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Abstract: Due to ever increasing performance requirements, model-based optimization and control
strategies are increasingly being adopted by machine builders and automotive companies. However,
this demands an increase in modelling effort and a growing knowledge of optimization techniques,
as a sufficient level of detail is required in order to evaluate certain performance characteristics.
Modelling tools such as MATLAB Simscape have been created to reduce this modelling effort,
allowing for greater model complexity and fidelity. Unfortunately, this tool cannot be used with
high-performance gradient-based optimization algorithms due to obfuscation of the underlying
model equations. In this work, an optimization toolchain is presented that efficiently interfaces with
MATLAB Simscape to reduce user effort and the necessary skill and computation time required for the
optimization of high-fidelity drivetrain models. The toolchain is illustrated on an industrially relevant
conjugate cam-follower system, which is modelled in the Simscape environment and validated with
respect to a higher-fidelity modeling technique, namely, the finite element method (FEM).

Keywords: optimal control; concurrent design; conjugate cam-follower; high-fidelity model; lumped
parameter model; mechanical transmission; Simscape

1. Introduction

Nowadays, increasing requests for smart and high performance products are contin-
uously challenging machine builders and vehicle drivetrain manufacturing companies
to achieve higher throughputs, increased accuracy, reduced energy consumption, and
improved comfort. At the same time, original equipment manufacturers (OEMs) are be-
ing challenged to reduce lead times, increase product customization, comply with strict
environmental regulations, and deal with the competitive context of the globalised mar-
ketplace [1]. In this context, conventional prototype-based techniques are becoming ever
more substituted by digitalized processes, as the former techniques are often time- and
budget-consuming and rely strongly on the designer’s ideas and knowledge.

Physics-based simulation models are increasingly being adopted to tackle these chal-
lenges, as they can provide versatile and modular processes which do not require deep
knowledge and skills on the part of the end-user after being deployed in form of automated
tools for designing hardware and/or tuning the controls of mechatronic systems [2–4], and
can more easily be integrated at the different stages of the supply chain.

Nonetheless, such design procedures are often performed sequentially or iteratively [5],
where the hardware is designed first and the control software afterwards [6]. Consequently,
this yields sub-optimal designs [7] and update cycles with slow incremental improve-
ments with respect to the final products. Co-design optimization approaches are com-
monly adopted to cope with these problems, where both parameters of hardware and
controllers are optimized simultaneously [8,9]. Examples include co-design optimization
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of hard disks [10], DC motors [11], active suspensions [12], four-bar linkages [13], etc.
Furthermore, a distinction is made between nested (layered) and direct (simultaneous)
approaches to solve the co-design problem [14]. In the first case, an outer loop optimizes
the model/design parameters and an inner loop optimizes the controls. In the second
case, both the model/design parameters and controls are solved in the same problem. In
both cases, a system-level optimum can be achieved; however, in the second approach,
although a more complex problem has to be solved, it is often possible to find the optimal
solution more quickly. Despite their capabilities, co-design optimization techniques require:
(1) accurate and computationally-efficient multi-physical models, and (2) expert knowledge
of optimization techniques, which limits their industrial uptake.

In this work, a model-based optimization toolchain is presented which aims to over-
come the above-described limitations, which we call the DriveTrain Co-Design Toolchain.
It consists of the following main elements/steps:

(i) MATLAB Simscape [15,16] is used to create a 1D drivetrain model, permitting accurate
and fast evaluation of the represented physics.

(ii) A pre-processor extracts the parametric Differential-Algebraic Equations (DAE) in
symbolic form from Simscape. These white-box model equations can then be directly
used in the gradient-based optimization problems listed next. They enable efficient
(high-order) derivative evaluations through algorithmic differentiation [17]. This
allows the optimization problems to run efficiently, eliminating the need for the use
of (approximate) finite difference-based methods [18] or surrogate modelling [19] to
derive the gradients [20].

(iii) Using the model, an Optimal Control Problem (OCP) is solved which optimizes
the dynamic response and controls of the considered system according to a cost
function and a set of constraints. A direct transcription of the OCP into a large-but-
sparse Non-Linear Program (NLP) is performed using CasADi [17] and solved with
IPOPT [21]. This approach scales well with horizon size and model order [22], and
yields fast convergence.

(iv) A co-design optimization is performed in a single optimization problem (i.e., a direct
approach); design parameters are added as additional degrees of freedom in the NLP
that encodes the OCP. Although a more complicated problem has to be solved, it can
yield the optimal results significantly faster compared to a nested approach ([23,24]),
as the optimization problem has to be solved only once.

The complete toolchain is demonstrated on an industrially relevant conjugate cam-
follower drivetrain. Cam-follower mechanisms are widely used in industry in many types
of applications [25–28] because of their peculiar properties of transforming a given input
motion into a desired one in the output. Many different types of cam designs have been
studied in the literature depending on the application and requirements [29]. In [30],
the conjugate nature of the cam-follower transfer unit were underlined as being of key
importance in the system dynamics, reducing the required input energy and ensuring
smooth transmission of motion between the driver and the driven mechanisms. Cam-
follower mechanisms are most often modelled considering only the kinematics, with the
dynamics introduced by the contact mechanism and body flexibilities being neglected;
therefore, the model acts as an ideal transformer [27]. In practice, due to the flexibilities
of the components and geometrical plays of the assembly chains, interacting bodies can
lose contact under static and/or dynamic conditions, which might seriously jeopardise the
performance and health of the system. In this contribution, to concurrently optimize the
design and control of the mechanism, both states and design parameters are coupled in the
modelling environment through an efficient motion parameterization. In this way, we limit
the amount of design variables, analytically solve the inverse kinematics, and introduce
an analytical nonlinear contact model. To achieve the industrially required model fidelity,
i.e., accurate prediction of the contact forces, a customized Simscape Lumped Parameter
Model (LPM) of a cam-follower system is developed and validated using a higher-fidelity
nonlinear Finite Element Model (FEM).
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The user-defined cam-follower model is then assembled into a complete Simscape
drivetrain architecture, which is included and optimized in the optimization toolchain with
little effort. In this context, the cam geometry and driving control torque are concurrently
optimized. As a result, the system performance improvements are scored on a Pareto front,
trading off relevant industrial concerns such as reducing the energy consumption with
reducing the loads on the system (lifetime) by optimally choosing the design parameters
and drivetrain control signals.

Our contribution is structured as follows: Section 2 describes the LPM approach we
considered to mathematically represent the conjugate cam-follower system in the Simscape
environment; in Section 3, the co-design toolchain structure is presented, moving from
extraction of the symbolic equation to mathematical formulation of the co-design problem;
in Section 4, the cam-follower LPM is first benchmarked with respect to its nonlinear FEM
representation, then is brought into the toolchain, where multi-objective OCP and design
problems are concurrently solved and the relevant results are illustrated; finally, Section 5
concludes this scientific contribution.

2. Cam-Follower Drivetrain Model

Cam-follower systems are widely used in the mechanical community, and often play a
key role in the drivetrains of industrial machines. They can be understood as transformation
mechanisms that convert the rotational motion of a driver component (cam) into a desired
oscillating motion of another body (follower) by direct contact. Many fields of application
can be found in the literature [25–28], from heavy to lightweight machines:

• Industrial and commercial machinery for goods and services, for example, shoe
making, steel, and weaving mill equipment, as well as paper printing presses.

• Agricultural machinery and robotics for pick-and-place or cyclic operations.
• Microelectromechanical systems (MEMS) for accurate micromachinery in miniature

control systems.
• Automotive performance and optimization, such as in high-speed automotive valve

operating systems.

The widespread usage of such systems demands the constant evolution of design and
system performance, forcing the analyst and design community to exploit physics-inspired
simulation models in alternative to conventional prototype-based techniques. Additionally,
these models can be used to efficiently predict dynamic system performance while being
included in optimisation loops to simultaneously score the best design candidate which
meets the desired targets.

In this work, an ad hoc 1D dual cam-follower model has been developed in MATLAB
Simscape, permitting automatic code extraction as well as inclusion of the relevant physics
in the system-level model. The Simscape implementation allows multi-physical component
models to be directly integrated through block diagrams in the system-level model. The
resulting modelling approach and interface permit us to concurrently employ an optimal
control strategy minimizing the objective performances as well as to optimize the design
parameters.

The system level architecture of the cam-follower shown in Figure 1 consists of the
following main elements:

1. The input torque element;
2. Damping elements representing the input–output dissipating energy;
3. The inertia element of the conjugate cams and follower bodies;
4. The conjugate cam-follower (interaction) element.



Machines 2023, 11, 486 4 of 29

Figure 1. Simscape model implementing the conjugate cam-follower mechanism.

Each of the above elements are governed by a set of ordinary and/or algebraic differ-
ential equations automatically assembled via MATLAB Simscape based on the physical
connections defined by block diagram.

The goal of this section is to provide the most relevant modelling elements to build
an accurate system level model that accounts for the design parameters variations. For
this reason, we focus on the cam-follower inertia parameterization and the differential
equations of the conjugate cam-follower contact element, while referring to the Simscape
documentation for more details of the remaining components.

2.1. The Cam and Follower Inertia Parameterization

Both conjugate cam and follower elements consist of a master (M) and slave (S)
component connected to a rotational axis, where the inertial contributions can be expressed
as follows:

Jcam = Jcam,M + Jcam,S; (1a)

J f ollower = J f ollower,M + J f ollower,S. (1b)

Due to the bulky nature of both bodies, the influence of the geometrical parameters on
the system inertia can be globally captured considering simplified/equivalent geometries.
The cam shapes, for instance, can be reduced to circular disks of thickness Bcam and radius
Req, while the follower shapes can be considered as a combination of a beam of length
L f ollower and a rectangular section of dimensions Rroller · B f ollower, with a point mass Mroller
at the end of the beam representing the roller body. For the single components j = M, S,
the inertia contribution can be parameterized as

Jcam,j =
π

2
ρcam,jBcam,jR4

eq,j; (2a)

J f ollower,j =
1
3

ρ f ollower,jB f ollower,jRroller,jL3
f ollower,j+

+
1

12
ρ f ollower,jL f ollower,jRroller,jB3

f ollower,j+

+ Mroller,jL2
f ollower,j

(2b)

where ρcam,j and ρ f ollower,j are the cam and follower material density of the jth component.
After the inertial contributions are parameterized with respect to the design parameters,
they can be included in the rotational dynamic model depicted in Figure 1.
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2.2. The Parameterized Cam-Follower Contact Element

Cam-follower mechanisms are most often modelled considering only the forward
kinematics, where no contact loss is assumed and the kinematics are derived given a
constant cam velocity [27]. The outputs of such analysis are the accelerations and relative
positions of the centres of mass of both cam and follower, which in turn are fed into the
dynamic force equilibrium equations. On the contrary, through the solution of the inverse
kinematics, the motion is driven by the applied forces. If the assumption of no contact loss
is considered, the model acts as an ideal transformer where the cam rotation is transformed
to a oscillating motion at the follower side. However, in practice, due to the flexibilities
of the components and geometrical plays of the assembly chains, interacting bodies can
lose contact under static and/or dynamic conditions, which might seriously jeopardise
the performance and health of the system. To this end, optimal design and control of the
mechanism are required. In order to capture these effects in the modelling environment,
the equations of motion governing the system dynamics must include both the state and
design parameter dependencies.

In the following section, a motion parameterization is first introduced to limit the
amount of design variables involved in the design optimization process while covering
a wide range of solutions; next, an analytical nonlinear contact model is introduced;
finally, both models are assembled and the dynamic equations of the cam-follower system
are expressed.

2.2.1. Piece-Wise Polynomial Follower Law

Starting from the kinematic relationship between the cam and the follower, the geo-
metrical cam-follower design is defined through parameterization of the follower motion
profile γ and its partial derivatives with respect to the cam orientation θ:

γ = f (θ); (3a)
dγ

dθ
= fd(θ); (3b)

d2γ

dθ2 = fdd(θ). (3c)

There are many ways to mathematically express the motion profile of Equation (3a)–(3c).
For instance, the follower motion can be described by a variety of functions depending

on the amount of design parameters involved and the function complexity: cycloid, modified
harmonic, trapezoidal, modified trapezoidal, polynomial, spline, Bézier, harmonic, etc. [29,31–35].
In practice, the profile shown in Figure 2 is one of the most commonly used in industry,
namely, a dwell (s1)–drop (s2)–dwell (s3)–rise (s4) motion. It is schematized in different
sectors s and is mathematically represented by a piece-wise polynomial curve:

f (θ) = ∑
s

(
p0,s + p1,s

∆θs

∆θ̄s
+ p2,s

∆θs

∆θ̄s

2
+ ... + pn,s

∆θs

∆θ̄s

n
)

; (4a)

fd(θ) = ∑
s

(
p1,s

∆θ̄s
+

2p2,s

∆θ̄2
s

θ + ... +
npn,s

∆θ̄n
s

θn−1
)

; (4b)

fdd(θ) = ∑
s

(
2p2,s

∆θ̄2
s
+ ... +

n(n− 1)pn,s

∆θ̄n
s

θn−2
)

. (4c)

where n represents the polynomial order and

∆θs = (θ − θ̄s); (5a)

∆θ̄s = (θ̄s − θ̄s−1). (5b)

θ̄s and θ̄s−1 are the cam angle limits of each sector s.
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h1

h2

f(
θ)

f d
(θ

)

0 θ̄1 1 2 θ̄2 3 4 θ̄3 5 6

θ

f d
d
(θ

)

Figure 2. Follower kinematics motion: dwell–drop–dwell–rise.

In this work, the polynomial order is set to n = 7 for a smooth representation of the
follower law and its derivatives with respect to the cam angle in each sector, as well as
to analytically derive the polynomial parameters pn,s while assuming a minimal set of
boundary conditions, as summarized in Table 1.

As result, the designed follower law curve represents a cam-follower geometry, as
shown in Figure 3, and the choice of the polynomial description allows us to cover a wide
and industrially relevant design space while minimizing the amount of design parameters.

Table 1. Seventh-order polynomial parameter values.

Polynomial Parameters

Sectors p0 p1 p2 p3 p4 p5 p6 p7

1 h1 + h2 0 0 0 0 0 0 0

2 h1 + h2 0 0 0 −35 h2 84 h2 −70 h2 20 h2

3 h1 0 0 0 0 0 0 0

4 h1 0 0 0 35 h2 −84 h2 70 h2 −20 h2

(a)

Cam shape
Roller shape
Follower arm lenght: L
Pitch point: P
Contact point: C
Follower center distance: D
Roller radius: Rroller
Global frame {G}: x− y
Local frame {L}: t̂− n̂
Follower orientation: α0 + f (θ)
Cam orientation: θ
Roller orientation: β

(b)

Master cam-follower
Slave cam-follower
Cam center: O
Follower center: A

α0 + f (θ)
L

θ

β

{G}
D

Rroller

PC{L}

O A

Figure 3. (a) Cam-follower nomenclature and (b) conjugate cam-follower representation.

2.2.2. Cam-Follower: Non-Linear Contact Force Model

In order to account for the dynamic effects introduced by the cam-follower interactions,
a nonlinear force model is introduced acting in a local frame {L} with unit vectors t̂− n̂,
as shown in Figure 3a. Here, the roller contact point C is allowed to slide over the local
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normal axis frame, enabling the contacting bodies to overlap each other and resulting in
a local penetration. Because the latter is much smaller than the bodies’ dimensions, the
displacement in the tangential direction can be neglected as long as the center points of the
cam and follower are considered fixed. Thanks to the definition of the local contact forces,
different contact models with variable complexity/fidelity can be plugged and played
at the system level without modifying the overall model architecture. In particular, the
normal contact forces are obtained through a nonlinear stiffness–displacement relationship
expressed as a function of the penetration and its time derivative. The normal force Fn
acting on each of the interacting bodies is defined as the sum of the elastic Fn,e and viscous
Fn,v contributions:

Fn = Fn,e + Fn,v. (6)

Fn,e is computed assuming that the main deformation field of the interacting bodies
occurs in the contact area and that the contact patch between the cam and roller is a line.
This allows us to model the contact phenomena by applying the Hertzian theory [36] for
cylindrical bodies on a contact segment of length B. The nonlinear contact deformation δ
that arises from the load Fn,e can be described with the closed-form formula derived by
Weber and Banaschek in [37].

δ =
Fn,e

πB

(
1− ν2

cam
Ecam

+
1− ν2

roller
Eroller

)[
ln
(

4hcamhroller
a2

)
− 1

3

(
νcam

1− νcam
+

νroller
1− νroller

)]
. (7)

Equation (7) assumes that the cam and roller can be well represented as cylinders
with radii of curvature Rcam and Rroller, respectively, in the near proximity of the contact
area. In this regard, while Rroller is constant, Rcam is a function of the cam orientation (θ), as
discussed in Appendix A. The parameters hcam and hroller are chosen to be equal to Rcam
and Rroller, respectively. Hertz derived the analytical formulas that allow the half contact
width a and the maximum contact pressure κ to be computed as functions of a contact load
Fn,e [38]:

a =

[
4Fn,e

πB
R∗
(

1− ν2
cam

Ecam
+

1− ν2
roller

Eroller

)]1/2

; (8a)

κ =
2Fn

πaB
. (8b)

Here, the parameter B is defined as the overlapping thickness of the interacting bodies,
that is, the cam and roller. The material characteristics of the cam and roller are taken into
account through the Young’s modulus E and Poisson ratio ν. The equivalent radius of
curvature R∗ accounts for the relative curvature of the two cylinders at the contact point:

1
R∗

=
1

Rcam
+

1
Rroller

. (9)

Subsequently, the nonlinear viscous contribution Fn,v can be considered as only a
repulsive damping force (the bodies are pushed away from each other) when the bodies
are in contact; it reads as

Fn,v = Cv|δ̇|. (10)

Finally the tangent forces Ft, represented as a frictional contribution occurring along
the tangent direction t̂, are a combination of the static and kinetic Coulomb friction models:

Ft = sign(θ̇)

{
µsFn, if vslip = 0
µdFn, otherwise

. (11)
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where µs and µd are the static and dynamic friction coefficients, respectively. The expression
sign(θ̇) has been included due to the dependency of the tangent force with respect to the
angular cam velocity, as conventionally the normal force is assumed to be either positive
or zero.

2.2.3. The Conjugate Cam-Follower Dynamic Equations

In light of the kinematic and contact force description provided above, the differen-
tial equations governing the conjugate cam-follower element are derived from contact
theory [36] based on the velocity equilibrium ~vc at the contact point and the torque bal-
ance equations:

−→v c · n̂ = 0; (12)

Tcam =

[
OC′t
OC′n

]
×
[

Ft(vslip, Fn, p)
Fn(δ, δ̇, p)

]
; (13a)

Tf ollower =

[
AC′t
AC′n

]
×
[

Ft(vslip, Fn, p)
Fn(δ, δ̇, p)

]
. (13b)

Here, the subscripts t and n stand for the projections on the t̂− n̂ local frame {L}, as
indicated in Figure 3. Accordingly, Ft and Fn are the tangential and normal forces acting
on each body, and are expressed as function design parameters p representing the shapes
of the cam and follower pairs, while vslip is the roller slip velocity and δ and δ̇ are the
penetration and its time derivatives, respectively.

The local deformation δ is defined as the difference between the dynamic variable AC′

projected in direction n̂ and the equivalent kinematic distance AC, computed by solving
the inverse kinematics (reported in Appendix A). Thus, the resulting penetration δ can be
written as

δ = AC′n − ACn; (14a)

δ̇ = ˙AC′n − ˙ACn. (14b)

Subsequently, the differential equation governing the roller dynamics is introduced
as follows:

Jroller β̈ + Cbearing β̇ + RrollerFt = 0, (15)

where Jroller is the roller inertia, Cbearing is the bearing damping, Rroller is the roller radius,
and β is the roller angular orientation (state) expressed in the roller local frame. Finally, the
roller slip velocity can be computed as

vslip = Rroller β̇− ˙OCt. (16)

3. DriveTrain Co-Design Toolchain

In this section, an overview of the developed DriveTrain Co-Design Toolchain is
provided. It is designed to easily set up the required optimization problems starting from
a Simscape model using only a handful of high-level commands. The low-level code is
abstracted from the user, and is efficiently handled by a back-end that interfaces with
CasADi’s Opti-stack [39]. The toolchain consists of the following steps:

1. Creation of a high-fidelity drivetrain model in MATLAB Simscape.
2. Extraction of symbolic equations from the Simscape model using the developed tool

Simscape2CasADi. More information about this tool is provided in Section 3.1.
3. Formulation of the optimization problems. A user-friendly interface is provided to set

up the optimization problems. Two types of optimization problems are considered:

• Optimal control; see Section 3.2. In this case, the controls of the model are
optimized according to a user-defined cost function and set of constraints.
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• Concurrent design (co-design); see Section 3.3. In this case, both the controls
and specific model parameters are optimized according to a cost function and a
number of constraints defined by the user.

More details about the practical steps required to set up the optimization problems
are provided later in this section.

3.1. Simscape2CasADi: Extracting Symbolic Equations from Simscape

This part of the toolchain extracts equations from Simscape models using the tool
Simscape2CasADi [40]. Parametric, time-dependent, time-delayed, and nonlinear models
are all supported, even with if-tests, though not models involving a finite-state machine.
The output is a set of differential algebraic equations (DAE) in the following form:

ẋ(t) = f ode(x(t), z(t), u(t), p); (17a)

0 = f alg(x(t), z(t), u(t), p); (17b)

y(t) = f out(x(t), z(t), u(t), p), (17c)

with t ∈ R being the time, x ∈ Rnx the differential state variables, z ∈ Rnz the algebraic
variables, u ∈ Rnu the inputs, p ∈ Rnp the parameters, and y ∈ Rny the output vector.

In addition to symbolic descriptions of f ode, f alg and f out, the tool provides metadata
(names) for the variables and parameters. The tool involves four steps:

1. C-code generation is performed on the Simulink model;
2. The Simscape part of the C-code is parsed;
3. A MATLAB class that implements f ode, f alg and f out using CasADi [17] symbols

is created;
4. The index of the DAE is optionally reduced with the help of MATLAB’s Symbolic Tool-

box.

The extracted model includes symbolic (white-box) equations, which enable efficient
(high-order) derivative evaluation through algorithmic differentiation [17].

3.2. Optimal Control

In this section, we detail the formulation of an optimal control problem. First, we pro-
vide the formulation for a continous-time optimal control problem. We focus on the direct
approach for solving such optimal control problems [41]. In this case, the control trajectory
is parametrized by a finite number of unknowns, forming a non-linear program (NLP). The
general notation of such an NLP is provided and the system dynamics (see Section 3.1) are
discretized. Lastly, we provide the resulting discrete-time optimal control problem.

3.2.1. Continuous-Time Optimal Control Problem

The generic continuous-time optimal control problem on the horizon t ∈ [0, T] (with T
being the final time) is defined using the model described in Section 3.1 as follows:

minimize
X,Z,U,Y

J (X, Z, U, Y , p) (18a)

subject to ẋ(t) = f ode(t, x(t), z(t), u(t), p) ∀ t ∈ [0, T]; (18b)

0 = f alg(t, x(t), z(t), u(t), p) ∀ t ∈ [0, T]; (18c)

y(t) = f out(t, x(t), z(t), u(t), p) ∀ t ∈ [0, T]; (18d)

g ≤ g(X, Z, U, Y , p) ≤ ḡ. (18e)

In the above, X, Z, U, and Y denote the entire trajectories over horizon t ∈ [0, T].
Equation (18a) can be used to implement various costs, such as the well-known Lagrange
term (way-cost) and Mayer term (end-cost) [17]. Equation (18e) can be used to imple-
ment multiple types of constraints, such as initial condition constraints, input and path
constraints, boundary constraints, etc.
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3.2.2. Transcription of the Continuous OCP to a Discrete-Time OCP

In this section, the formulation of the considered discrete-time optimal control problem
is detailed, with particular focus on a direct approach to solve optimal control problems.
The basic idea of such a direct method is to parameterise the trajectories of the OCP by a
finite number of unknowns, resulting in a nonlinear program of finite dimensions [41]:

minimize
wopt

J (wopt) (19a)

subject to g ≤ g(wopt) ≤ ḡ, (19b)

where J ∈ R denotes the cost function and wopt ∈ Rnw denotes the (list of) continuous
optimization variables. Furthermore, g ∈ Rng denotes arbitrary constraint functions, with
g ∈ Rng and ḡ ∈ Rng the respective lower and upper bounds.

In order to cast the continuous-time optimal control problem from
Equation (18a)–(18e) in the structure of Equation (19a) and (19b), we first parameterize the
time interval t ∈ [0, T] in N number of steps (samples) with a sampling time (or integration
horizon) Ts ∈ R. Additionally, we discretize the model dynamics, Equation (17a)–(17c), for
which the result is provided by

xk+1 = f k(xk, zk, uk, p); (20a)

0 = f alg(xk, zk, uk, p); (20b)

yk = f out(xk, zk, uk, p), (20c)

where k ∈ [1, N] denotes the current time sample (yielding xk ∈ Rnx , zk ∈ Rnz , uk ∈ Rnu ,
yk ∈ Rny ). Note that the model parameters p ∈ Rnp are assumed to be independent of k.
We introduce function f k in Equation (20a), which denotes the state propagation from k to
k + 1. For the time-discretized transition function f k, we can employ several integration
schemes to approximate xk+1, such as forward Euler:

x̃k+1 ≈ xk + Ts f ode(xk, zk, uk, p) = f k+1, (21)

or backward Euler,

x̃k+1 ≈ xk + Ts f ode(xk+1, zk+1, uk, p) = f k+1, (22)

or various other schemes, such as fourth-order Runge–Kutta, direct collocation, etc. We can
collect the resulting continuous optimization variables for the defined time grid k ∈ [1, N]
in matrices X ∈ Rnx×N , Z ∈ Rnz×N , U ∈ Rnu×N , and Y ∈ Rny×N , in the form of
X =

[
x0, x1, . . . , xN−1, xN

]
, and similarly for z, u, and y. The resulting discrete-time

optimal control problem is then provided by

minimize
X,Z,U,Y

J (X, Z, U, Y , p) (23a)

s.t. xk+1 = f k+1(xk, zk, uk, p) ∀ k ∈ [1, N]; (23b)

0 = f alg(xk, zk, uk, p) ∀ k ∈ [1, N]; (23c)

yk = f out(xk, zk, uk, p) ∀ k ∈ [1, N]; (23d)

g ≤ g(X, Z, U, Y , p) ≤ ḡ. (23e)

In particular, Equation (23a) implements the cost function while Equation (23b)–(23d)
embed the model dynamics in the optimization problem. The state propagation of
Equation (23b) is implemented using a multiple shooting approach, as it scales better
with longer horizons N [42]. Furthermore, Equation (23e) can be used to implement multi-
ple types of constraints, such as initial condition constraints, input and path constraints,
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boundary constraints, etc. Here,
¯
� and �̄ denote lower and upper bounds, respectively.

The resulting discrete-time optimization problem is a large-but-sparse nonlinear program
(NLP) containing continuous optimization variables, and is solved using IPOPT [21].

Remark 1. The derived control input is a (non-parameterized) feedforward input signal (e.g.,
motor torque or force). This input can be applied directly to the considered system; however,
for experimental implementation, typically a feedback controller is considered as well, providing
robustness for non-modelled components and disturbances. This feedback controller then tracks
a reference signal (e.g., the desired motor position or speed), which can be a direct outcome of the
optimization problem as well. Alternatively, the found feedforward torque control law can serve
as a benchmark for some other well-tuned control laws, ranging from simple PID controllers to
parameterized feedforwards [43], as well as for model-predictive control (MPC) techniques [44].
Alternatively, if already available, such parameterizations of the control structure can be directly
embedded in the optimization problem and then solved through adding additional constraints.

3.3. Concurrent Design with Optimal Control

As introduced in the previous section, instead of only optimizing the controls for
a given design (with model parameters p being fixed), the controls and specific model
parameters can be optimized at the same time, which is called concurrent design (or
co-design). In this case, the cost function is provided by

minimize
X,Z,U,Y ,p

J (X, Z, U, Y , p) (24)

Note that this equation differs from Equation (23a) since several model parameters
p are no longer fixed and become optimization variables. For these variables, we can
introduce additional constraints

p ≤ p ≤ p̄, (25)

or constraints in the form of Equation (23e). The given co-design problem is solved in a
single optimization problem (i.e., a direct co-design is adopted), yielding fast convergence.

3.4. Implementation in the Toolchain

The developed toolchain is designed to easily set up the required optimization prob-
lems, requiring only high-level commands and relying on CasADi’s Opti-stack [39]. The
practical steps required to set up and use the toolchain are shown schematically in Figure 4,
and are further detailed below.

1. First, we initialize the Matlab class implementing the DriveTrain Co-Design toolchain.
2. The second step is to supply a model to the toolchain. A manually derived model in

the from of a DAE can be supplied. Alternatively, the proposed equation extraction
from Simscape (using Simscape2CasADi) can be used. In the latter case, the user
provides a Simulink model that includes a parameter file. Afterwards, the extracted
model is returned as a Matlab structure that contains the extracted DAE model as
a CasADi function (implementing Equation (17a)–(17c)) and a vector denoting the
names of the extracted states, inputs, outputs, and parameters.

3. Next, an OCP/co-design problem is initialized. The Matlab structure obtained in
the previous step can then be directly loaded in by the toolchain to embed the
model dynamics.

4. If a co-design problem is considered, the user has to define which model parame-
ters have to be optimized, along with their lower and upper bounds. If an OCP is
considered, this option can be skipped.

5. Next, the number of samples N and the sampling time Ts have to be defined, along
with a transcription method of choice:
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• Multiple shooting with an integrator of choice (e.g., forward Euler, backward
Euler, etc.);

• Direct collocation with a degree of choice.

This automatically creates the discrete optimization variables (X, Z, U, Y , and op-
tionally p), and automatically implements the constraint Equation (23b)–(23d) and
optionally Equation (25).

6. Using the above optimization variables, the scalar cost function J can be defined in
the form of Equation (23a) or Equation (24). Miscellaneous constraints can then be
provided by providing the term to be constrained, including the lower and/or upper
bounds (according to Equation (23e)).

7. Lastly, the optimization problems are solved (by default, using IPOPT [21]), and the
results are returned in a Matlab structure, which can then be visualized.

• Prior to solving, an initial guess for the optimization variables can be provided
by the user in order to enhance the convergence of the solver.

With the optimization problems defined, we now apply them to an industrially rele-
vant case, namely, a cam-follower drivetrain system.

Toolchain takes care of:︷ ︸︸ ︷ User defines:︷ ︸︸ ︷
DriveTrain Co-Design toolchain Initialization

Import manually
derived model

Simscape2CasADi
Supply Simscape model,

and parameter file

Parse model

Initialize OCP / Co-Design problem
Optional: define optimizable

parameters (incl. bounds)

Integration of model
Define horizon length N,

sampling time Ts
and transcription method

Define optimization problem Define cost function J ,
and constraints g

Solve optimization problem

Obtain and visualize results

Optional: define initial guess

Create optimization variables

Figure 4. Flowchart describing the implementation of the DriveTrain Co-Design toolchain.

4. Model Validation, Toolchain Application, and Results

In this section, the model derived in Section 2 is first validated and subsequently
applied to the proposed toolchain described in Section 3.

For these purposes, a reference conjugate cam-follower geometry is introduced. In
Tables 2–4, the reference design and material parameters of an industrially relevant design
are reported, and in Figure 3 the generated geometries are shown.

The resulting model is statically validated against a higher-fidelity nonlinear FE
model in the next session to show the accuracy and limitations deriving from the adopted
modelling assumptions. Finally, the system level cam-follower model is applied to both
OCP and co-design problems.
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Table 2. Reference model design parameters.

Symbol Master Value Slave Value Unit

Rroller 37.5 × 10−3 37.5 × 10−3 m

D 150 × 10−3 150 × 10−3 m

L 89.2 × 10−3 89.2 × 10−3 m

B 34.5 × 10−3 34.5 × 10−3 m

αo 1.96 −2.40 rad

Table 3. Reference follower law parameters.

Symbol Value Unit

h1 0 rad

h2 0.4 rad

θ̄1:4 [0 1.12 4.04 5.16] rad

Table 4. Cam and follower mechanical properties.

Symbol Value Unit

ρ 7829 kg/m3

E 200 × 103 MPa

ν 0.3 -

4.1. Conjugate Cam-Follower Model Validation

In this subsection, the analytical contact model accuracy is compared to its nonlinear
twin FE model. This analysis is carried out under static conditions, as the system-level
dynamics are dominated by the local contact flexibility due to the bulky cam and follower
bodies. First, the FE model representation of the cam-follower system is defined in the
Abaqus/Standard environment and solved through a Newton-based iterative method.
Second, a metric is defined to compare the model simulation results.

Here, the master and slave cam geometries are generated in the Abaqus environment
by importing the cloud of points of the cam profiles created in MATLAB, then converted
to spline curves in Abaqus. Finally, the 3D geometries are defined by extruding the cam
profiles, while the the roller geometry is fully designed using the Abaqus interface, as
shown in Figure 5. After the CAD files are generated, a linear hexamesh is assigned to the
different bodies (see Figure 5) after a mesh convergence analysis.

To reduce computational effort and required memory allocation, the master and slave
cam-follower subsystems are treated as independent simulations. Each internal surface
of the cam and roller is constrained to the so-called Multi-Point Constraints (MPCcam
and MPC f ollower). In particular, the MPCcam is fixed to the world (six constraints), while
MPC f ollower is constrained in five of the six degrees of freedom (dofs), allowing it to ro-
tate around the follower axes, where several input torque values are sequentially applied.
Finally, the contact between the cam and follower is detected between the interaction sur-
faces through surface-to-surface contact detection and by using the frictionless augmented
Lagrange contact formulation.
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(a) (b)
Figure 5. Abaqus models: (a) master cam and roller and (b) slave cam and roller.

Both LPM and FEM are evaluated in terms of the angular displacement ψ′ of the
follower arm (output) resulting from a constant torque (input) applied on the follower axes
for both of the master and slave subsystems shown in Figure 5. In order to appreciate the
quality of the LPM with respect to the FEM, the static transmission error STE is introduced
as a performance metric; it is defined as the difference between the kinematic follower
angle ψ and follower angle computed at the static equilibrium ψ′ for each discrete cam
configuration θi:

STE(θi) = ψ′(θi)− ψ(θ). (26)

In Figure 6, the STE resulting from both the nonlinear LPM and the nonlinear FEM
model are compared for seven different torque levels and several angular configurations.
Despite the modeling simplifications, it is shown that the LPM is well able to predict the
STE trends and evolution introduced by the nonlinear local compliance in the contact area
compared to the higher-fidelity FEM solution. Figure 7 shows the absolute value of the
relative STE error between the two modelling approaches, where it can be observed that
an overall modeling error below 15% is obtained for the LPM with respect to the FEM,
while a greater STE mismatch can be seen at the graph sides (at high pressure angle) due
to the unmodeled body compliance. This is because the LPM only accounts for the local
contact stiffness, which remains overall dominant. Moreover, the higher STE error observed
at low torques is due to the relatively low values of the STE, which renders the relative
error percentage more sensitive to small numbers. In general, it can be concluded that the
LPM establishes a good trade-off between modeling accuracy and computational cost with
respect to the FEM approach. These aspects are crucial to ensuring (i) the robustness of the
entire toolchain, as the outcome of the co-design problem is highly dependent on the model
fidelity/accuracy, and (ii) that the solutions of the optimization problems are reached in a
time-efficient manner.

4.2. Cam-Follower Model Equation Extraction

The created Simscape model shown in Figure 1, including the conjugate cam-follower
mechanism, is employed in the proposed co-design toolchain. Using the Simscape2CasADi
tool, symbolic equations are extracted in the form of a set of differential algebraic equations
of index 2 according to the procedure discussed in Section 3. The resulting model contains
eight differential states, eleven algebraic states, one input, and five outputs. After the
equation extraction, an integration check is performed to confirm that the dynamics of the
extracted model match those of the original Simscape model [40].
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Figure 6. STE comparison of the Simscape LPM and FEM for both master (top) and slave (bottom)
cam-follower subsystems at different torque levels.
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Figure 7. Absolute value of the relative STE error comparison of the Simscape LPM with respect to
the FEM for both master (top) and slave (bottom) cam-follower subsystems at different torque levels.

4.3. Application of the Optimal Control and Design Optimization Problems

With the underlying model equations are extracted and verified, a classical optimal con-
trol problem is next derived and solved with fixed system parameters p. Second, multiple
co-design study cases are considered in which several model parameters p are optimized.
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For both scenarios, the optimization of a periodic profile is considered, i.e., the initial
and final condition of the optimized trajectory should be equal. The problem is multi-
objective; the minimization of energy consumption (losses) is a trade-off with the mini-
mization of the torques on the follower inertia (a weighted combination). This trade-off is
displayed as a Pareto front, with the chosen objective reflecting industrial concerns such as
minimization of dynamic loads (leading to fatigue and failure) on the one hand and the
requirement of minimizing the system’s energy consumption on the other.

4.3.1. Optimal Control

The considered cost function for the optimal control problem JOCP is formulated
as follows:

JOCP = α c1

N

∑
i=1

ζ2
f ollower(k)︸ ︷︷ ︸

Follower acceleration

+

+ (1− α) c2Ts

N

∑
i=1

(ωmotor(k)Tmotor(k))︸ ︷︷ ︸
Energy consumption

+

+ c3

N

∑
i=1

T2
motor(k) + c4

N

∑
i=1

∆T2
motor(k)︸ ︷︷ ︸

Input regularization

.

(27)

In the above, ω denotes the angular velocity and ζ denotes the angular acceleration.
Furthermore, ci > 0 with i ∈ [1, 4] denote fixed scalar weights which aim to normalize
the individual terms of the cost function. These weights are computed by averaging the
absolute values of the relative quantities (e.g., ζ2

f ollower) of the reference forward simulation
mentioned above. ∆ denotes the discrete-derivative operator, and α denotes a parameter
that moves along the grid

[
0 1

]
in six steps, trading off both key objectives, that is, the

follower acceleration and the system’s energy consumption. The constraints are defined
as follows:

Equation (23b)− (23d); (Model dynamics) (28a)

θmotor(1) = 0 [rad]; θmotor(N) = 2π [rad]; (Motor constraints) (28b)

x1 = xN ; z1 = zN ; u1 = uN ; (Periodicity contraints) (28c)

θ f ollower(k̄h) ≤ h̄; θ f ollower(¯
kh) ≥ ¯

h; (Follower constraints) (28d)

δM(k) ≥ 0 [m]; δs(k) ≥ 0 [m], ∀ k ∈ [1, N]; (Penetration constraints) (28e)

θ f ollower,M(k) = θ f ollower,S(k), ∀ k ∈ [1, N]; (Synchronization contraint) (28f)

−250 [Nm] ≤ Tmotor(k) ≤ 250 [Nm], ∀ k ∈ [1, N]; (Peak torque constraints) (28g)√√√√ N

∑
i=1

T2
motor(k) < 173 [Nm]. (RMS torque constraints) (28h)

Equation (23b)–(23d) embed the model dynamics of Equation (17a)–(17c) in the op-
timization problem using a backward Euler integrator. Equation (28b) ensures that one
rotation of the system is made. Equation (28c) ensures that the obtained solution is periodic
in x, z, and u. Equation (28d) is visually demonstrated in Figure 8. In the figure, it is
shown that θ f ollower has to be larger than h̄ at time sample k̄h (upper bounds) and, vice
versa, θ f ollower has to be smaller than

¯
h at time sample

¯
kh (lower bounds). In the figure, a

candidate feasible profile for θ f ollower is shown. Typically, these lower and upper bounds
follow from process constraints of the system to be optimized. Industrial examples include,
e.g., weaving (opening and closing of frames during which a yarn is inserted), punching
(inserting material, punching the material, removing the material, repeat), etc.
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Figure 8. The four point constraints on the follower rotation (θ f ollower). Additionally, a candidate
feasible trajectory is shown.

Furthermore, Equation (28e) and (28f) implement the penetration and cam synchro-
nization constraints. Lastly, the motor torque limits are implemented using
Equation (28g) and (28h). For the optimal control problem, the sampling frequency is
set to 500 Hz (with sampling time Ts =

1
500 s), and the number of samples is set to N = 101.

The mean desired motor speed is 10π rad/s, which is enforced by the constraints in
Equation (28b). The initial parameter set is defined in Table 2.

The resulting sparsity patterns for the cost Hessian H = d2JOCP
d2wopt

and constraint Jacobian

J = dg
dwopt

are shown in Figure 9 (zoom-plot) with optimization variables wopt. It can be seen
that the matrices are sparse and block-diagonal due to the multiple shooting transcription
method that is applied, allowing their inverses to be calculated efficiently during solving.

The above optimal control problem is executed for α = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ]. The re-
sulting Pareto front is shown in Figure 10. A clear trade-off between minimization of the
follower torques versus minimization of the energy consumption is visible, and a clear
“knee-point” (i.e., a sharp angle) is visible. In Figure 11, the time-domain results are shown
for α = 0 and α = 1, respectively. The following observations can be made:

• Periodic results are obtained for both cases in terms of input and state responses.
• The results for the case where α = 1 are fairly symmetric over the time axis in terms

of motor velocity and follower accelerations, whereas the result for α = 0 has more
oscillations and shows quite a large peak in follower accelerations at the end of the
time horizon, which minimizes energy at the cost of higher accelerations.

• For both cases, the penetration is well above 0. This is caused by the fact that the
value of the preload is chosen rather conservatively in order to disallow separa-
tion of the contacting bodies, thereby circumventing discontinuities in motion and
energy transfer.
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Figure 9. Zoom-plot of the block-diagonal cost Hessian and constraint Jacobian.
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Figure 10. Pareto front for the multi-objective OCP.
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Figure 11. OCP results: minimization of energy consumption (α = 0) and cam-follower accelerations
(α = 1).

4.3.2. Co-Design

In this section, co-design of the conjugate cam-follower system is considered. In this
case, several model parameters p are optimized, along with optimization of the states and
control input. We consider four cases of co-design. In each case, additional parameters are
optimized. Table 5 sketches the parameter spaces that are explored during the different co-
design cases as well as the lower and upper bounds of each parameter and in Appendix B
the resulting optimization parameters are reported.

Table 5. Tunable parameters along with their lower and upper bounds, noting which parameters are
optimized in which co-design cases.

αM
[deg]

αS
[deg]

αp
[rad]

DM = DS
[m]

LM
[m]

LS
[m]

∑ ∆θ̄s
[rad]

h1
[m]

h2
[m]

Lower bound 110 110 1 × 10−6 0.14 0.08 0.08 0 0.3 −0.1

Upper bound 160 160 1 × 10−4 0.20 0.20 0.20 2π 0.5 0.1

Case 1 × × × × × ×

Case 2 × × × × × × ×

Case 3 × × × × × × × ×

Case 4 × × × × × × × × ×
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The optimization problem has the same multi-objective cost function as in Equation (27),
where the α parameter trades off the energy minimization and cam-follower torque mini-
mization costs. We use the constraints defined in Equation (28a)–(28h) augmented with the
following geometrical constraints:

ηM(k) ≤ 35 [deg], ∀ k ∈ [1, N];

ηS(k) ≤ 35 [deg], ∀ k ∈ [1, N];
(Pressure angle constraint) (29a)

Rcam,M(k) ≥ Rroller,M, ∀ k ∈ [1, N];

Rcam, S(k) ≤ Rroller,S, ∀ k ∈ [1, N];
(Curvature constraint) (29b)

n

∑
i=1

∆θ̄s,i = 2π. (Sectors constraint) (29c)

The resulting Pareto fronts are shown in Figure 12, solving each of the four co-design
problems for α = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ]. In the figure, a clear trade-off between the two
objectives is again visible for each of the four cases. Additionally, it can be seen that when
more parameters are optimized (as in the later cases), the Pareto front moves towards the
origin, i.e., the obtained solutions are more optimal.

Note that the RMS follower torques are somewhat higher for certain α values in co-
design case 1 compared to the OCP results shown in Figure 10. This is caused by the
additional constraints (see Equation (29a)) introduced for the co-design case; these are not
applied in the OCP case, where the design variables are fixed.
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Figure 12. Pareto fronts for each of the four multi-objective co-design cases.

Next, the time-domain results for α = 0 and α = 1 are shown for each of the four cases.
Note that in order to preserve space and maintain legibility of the figures, the results for
intermediate α are omitted. The following observations can be made:

• Figure 13 shows the follower rotation and follower acceleration. Particularly in case 4,
where h2 is additionally optimized, a significant reduction in the follower acceleration
(RMS, peak-to-peak) is obtained. For this case, θ f ollower “touches” the four-point
constraints (Equation (28d)), whereas for in other cases this is not always true.

• Figure 14 shows the resulting motor velocities and motor torques. For α = 0, the motor
velocity seems to behave in an almost anti-phase manner in cases 3 and 4 compared
to the results of the OCP (cases 1 and 2). For α = 1, the motor velocity profiles are
somewhat flattened in case 3 and 4. For α = 0, more oscillations are present in the
signals compared to the case where α = 1.

• The resulting penetration is shown in Figure 15. It can be seen that the penetration
is well above zero for the OCP case, whereas for the co-design cases the penetration
profiles move towards the lower bound of 0. This yields a lower energy and required
torque for the target follower motion while maintaining contact between the bodies,
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thereby circumventing discontinuities in motion and energy transfer due to the applied
lower bound.

• The resulting shapes of the master and follower cams for each of the four co-design
cases are shown in Figure 16 along with the reference design used for the OCP. In
general, smoother geometries are obtained for higher case numbers compared to the
reference design, which is due to the applied constraints on follower displacement
(Equation (28d)). For co-design cases 1 and 2, the shapes remain rather similar to the
reference design (OCP), although the absolute sizes are increased for both the master
and the slave cam. For cases 3 and 4, the solutions lead to different cam designs overall
due to the additional freedom in p.
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Figure 13. Co-design result: follower rotation and accelerations.
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Figure 15. Co-design result: roller-cam bodies penetration.
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Figure 16. The resulting cam shapes for the master and follower cams for the reference design (OCP)

and the four co-design cases for α =
[
0 1

]
.

5. Conclusions and Future Work

In this work, an integrated model-based co-design optimization toolchain called the
DriveTrain Co-Design Toolchain is presented. The proposed toolchain reduces the required
modelling effort by interfacing with MATLAB Simscape and the need for expert knowledge
by defining and solving optimization problems. In this paper, the proposed toolchain
is successfully applied to a mechatronic drivetrain system involving a high-fidelity and
validated 1D conjugate cam-follower model. The toolchain is generally applicable to
various other types of drivetrains or mechatronic systems as well.

In particular, when dealing with model-based co-design problems, high-fidelity pa-
rameterized models are of paramount importance in obtaining reliable information/data as
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result of optimization processes which can be exploited in the different phases of product
design. Similarly, the proper selection of the cost function and the constraints for the
considered use case is key to obtaining useful results. Both of these elements have been
successfully embraced in this work to show the robustness of the proposed Co-design
Toolchain for industrially relevant applications.

Our future work will focus on extending the proposed methodology to systems with
greater complexity (e.g., more states or more complex loads). Additionally, the optimiza-
tion toolchain will be coupled with other modelling interfaces, such as Modelica [45] or
Simscape Multibody [46], allowing for broader industrial uptake. Moreover, the tool has
the potential to be augmented with several additional functionalities: (i) multi-stage opti-
mization, allowing the design to be optimized for multiple operating conditions in a single
optimization problem; (ii) iterative learning control, allowing optimal control of a system
in cases where only approximate models are available; and (iii) model-predictive control, a
step towards implementation/deployment of the OCP on a physical system).

Author Contributions: Conceptualization and implementation, R.A. and J.W.; methodology, R.A.,
J.W., E.K. and J.G.; numerical validation, R.A.; resources, W.D.; writing, review, and editing, R.A.,
J.W., E.K., J.G. and J.C.; supervision J.C. and W.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been carried out within the framework of the projects Flanders Make ICON:
Physical and control co-design of electromechanical drivetrains for machines and vehicles (DriveTrain
Co-Design), Flanders Make ICON: Selection, design and control of electromagnetic torque ripple
reduction for drivetrains (Torque-Ripple Reduction), and KU Leuven-BOF PFV/10/002 Centre of
Excellence: Optimization in Engineering (OPTEC). The research was partially supported by Flanders
Make: the Flemish strategic research centre for the manufacturing industry.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented within this study are resulting from activities
within the acknowledged projects and are available therein.

Conflicts of Interest: The Authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FEM Finite Element Method
LPM Lumped Paramter Model
DC Direct Current
n-D n-dimensional space
DAE Differential Algebraic Equation
ODE Ordinary Differential Equation
OCP Optimal Control Problem
NLP Non-Linear Program
MEMS Micro-Electronic Mechanical System
MPC Model Predictive Control
PID Proportional Integral Derivative
CAD Computer-Aided Design
STE Static Transmission Error
MPC Multi-Point Contraint
Z integer numbers set
R real numbers set
a, A ∈ R scalar
a ∈ Rna column vector
−→
� ∈ R3 3D vector
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�̂ ∈ R3 3D unit vector
{�} ∈ R3×3 right-handed orthonormal axes system
A ∈ Rn1×n2 matrix
� lower bound
�̄ upper bound
�−1 inverse matrix operator
�k = �(t = tk) kth time step
�̇ = d�

dt , �̈ = d2�
dt2 time derivatives

da1
da2
∈ Rna1×na2 total derivative

∂a1
∂a2
∈ Rna1×na2 partial derivative

Appendix A. Analytical Inverse Kinematic Solution of the Cam-Follower System

In this appendix, the analytical solution of the inverse kinematics is presented and
discussed for planar conjugate cam-follower systems, generalizing the approach proposed
in [47].

In particular, the overall motion of the cam-follower system is solved assuming the
cam to be fixed while the follower center rotates rigidly around the cam center. As shown
in Figure 3, for a given distance between the cam and follower axis OA, a certain lever arm
length AP, roller radius Rroller, and cam-follower contact point OC(θ) can be determined.

Figure 3a indicates the main geometrical features, while in Figure 3b the conjugate
cam-follower system for a generic θ value is shown. To better describe the problem the
variables ψ and ψ′ are introduced:

ψ = −θ + f (θ) + αo. (A1)

Moreover, the time derivative of Equation (A1) is computed by applying the chain rule:

ψ̇ = −θ̇ + fd(θ)θ̇. (A2)

The variables ψ and ψ̇ describe the desired follower kinematics; αo is an additional
follower orientation parameter, as shown in Figure 3a.

Similarly,

ψ′ = −θ + γ + αo + αp; (A3a)

ψ̇′ = −θ̇ + γ̇. (A3b)

Here, ψ′ and ψ̇′ define the “dynamic” follower motion equations. The parameter
αp represents the angular pre-load that generally is introduced into the system to ensure
continuous contact between the roller and the cam. After the variables ψ and ψ′ and the
time derivatives are established, the inverse kinematics of the cam-follower system can
be computed.

In the following section, the different steps to compute the inverse kinematics are
reported. In the notation, no distinction is made between the master and slave cam-follower
subsystems, as the same equation holds for both.

Appendix A.1. Step 1: Calculation of the Pitch Point P and Its Derivatives Expressed in the
Global Frame

Based on Figure 3, the position and velocity of the pitch point can be computed
as follows:
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OPx = D cos (θ) + L cos (ψ); (A4a)

OPy = −D sin (θ) + L sin (ψ); (A4b)
˙OPx = −D sin (θ)θ̇ − L sin (ψ)ψ̇; (A4c)
˙OPy = −D cos (θ)θ̇ + L cos (ψ)ψ̇. (A4d)

Appendix A.2. Step 2: Compute the Angle φn and Its Derivative

The angle φn represents the angle between the global x axis and the normal n̂ axis.
The orientation of the local t̂− n̂ frame is required in order to derive the location contact
point and its derivative. It can be computed by means of the orientation of the velocity
vector ˙OP:

φt = tan−1

(
˙OPy
˙OPx

)
; (A5a)

φn = φt +
π

2
. (A5b)

The time derivatives of Equation (A5a) and (A5b) become

φ̇t = φ̇n =
¨OPy ˙OPx − ¨OPx ˙OPy

˙OP2
x

[
1 +

(
˙OPy
˙OPx

)2
] . (A6)

Equation (A6) requires the second-order derivatives of the pitch point that would lead
to higher-order differential equations to be solved through an augmented system states. In
this regard, we propose an efficient solution that preserves both system accuracy and size.

By applying the chain rule, φ̇n can be written as follows:

φ̇t =
∂φt

∂θ

dθ

dt
=

∂φt

∂θ
θ̇; (A7a)

φ̇n =
∂φn

∂θ

dθ

dt
=

∂φn

∂θ
θ̇. (A7b)

Thus, with the left-hand side of Equation (A7b), it holds that

∂φt

∂θ
=

∂φn

∂θ
=

∂Φ
∂θ

. (A8)

Assuming that the cam and follower bodies are considered to be rigid while allowing
a small local compliance δ in the contact area, the variation of the angles φt and φn with
respect to the cam angle θ can be considered independently of the system dynamics.
Therefore, the kinematic variable Φ is introduced and expressed as follows:

Φ = φt|θ̇=1 = tan−1
(

Λ
Γ

)
, (A9)

with

Λ = ˙OPy|θ̇=1 = −D cos (θ) + L cos (ψ)(−1 + fd); (A10a)

Γ = ˙OPx|θ̇=1 = −D sin (θ)− L sin (ψ)(−1 + fd); (A10b)
∂Λ
∂θ

= D sin (θ)− L sin (ψ)(−1 + fd)
2 + fddL cos (ψ); (A10c)

∂Γ
∂θ

= −D cos (θ)− L cos (ψ)(−1 + fd)
2 − fddL sin (ψ). (A10d)



Machines 2023, 11, 486 25 of 29

Similarly to Equation (A6), Equation (A8) can be expressed as

∂Φ
∂θ

=
∂Λ
∂θ Γ− ∂Γ

∂θ Λ

Γ2
[

1 +
(

Λ
Γ

)2
] . (A11)

The curvature radius of the cam profile Rcam is a purely geometrical parameter, and as
such is independent of the system dynamics. Therefore, it can be expressed as function of
the cam angle θ as

Rcam =
(Λ2 + Γ2)3/2

| ∂Λ
∂θ Γ− ∂Γ

∂θ Λ|
. (A12)

Appendix A.3. Step 3: Compute the Kinematic Contact Point C and Its Derivative with Respect to
the Follower Center A

In the previous steps, the coordinates of the pitch point P and the orientation of the
local t̂− n̂ frame were derived. From these quantities, the kinematic contact point C with re-
spect to the follower center A can be determined using the following geometrical projection:

ACx = L cos (ψ) + Rroller cos (φn); (A13a)

ACy = L sin (ψ) + Rroller sin (φn); (A13b)
˙ACx = −L sin (ψ)ψ̇− Rroller sin (φn)φ̇n; (A13c)
˙ACy = L cos (ψ)ψ̇ + Rroller cos (φn)φ̇n. (A13d)

Appendix A.4. Step 4: Compute the Non-Kinematic Contact Point C′ and Its Derivative with
Respect to the Follower Center A

As we have allowed a local compliance δ, which is treated as an additional degree of
system freedom, we have not yet satisfied the desired kinematics. Therefore, the follower
motion is driven by the contact forces and the local compliance expressed as the difference
between the perfect kinematic motion and the non-kinematic motion. In this regard, the cam
point C′ represents the roller contact point in the presence of a small penetration δ into the
cam body. Similarly to step 3 in Appendix A.3, the calculation of AC and ˙AC is performed
considering ψ̇′ and ψ′ instead of ψ̇′ and ψ′. It is assumed that the orientation of the local
t̂− n̂ frame as compared to the pure kinematic motion does not change. This assumption is
valid if the joint positions of the cam, follower, and roller can be considered fixed.

Appendix A.5. Step 5: Transform All Variables to the Local Frame

Thus far, the computed quantities have been expressed with respect to the global x-y
frame, while the contact stiffness (or compliance) and damping relationships have been
described according to the normal and tangent axis (t̂− n̂ frame). Here, AC and ˙AC are
projected onto the t̂− n̂ frame, as follows:[

ACt
ACn

]
=

[
cos (φt) sin (φt)
− sin (φt) cos (φt)

][
ACx
ACy

]
; (A14a)[ ˙ACt

˙ACn

]
=

[
cos (φt) sin (φt)
− sin (φt) cos (φt)

][ ˙ACx
˙ACy

]
+

[
− sin (φt) cos (φt)
− cos (φt) − sin (φt)

][ ˙ACx
˙ACy

]
φ̇t. (A14b)
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Appendix A.6. Step 6: Compute the Contact Point Velocity and Project it onto the Tangential Axis

The cam velocity at the contact point along the tangential axis t̂ is required in order to
calculate the roller slip velocity in Equation (16). First, the pitch point velocity in the global
axis system is calculated using Equation (A4c) and (A4d):

OCx = OPx + Rroller cos (φn); (A15a)

OCy = OPy + Rroller sin (φn); (A15b)
˙OCx = ˙OPx − Rroller sin (φn)φ̇n; (A15c)
˙OCy = ˙OPy + Rroller cos (φn)φ̇n. (A15d)

when the contact point position and velocity are known, they can be projected onto the
tangential axis t̂, obtaining

OCt = −OCx sin (φn) + OCy cos (φn); (A16a)
˙OCt = − ˙OCx sin (φn)−OCx cos (φn)φ̇n + ˙OCy cos (φn)−OCy sin (φn)φ̇n. (A16b)

Finally the angle η between the direction of motion of the follower and the direction
of the axis of transmission is computed. This angle is known as the pressure angle η, and is
a design parameter that needs to be kept as small as possible.

η = arccos

cos (φn)OCx + sin (φn)OCy√
OC2

x + OC2
y

. (A17)

Appendix B. Design Parameters Resulting from the Optimization Solutions

In Tables A1–A4, the (optimized) parameter values are shown for each of the four
considered co-design cases.

Table A1. The resulting (optimized) parameter values of co-design case 1 given variable weight α.

αM
[deg]

αS
[deg]

αp
[rad]

DM = DS
[m]

LM
[m]

LS
[m]

LB 110 −160 10−6 0.14 0.08 0.08

UB 160 −110 10−4 0.20 0.20 0.20

α = 0 110 −130.2 4.54 × 10−6 0.171 0.08 0.0857

α = 0.2 110 −130.09 4.56 × 10−6 0.171 0.08 0.0860

α = 0.4 110 −128.26 4.60 × 10−6 0.171 0.08 0.0867

α = 0.6 110 −130.02 4.85 × 10−6 0.171 0.08 0.0859

α = 0.8 110 −130.02 5.17 × 10−6 0.171 0.08 0.0859

α = 1 110 −132.75 7.6 × 10−6 0.171 0.08 0.08
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Table A2. The resulting (optimized) parameter values of co-design case 2 given variable weight α.

αM
[deg]

αS
[deg]

αp
[rad]

D
[m]

LM
[m]

LS
[m]

∆θ̄s
[rad]

LB 110 −160 10−6 0.14 0.08 0.08 0

UB 160 −110 10−4 0.20 0.20 0.20 2π

α = 0 110 −126.45 3.79 × 10−6 0.171 0.08 0.0871 [1.23, 3.71, 1.33]

α = 0.2 110 −124.79 3.95 × 10−6 0.172 0.08 0.0819 [1.25, 3.59, 1.42]

α = 0.4 110 −126.18 4.0 × 10−6 0.172 0.08 0.0812 [1.25, 3.59, 1.43]

α = 0.6 110 −126.88 4.14 × 10−6 0.172 0.08 0.0831 [1.35, 3.38, 1.55]

α = 0.8 110 −128.61 4.2 × 10−6 0.172 0.08 0.0867 [1.36, 3.34, 1.57]

α = 1 110 −133.01 6.64 × 10−6 0.172 0.08 0.08 [1.42, 3.28, 1.57]

Table A3. The resulting (optimized) parameter values of co-design case 3 given variable weight α.

αM
[deg]

αS
[deg]

αp
[rad]

D
[m]

LM
[m]

LS
[m]

∆θ̄s
[rad]

h1
[m]

LB 110 −160 10−6 0.14 0.08 0.08 0 0.3

UB 160 −110 10−4 0.20 0.20 0.20 2π 0.5

α = 0 112.08 −125.58 3.08 × 10−6 0.147 0.08 0.083 [1.74, 2.38, 2.15 ] 0.334

α = 0.2 112.04 −126.1 3.14 × 10−6 0.147 0.08 0.083 [1.75, 2.30, 2.21 ] 0.333

α = 0.4 112.17 −126.17 3.2 × 10−6 0.147 0.08 0.083 [1.76, 2.20, 2.31 ] 0.332

α = 0.6 112.31 −124.41 3.15 × 10−6 0.147 0.08 0.084 [1.29, 3.11, 1.87] 0.330

α = 0.8 112.37 −122.81 3.2 × 10−6 0.147 0.08 0.086 [1.32, 3.07, 1.88 ] 0.330

α = 1 112.25 −131.32 5.03 × 10−6 0.147 0.08 0.08 [1.40, 3.09, 1.77] 0.331

Table A4. The resulting (optimized) parameter values of co-design case 4 given variable weight α.

αM
[deg]

αS
[deg]

αp
[rad]

D
[m]

LM
[m]

LS
[m]

∆θ̄s
[rad]

h1
[m]

h2
[m]

LB 110 −160 10−6 0.14 0.08 0.08 0 0.3 −0.1

UB 160 −110 10−4 0.20 0.20 0.20 2π 0.5 0.1

α = 0 111.15 −124.8 2.63 × 10−6 0.157 0.08 0.08 [2.26, 1.49, 2.52] 0.381 −0.052

α = 0.2 111.08 −125.25 2.67 × 10−6 0.158 0.08 0.08 [2.28, 1.43, 2.56] 0.383 −0.054

α = 0.4 111.07 −124.21 2.64 × 10−6 0.161 0.08 0.08 [2.29, 1.35, 2.63 ] 0.394 −0.067

α = 0.6 110.88 −122.98 2.62 × 10−6 0.164 0.08 0.08 [2.09, 1.62, 2.56] 0.409 −0.086

α = 0.8 110.83 −121.83 2.69 × 10−6 0.166 0.08 0.08 [2.14, 1.4, 2.70 ] 0.420 −0.099

α = 1 110.91 −123.52 3.38 × 10−6 0.166 0.08 0.08 [2.18, 1.45, 2.64] 0.419 −0.1
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