pure time delays, at some point in the design, a rational approximation,
although slightly conservative, of the time delay itself is useful. Considering this kind of
approximation during the modelling for control process is an acceptable way to proceed.)).
As seen from the uncompensated step response in Figure 3, the TF model Qds2(s) provides
a worst case undershoot and overshoot characteristic

F(s) =
1

(τ0s + 1)2.
(20)

The time constant τ0 is the tunable parameter; initially setting it to the time delay (or
approximated time delay) of the plant while increasing its value provides a less aggressive
response. The IMC controller with τ0 = 0.22 is

K[2]
f (s) =

0.932(1 + 0.033s + 0.0024s2)

s(1 + 0.073s),
(21)

clearly in the form of an ideal PID + low-pass filter. The controller could be further
simplified by a P + I equivalent if necessary, i.e., K[2]

f−PI(s) =
0.932(1+0.033s)

s . Figure 13, shows
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the Bode plot for K[2]
f (s) and its P+I approximate. Following the procedure to obtain the

pre-filter and feedforward portions, with Fr =
1

(0.22s+1)2 , these are given by:

K[2]
ff,r(s) =

0.616(1 + 0.033s + 0.0024s2)

(1 + 0.22s)2 (22)

K[2]
pf,r(s) =

(1− 0.22s)
(1 + 0.22s)2 (23)

Figure 13. Inner loop feedback controller (and its approximation).

5.3.2. Outer Loop (Pitch Angle)

With the inner loop closed, the TF model used for the design of the outer loop is
simply Θ(s)/RQ(s). While there are alternative ways to proceed, i.e., exploring outer loop
controllers of increasing complexity, this simpler approach is the most beneficial.

Note that for the pitch rate inner loop, under assumption of “perfect control” and no
disturbance excitation, Q(s) ≈ Kpf,rRQ(s). Hence, one could approximate the plant model
(with inner loop closed) for the design of the pitch angle outer loop by

Θ̃(s) =
(1− 0.22s)

s(1 + 0.22s)2 RQ(s) ≈
e−0.22s

s(1 + 0.22s)
RQ(s). (24)

The above approximation allows us to perform a much simpler IMC-based design as well
(this is explained later in this section and maintains minimal TF order). Here, we present
two outer loop controllers, i.e., a simple (1-DoF) loop shaping controller, and a (2-DoF)
IMC-based controller.

Outer Loop Simplest (1-DoF Loop Shaping)

The simplest approach to design the outer loop controller KΘ(s) is by straightforward
loop shaping using (24) and no feedforward. The uncompensated (outer) open loop
frequency response is shown in Figure 14a.
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(a) Uncompensated OL frequency response for
outer loop (pitch angle) control design

(b) Root locus (selected controller gain)

(c) Pitch angle sens. mag. plot. (d) Pitch angle sensitivity (to dist. η).

Figure 14. UAV pitch angle loop responses in frequency domain (loop shaping).

Outer Loop 2-DoF IMC-Based

The plant approximation utilised here is that of

Θ̃(s)
RQ(s)

=
e−0.22s

s(1 + 0.22s)
.

Following the IMC procedure described in this paper, a phase-advance controller is de-
signed, i.e.,

K′Θ(s) =
1.136(1 + 0.22s)2

(1 + 0.165s + 0.012s2)

with the IMC filter selected as F = 1
(0.22s+1)2 . In fact, the controller K′Θ(s) above can be

easily approximated by

K′Θ,red(s) =
1.143(1 + 0.4s)

(1 + 0.1s)
.

For completeness, and following the procedure to obtain the outer loop pre-filter and
feedforward portions, with Fr =

1
(0.5s+1)2 , these are given by:

KΘ
ff,r(s) =

s + 0.22s2

(1 + 0.5s)2 ; KΘ
pf,r(s) =

(1− 0.22s)
(1 + 0.5s)2 . (25)

Recall that the above choice of pre-filter ensures independent feedback and feedforward
controller design. The rationale for the IMC filter selection here is to smooth the undershoot
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(by allowing a slightly larger settling time). Note that, again, under perfect control, the
pitch angle output is expected to adhere to Q(s) ≈ KΘ

pf,rRΘ(s).

6. Results and Discussion

The following controllers are presented here for testing, comparison and contrast
purposes: IMC–s (IMC controller single loop, Section 5.2); IMC–i (IMC controller with
inner loop, Section 5.3); LS–i (Simple loop shaping with inner loop, Section 5.3.2); and
PFCD (Parallel Feedback Control Design [22].

For time domain simulation, the pitch angle reference is a step of amplitude π
6 rads,

the disturbance η is a step with amplitude −0.05 rad/s (at time 3.5 s), and the disturbance ρ
is a step with amplitude −0.2 π

6 rads (as time 4.5 s). The controllers presented in this paper
were tested on the original model of the UAV setup. In the simulation, when disturbances
apply, these act independently.

Figure 15 reports the pitch angle and pitch rate signals for the scheme with the simplest
loop-shaping (1-DoF) outer loop controller. Figure 16 presents the pitch angle and pitch
rate signals for the scheme with 2-DoF IMC-based outer loop controller. In both cases, an
IMC-based inner loop applies, as discussed earlier. One can clearly see the disturbance
rejection performance in both cases. The time domain response for the PFCD scheme
is shown in Figure 7, and while the pitch angle and pitch rate signals show smooth
responses, the scheme does not offer appropriate disturbance rejection (especially to pitch
rate disturbance). In addition, there is a very small pitch angle steady-state offset remaining.
The PFCD scheme could be improved (especially in terms of disturbance rejection) with
the use of more complex controller structure and use of optimisation; however, this would
further impact its simplicity compared with the IMC-based solutions.

(a) no disturbances (b) disturbance on pitch angle

(c) disturbance on pitch rate
Figure 15. LS–i time domain performance.
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(a) no disturbances (b) disturbance on pitch angle

(c) disturbance on pitch rate

Figure 16. IMC–i outer loop control responses in time domain.

The 1-DoF loop-shaping outer loop controller is more conservative than the 2-DoF
IMC-based outer loop controller scheme, and hence, offers slightly better robustness prop-
erties, as seen in Figure 17. The 2-DoF IMC-based outer loop controller scheme takes
advantage of the IMC feedback controller structure and the feedforward controller to offer
a more aggressive, yet acceptably robust outcome. Figure 18 shows the IMC-based feed-
back controller’s frequency response (and its simplification) and the achieved disturbance
rejection to the pitch rate η disturbance channel.

(a) Loop shaping (LS–i) (b) IMC-based (IMC–i)

Figure 17. Nyquist plots for pitch angle control loop (robustness).

Moreover, the proposed controller schemes offer better noise rejection properties as
shown by the complementary sensitivity plot in Figure 19a (on the pitch angle channel),
compared with PFCD. Note that we assess high frequency noise rejection via frequency
responses, i.e., design closed-loop TF. We have not included noisy time domain responses in
order to illustrate the deterministic disturbance rejection more clearly. Figure 19b illustrates
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the control input (control effort); clearly, the proposed controller schemes maintain smooth
control (elevons) effort very comparable to that of PFCD.

(a) IMC controller and its reduced version (b) Sensitivity to dist. η

Figure 18. IMC–i controller (frequency response).

(a) Complementary sensitivity (noise rejection
performance, frequency response)

(b) Control input (all schemes, no disturbances,
time domain)

Figure 19. UAV pitch angle loop (with rate feedback closed) performance.

The controller’s performance is summarised in a detailed set of performance metrics
shown in Table 2, which also lists the single-loop IMC-based controller, for completeness
(however, we mainly concentrate on the schemes with closed inner loops, for a fairer
comparison with PFCD). From the viewpoint of controller structure setup, the proposed
controllers offer explainability relative to the UAV system dynamics, unlike PFCD.

The following important points are highlighted:

• The IMC-based controller design for the inner loop (pitch rate) serves as a shaper for
the outer loop controller design, both for the simplest loop-shaping approach and for
the 2-DoF IMC-based outer loop controller approach. In particular, the pre-filter Kpf,r
offers a “virtual” simplified plant TF (under an assumption of perfect control) for the
outer loop controller’s design.

• The plant TF model representation (so-called ‘modelling for control’) for the IMC-
based control design process leads to explainable controller structure (i.e., PID-type,
phase-advance type, etc.), and further simplification of the controllers can be achieved
by straightforward investigation of their characteristics (as shown in this paper).

• The IMC-based controller design does not necessitate complex optimisation (although
it is possible to follow more rigorous optimisation for more complex TF structures).
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Table 2. Evaluation of controller schemes *.

Controller Schemes

Metrics IMC–s IMC–i LS–i PFCD

Ts (settling time, sec) 2.19 2.168 3.21 2.641
Undershoot peak −0.07 −0.007 −0.006 −0.02
Overshoot peak 0.5236 0.534 0.529 0.525
Tzc (zero cross time, sec) 0.4 0548 0.539 0.491
Disturbance rejection (det.) Y Y Y N
Sensitivity peak (abs) 1.81 1.69 1.42 1.4
s.s. error (tracking) 0 0 0 ≈ 0

* Response to pitch angle reference command of π/6 rad. IMC–s (Section 5.2); IMC–i (Section 5.3); LS–i
(Section 5.3.2); PFCD (Section 4.3) Zero crossing time: curve crosses x-axis from -ve to +ve (and remains in
+ve). Disturbance rejection (deterministic) achieved or not (to all disturbances). Tracking achieved under no
disturbances (last row).

7. Conclusions

This paper presents a structured control design for a fixed-wing UAV platform with
non-minimum phase (NMP) zero characteristics, using the Internal Model Control (IMC)
design. The resulting IMC-based controller offers a simple and explainable (in terms of the
controller structure’s linkage to the system performance) controller without the need for
complex optimisation. This approach is highly relevant to practical applications in NMP-
type UAV control problems, as it takes advantage of the model’s NMP zero characteristics
to inform the design process and can also enable fine loop-shaping with higher-order
model representations.

The proposed IMC-based controllers outperform a recently proposed PFCD-proposed
scheme for the same UAV platform, offering better disturbance rejection while maintaining
comparable robustness properties (even if the model for control used is a simple approxi-
mation of the original model). This approach can serve as a baseline controller for further
structured control design optimisation for UAV control, and can also serve as a baseline
“shaping filter” for more advanced robust control designs, such as H-infinity methods.

Key points of the proposed IMC-based UAV-targeted control solution include: (i) its
simplicity and avoidance of complex optimisation, (ii) its structured model-based approach
that incorporates NMP zero characteristics of the UAV platform in the control design, (iii) its
comparable performance to that of PFCD while offering superior disturbance rejection.

Rigorous simulations and analysis demonstrate the efficacy of the proposed approach,
while the paper also recommends ways to represent the transfer function model of the
UAV platform for control design purposes and how these relate to the system performance.
This approach offers a valuable tool to industrial UAV control practitioners and applied
researchers working on UAV controller design problems.
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Abbreviations
The following abbreviations are used in this manuscript:

SISO Single-Input–Single-Output
NMP Non-minimum phase
TF Transfer function
CL, OL Closed-loop, Open-loop
DoF Degree of Freedom
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FDBK Feedback
IMC Internal Model Control
PFCD Parallel Feedback Control Design
UAV Unmanned Aerial Vehicle
GM, GRM Gain margin, Gain reduction margin
PM, PRM Phase margin, Phase reduction margin
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