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Abstract: Current transport infrastructure and traffic management systems are overburdened due to
the increasing demand for road capacity, which often leads to congestion. Building more infrastruc-
ture is not always a practical strategy to increase road capacity. Therefore, services from Intelligent
Transportation Systems (ITSs) are commonly applied to increase the level of service. The growth of
connected and autonomous vehicles (CAVs) brings new opportunities to the traffic management sys-
tem. One of those approaches is Variable Speed Limit (VSL) control, and in this paper a VSL based on
Q-Learning (QL) using CAVs as mobile sensors and actuators in combination with Speed Transition
Matrices (STMs) for state estimation is developed and examined. The proposed Dynamic STM-QL-
VSL (STM-QL-DVSL) algorithm was evaluated in seven traffic scenarios with CAV penetration rates
ranging from 10% to 100%. The proposed STM-QL-DVSL algorithm utilizes two sets of actions that
include dynamic speed limit zone positions and computed speed limits. The proposed algorithm was
compared to no control, rule-based VSL, and two STM-QL-VSL configurations with fixed VSL zones.
The developed STM-QL-DVSL outperformed all other control strategies and improved measured
macroscopic traffic parameters like Total Time Spent (TTS) and Mean Travel Time (MTT) by learning
the control policy for each simulated scenario.

Keywords: variable speed limit; connected and autonomous vehicles; reinforcement learning;
urban motorway; intelligent transportation systems; traffic state estimation; dynamic speed limit
zone positioning

1. Introduction

Due to population growth, the influence of the automotive industry, and car sales,
the urban road network has been under the influence of increasing traffic demand in
recent years. Congestion is the consequence of this increased demand, particularly during
peak hours. Urban motorways, which serve as quick links between large urban areas
in large cities or as city bypasses, are also affected by this increasing traffic demand.
This occurs as a result of urban motorways’ high vehicle volume, originating from many
simultaneous incoming traffic flows from on-ramps and the mainstream motorway flow.
When these simultaneous traffic flows merge into the mainstream flow, the mainstream flow
is disrupted, lowering the operational capacity, creating congestion, and diminishing the
motorway’s safety. Building more lanes would seem to be the best way to boost operational
capacity and reduce congestion. However, due to the cost and lack of space in cities, this
solution is not always practical.

Utilizing traffic control services originating from Intelligent Transportation System
(ITS) domain is another strategy. The operational capacity of an urban motorway can
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be improved by implementing suitable traffic control measures such as Variable Speed
Limit (VSL) and ramp metering. The first measure is the focus of this paper. In a standard
approach, it sets the best-computed speed limits on an urban motorway by using Variable
Message Signs (VMS) that take into account the status of traffic flows and/or current mete-
orological conditions. VSL attempts to reduce the speed differences between the merging
flow and the mainstream flow. In this way, congestion and the creation of shockwaves can
be effectively limited or even eliminated [1].

Many techniques can be used to implement VSL. However, recently machine learning
and Reinforcement Learning (RL) techniques have received a lot of attention [2]. As an
illustration, an RL approach was used to optimize the control policy for the application of
VSL [3]. The fundamental idea behind RL is to carry out the best-computed action in an
acquired or predicted environment state based on the values of the state–action pairs that
are continuously updated and learned. To evaluate the efficacy of the proposed techniques,
Measures of Effectiveness (MoEs) such as Total Travel Time (TTT), Total Time Spent (TTS),
Mean Travel Time (MTT), and total delay time are frequently measured. For example, in
our previous paper [4], we used multi-agent-based distributed W-learning where each
agent uses RL to learn local policies and remote policies to understand how actions affect
their immediate neighbors while enforcing computed speed limits.

The development of Autonomous Vehicles (AVs) and Connected Autonomous Vehicles
(CAVs) opens up new opportunities for traffic flow management. A new type of traffic
flow known as a “mixed traffic flow” that involves Human-Driven Vehicles (HDVs), AVs,
and CAVs with varied penetration rates is created as a result of such vehicles’ involvement
in the existing traffic flows. CAVs have the capacity to transmit and receive data about
traffic state. They are also described as having improved driving characteristics and great
adherence to traffic laws [5]. In the previous paper [6], an overview of RL algorithms that
were applied to optimize the VSL control algorithm in such mixed traffic flow conditions
was given.

The proposed VSL for application on urban motorways was recently developed and
uses CAVs acting as actuators for the VSL algorithm [5]. The VSL control policies that
decreased TTT, MTT, and density in a bottleneck area and increased speed in a bottleneck
area were optimized using the Q-Learning (QL) method. The proposed method for assess-
ing traffic density and estimating the condition of urban motorways utilized induction
loops. However, due to the fixed location of these detectors, traffic parameters were mea-
sured in a limited area, resulting in inefficiencies in VSL implementation. In our previous
paper [7], a QL-VSL algorithm was developed to mitigate the negative environmental
effects of traffic, with two alternative reward functions: proportional TTS and total energy
consumption. Both configurations of QL-VSL demonstrated improvements in macroscopic
traffic and ecological parameters compared to baseline scenarios, utilizing the same state
estimate technique as was used in a previous paper [5]. The Speed Transition Matrix (STM)
approach was applied for state representation in an STM-QL-VSL algorithm, and two speed
limit zone configurations were analyzed and found to outperform both no-control scenar-
ios and rule-based VSL [8]. In another paper [9], Full Cellular Activity (FCA) data were
used to create an estimation model for detecting large-scale motorway traffic congestion.
To improve the model’s accuracy, a wider range of FCA data was employed, resulting in
successful identification of both small and large congestion. However, this method was
limited to congestion detection and did not provide a means for alleviating congestion.

The communication capability of CAVs is used in this paper to implement an agent-
based centralized traffic control approach. A QL-based VSL (QL-VSL) agent computes
and posts the appropriate speed limit using its accumulated knowledge. Additionally,
a mixed traffic flow containing only CAVs and HDVs in multiple varying traffic scenarios
is examined as a replica of realistic future mixed traffic flows. Thus, it is assumed that
the Road Side Units (RSUs) transmit speed limit information, which is received by CAVs
only through an installed On-Board Unit (OBU). It is also assumed that the information
transmission is error- and delay-free. Every CAV’s speed and position is recorded and
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used to provide a new approach for motorway traffic state estimation. It is based on STMs
that measure the current speed of CAVs transitioning between two consecutive motorway
segments [10]. In such a configuration, the CAVs are used as mobile sensors and actuators.
The utilization of CAVs as mobile sensors eliminates the requirement for conventional traffic
detectors, and their application as actuators eliminates the requirement for conventional
VMS. By using CAVs as mobile sensors, it becomes possible to identify bottlenecks with
greater accuracy on a longer motorway segment and to focus on the length and position
of the bottleneck, resulting in improved bottleneck identification. Section 3.2 provides a
comprehensive description of the proposed motorway traffic state estimation approach.

Therefore, this paper describes the developed Dynamic STM-QL-VSL (STM-QL-DVSL)
that utilizes two sets of actions that include dynamic speed limit zone positions and com-
puted speed limits to mitigate and reduce the negative effects of congestion. The proposed
STM-QL-DVSL algorithm is compared to the no-control scenario and developed Rule-
Based VSL (RB-VSL) algorithm, developed based on density and speed thresholds from
the Highway Capacity Manual (HCM) levels of service [11]. The main contributions of this
paper are the following:

• Proposal of an approach that utilizes the QL algorithm for VSL that computes speed
limits and speed limit zone positions that are imposed on CAVs;

• Usage of STMs for environment state space approximation from the data collected
from CAVs as an input to the QL algorithm that computes speed limits and speed
limit zone positions;

• Analysis of scenarios with different penetration rates of CAVs on the simulated urban
motorway by using the proposed STM-QL-DVSL approach.

This paper is structured as follows. An overview of prior studies on VSL application
on urban motorways is provided in Section 2. The proposed methodology is described
in Section 3. An overview of the simulation model is given in Section 4 and the results
including analysis and discussion of our simulations are presented in Section 5. The pa-
per’s conclusion and any potential follow-up research are presented in the last section of
this paper.

2. Variable Speed Limit

The VSL control approach aims to adjust the operational capacity of the bottleneck by
setting suitable speed limits to regulate the incoming flow of vehicles moving toward the
congested area [12]. In this way, further capacity drops can be prevented and the occurring
congestion can be relieved more quickly. This, in turn, helps to maintain the traffic flow
moving in the congested area near the maximal capacity value. To increase road throughput
and safety, VSL is utilized to control vehicle speeds. The controlled road segment’s traffic
flow is indirectly impacted by changing the speed limit on a VMS, and the speed of incom-
ing vehicles into congested motorway sections is reduced [12]. As a result, the bottleneck
area’s maximum capacity is not exceeded and the congestion is cleared more quickly or
even avoided. This keeps the motorway’s capacity from dropping significantly. Speed
homogenization that is achieved by using VSL also lowers the probability of accidents [13].

The basic fundamental diagram shown in Figure 1 depicts the relationship between
traffic density ρ (shown on the x-axis) and flow q (shown on the y-axis) and is frequently
used in the creation of VSL controllers. It is implied that lowering the speed limit increases
the outflow of vehicles in the controlled area section by the authors’ quantitative explanation
of the effect of VSL on the fundamental diagram in the previous paper [14]. According to the
previous paper [15], a stable traffic flow has a reduced density without many disruptions
between vehicles. When the traffic density reaches a value above the critical point, the traffic
flow becomes unstable, amplifying the negative effects of interactions between vehicles.



Machines 2023, 11, 479 4 of 15

Figure 1. Speed limit effect on the fundamental diagram [6].

The authors of the previous paper [16] examined the influence of various CAV pene-
tration rates on the acceleration rate and speed disparities. The results showed that there
were less noticeable disparities with the increase in CAV penetration rate from 0 to 100%.
The lane capacity was also impacted by the penetration of AVs and CAVs. Experimenting
with various CAV penetration rates ranging from 0 to 100%, it was observed that the lane
capacity increased by 188.2%, whilst the capacity increased nearly linearly [17]. Particularly,
in a scenario with a penetration rate of 70% of CAVs, the critical density increased by about
37%, while the operational capacity increased by 42% [18].

3. Variable Speed Limit Based on Q-Learning and Speed Transition Matrices
3.1. Q-Learning and Variable Speed Limit

The main idea behind the QL algorithm is to update Q-values stored in the Q-matrix,
which represent state–action pairs when the environment conditions reach a certain state.
To learn, the QL algorithm uses a feedback loop mechanism based on computing a given
reward function that measures the effectiveness of the applied action a in an environment
state s. The QL introduces some stochasticity into its behavior since if it were to run
infinitely, it would globally choose the best possible action with the highest Q-value.
The result of the QL execution generates the maximal possible Q-value for each state–
action pair. Therefore, each state has the largest Q-value for the best possible action in that
particular environment state. The Q-value is updated on every agent’s event of selecting
the action in the environment state, according to [19]:

Q∗(st, at) := (1− α)Q(st, at) + α(rt + γ max
a′∈A

Q(st+1, a′)), (1)

where the Q-value is represented as Q(st, at) computed for the state–action pair (st, at) at
time step t. Then, the discount factor γ represents the importance of future rewards in
the next state. The performed action at is evaluated by reward rt+1 in state st. Further-
more, the next environment state is represented with st+1, and α is the learning rate for
determining the speed with which QL acquires new knowledge and updates Q-values.

The actual challenge solved by QL is to apply the best possible value of the speed
limit using the VSL traffic control approach to make the traffic flow more harmonized and
to relieve the congestion. The decision-making process can be described as a Markovian
Decision Process of the agent’s decision to compute the speed limits as expressed in
previous papers [2,5,20–22]. At each control timestamp t, actions are executed that trigger
the feedback to the agent based on the environment state change via an appropriately
defined reward function. The agent chooses an action at, the appropriate speed limit value
from a discrete set of actions A = {60, 70, 80, 90, 100, 110, 130} km/h, at an environment
state st. Setting the restriction of changing the speed in consecutive timestamps to a maximal
range of ±30 km/h ensures compliance with the legislation and smooths the speed limit
changes, with the aim of not causing sudden braking or acceleration. The learning rate α
was updated according to [7,8]:
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α(s,a) =

(
1

1 + nv(s,a)

)0.8

+ c, (2)

where the number of visits of each state–action pair is represented with nv(s,a). Ensuring
continuous learning, even after many traffic simulations, is enabled with parameter c as a
constant value of 0.05.

For incorporating two look-ahead distant states, the standard QL algorithm (1) needed
to be altered as described in previous papers [5,7]. Besides distant states, mapping of the
speed limit and speed limit zone position was incorporated and expressed as

Q∗(st, [a, z]t) := (1− α)Q(st, [a, z]t) + α(st ,[a,z]t)(rt + λrt+1 + λ2 max
[a,z]′∈A

Q(st+2, [a, z]′t+2)), (3)

where z represents the selection of the speed limit zone position, and λ places emphasis on
discrepancies based on a more distant look ahead and replaces the parameter γ of the origi-
nal QL algorithm. In this QL algorithm variation, the agent also chooses the speed limit zone
position z where the speed limit needs to be applied upstream to the merging area on the
motorway. This is an improvement to classic approaches where only speed limit values are
computed. The [a, z] matrix represents the set of all available actions that include the speed
limit a from the set of available actions A, and the speed limit zone position z from a set of
available speed limit zone positions Z = {4.5–5.0, 4.55–5.05, 4.6–5.1, 4.65–5.15, 4.7–5.2} km.
Each available speed limit zone z has a fixed length of 500 m. In this instance of QL,
the agent chooses the appropriate speed limit and speed limit zone position for a given
state. The importance of future environment states for the learning agent was determined
by a sensitivity analysis and the parameter λ was set to 0.9 [7]. The trade-off between
exploration and exploitation was established using the ε-greedy policy, where a random
speed limit action a and a random speed limit zone position z are selected for a given state
s from a set of available actions A and Z when the ε value is very high. The ε value was
updated using a sigmoid function expressed as

ε =
0.95

1 + (e(n−50))0.1
+ 0.05, (4)

where the current simulation iteration is represented with n. Thus, to determine the state–
action pair Q value, the parameter ε is modeled to gain high exploration probability at
the start of the learning process. To model this behavior, the ε in the first 30 simulations
is set to ≥0.9 to ensure a high probability of selecting random actions. To ensure a slow
decrease in the probability of random action selection, the ε value drops from 30th to 100th

simulation to the constant value of 0.05. The rewards for the QL algorithm were computed
based on reducing the TTS at the upstream flow area, which was influenced by reducing
the bottleneck probability of occurrence and length. This reward setup encourages the
algorithm to minimize the TTS, which leads to relieving the effects of congestion and
preventing bottleneck occurrences.

3.2. State Space Representation Using Speed Transition Matrices

The proposed approach is based on the use of the STM-based method for determining
the traffic state [8], which is then used as the motorway state space representation. STM is a
traffic data representation that has recently emerged [10,23] as a method that incorporates
spatial and temporal motorway traffic data in the form of a matrix. The matrix represents
the probability of vehicle speed change at the observed transition between two consecutive
motorway segments ei and ej, where speeds are measured for every vehicle passing through
this transition point inside a time interval ∆t. One transition is then defined within the
examined time interval ∆t, where ei represents the origin road segment with its correspond-
ing vehicle speeds vi, and ej represents the destination road segment with corresponding
vehicle speeds vj. The STM can be then expressed as
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X(∆t) =

 p(11) . . . p(1n)
...

. . .
...

p(m1) . . . p(mn)

, (5)

where each cell pij represents the probability of the speed change from vi to vj at the
observed transition between road segments ei and ej within the time interval ∆t. The most
important feature extracted from the STM is the underlying traffic pattern represented in a
matrix form. An example of the so-created STMs can be observed in Figure 2a showing
the extracted traffic pattern representing a congested traffic flow. On the other hand,
Figure 2b represents other characteristic positions at which the estimated traffic pattern can
be placed. At positions T1, T2, and T3, the STM pattern represents congested, unstable, and
free traffic flow, respectively. On the other hand, positions T4 and T5 represent anomalous
traffic behavior like sudden braking and intense accelerations. These examples lead to
the conclusion that STM patterns can be effectively used for traffic state representation on
motorways as proved in our prior paper [8].

(a) (b)

Figure 2. Examples of STMs representing congested traffic flow (a) and characteristic positions at
STM (b).

In this context, the STM is used to represent traffic patterns from which the motorway
bottleneck probability pb is estimated based on the traffic pattern position inside the STM.
The pb is a continuous variable in the range [0, 1], where 0 represents free traffic flow,
and 1 represents traffic congestion. As the method is spatially related to two consecutive
road segments, its results can be used to estimate the bottleneck’s impact and length.
The pb is then discretized, by applying the method from the previous paper [24], to values 0,
representing transitions with low bottleneck probability, and 1, representing high bottleneck
probability. The discretization allows a simplification of traffic state representation and
provides an interpretable method for estimating the bottleneck length on a motorway
by counting the transitions with high bottleneck probability values. The total state of
the congested motorway segments is then computed according to the sum of the traffic
states at the upstream flow of the merging area where traffic flows from mainstream and
on-ramp intersect.

4. Simulation Framework

Using the model of a synthetic motorway from the previous paper [8] as shown
in Figure 3, the effectiveness of the proposed STM-QL-DVSL algorithm was evaluated.
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It should be noted that the model presented in Figure 3 is not scaled to match the original
model. Two on-ramps (r1 and r2) and one off-ramp (s1) are present in the model (Figure 3).
The length of the acceleration and deceleration lanes for on-ramps and off-ramp is set
to 250 m, and the mainstream section does not contain any vertical slopes. The entire
model is divided into 160 segmented edges ei creating consecutive segments, which are
each 50 m long. The model has five possible dynamic VSL zone positions defined as
Z. The simulations were carried out using the Simulation of Urban MObility (SUMO)
microscopic traffic simulator [25]. The TraCI interface was used to externally implement the
STM-QL-DVSL algorithm in a Python script, allowing for the collection of needed traffic
measurements and direct control of the real-time simulation including posting computed
speed limit values and dynamic speed limit zone positions. Every simulation scenario
simulates 2 h of traffic with 24 control time steps, each lasting for 5 min. To mimic increasing
demand during peak hours, the traffic demand was modeled as illustrated in Figure 4.

Figure 3. Configuration of the simulation model and VSL controllers. Adapted with permission from Refs. [5,7,8].
2023, Filip Vrbanić.

Figure 4. Traffic demand on the mainstream and on-ramps during simulation. Reprinted with permission from
Ref. [8]. 2023, Filip Vrbanić.

Traffic parameters were measured at 5 s intervals during each control time step (lasting
5 min), and mean values were obtained. Those obtained traffic parameters included
density (ρ) measured in veh/km/ln, speed (v) measured in km/h, and MTT measured in
s. In addition, TTS is expressed as veh·h, and it was measured cumulatively for the whole
simulated motorway including on- and off-ramps, while ρ and v were measured for the
specific area of interest (congestion zone) visible in Figure 3. On the other hand, MTT is
measured only on the mainstream traffic direction, thus not including on- and off-ramps.

The SUMO simulator was also used to define vehicle class parameters and car-
following models for both HDVs and CAVs, as already used in previous studies [5,8,26].
As mentioned before, CAVs are assumed to have smaller time headways, lower driver
imperfection, and higher compliance with the imposed speed limits compared to the HDVs.
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The parameters for both vehicle classes are defined according to previously published
studies since the real-world data for CAVs are not publicly available and hard to obtain
without the ability to measure those parameters for such vehicles in a real-world experi-
ment. Therefore, the driving imperfection parameter σ was set to 0.7 and 0 for HDVs and
CAVs, respectively. Herein, value 0 represents perfect driving behavior, meaning that the
lower σ value leads to more rigorous acceleration and deceleration actions. Speed limit
deviation parameter SpeedDev represents the ratio of allowed deviation from the set speed
limit and it was set to 0.2 and 0.05 for HDVs and CAVs, respectively. The lane speed limit
multiplier parameter SpeedFactor was set to 1 for both HDVs and CAVs, as both lanes have
the same speed limit. The vehicle’s desired (minimum) time headway parameter τ, which
is based on the net time between leader back and follower front expressed in seconds, was
set to 1.1 and 0.5 for HDVs and CAVs, respectively. Lower τ values were proven to increase
the traffic flow [16,27]. Furthermore, the influence of CAV levels of automation based on σ
and τ values have shown that as the CAV penetration rate of vehicles with lower σ and τ
values increased, the road capacity of the overall network increased, and the ρc value on
a single road was higher [27]. The ρc value was increased by almost 48% from no CAVs
to 100% CAVs in mixed traffic flow according to the simulation example described in a
previous paper [27]. The proposed STM-QL-DVSL method was evaluated in six simulation
scenarios with different CAV penetration rates ranging from 10% to 100%.

5. Results and Discussion

Simulations for the no control scenario were conducted with a fixed speed limit of
130 km/h. STM-QL-DVSL policy for the latter was trained by running 2000 simulations
for each mixed traffic flow scenario. The performance of the STM-QL-DVSL algorithm
was compared to the performance of other control algorithms, including STM-QL-VSL1,
STM-QL-VSL2 [8], and RB-VSL, as well as to the no-control scenario. The RB-VSL al-
gorithm was implemented based on previous works [5,7,8], following the HCM levels
of service [11]. RB-VSL and STM-QL-DVSL differ primarily in their approach to VSL.
RB-VSL employs traditional VMS to display speed limits to all vehicles, whereas STM-QL-
DVSL uses CAVs that act as mobile sensors and actuators for VSL. The STM-QL-VSL1 and
STM-QL-VSL2 algorithms, developed in a previous paper [8], use fixed speed limit zone
positions. The STM-QL-VSL1 algorithm enforces computed speed limits in one applicable
speed limit zone closest to the area of interest. On the other hand, the STM-QL-VSL2 algo-
rithm enforces computed speed limits in two applicable speed limit zones directly adjacent
to each other. The configuration of those two algorithms is described in more detail in the
previous paper [8]. The main difference between STM-QL-DVSL and STM-QL-VSL1 and
STM-QL-VSL2 is that the proposed algorithm in this paper dynamically selects the speed
limit zone position instead of having the fixed position, as is the case with STM-QL-VSL1
and STM-QL-VSL2 algorithms. Thus, it presents a continuation of our previous research.

The results of all analyzed scenarios are presented in Table 1. The results are obtained
from a selected representative simulation that represents an average simulation from the
last 500 simulations for each mixed traffic flow scenario. Based on the findings, STM-QL-
DVSL performed better than all other control strategies across all the simulated scenarios,
particularly in terms of reducing TTS and MTT for the entire motorway section. On the
other hand, the RB-VSL algorithm proved to be less effective than having no control strategy
at all. The exception is scenario 2, where the predefined rules for changing the speed limit
based on HCM level of service density thresholds were found to be effective. STM-QL-VSL1
and STM-QL-VSL2 showed more pronounced improvements at lower CAV penetration
rates, which gradually reduced as the penetration rate increased. Moreover, the proposed
STM-QL-DVSL algorithm was able to further improve MoEs at lower penetration rates,
mainly due to the superior driving characteristics of CAVs as compared to HDVs and
using traffic state measurements on the microscopic level (each CAV is a mobile sensor).
However, as the number of CAVs in the mixed traffic flow increased, the positive effects of
the STM-QL-DVSL algorithm were reduced.
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Table 1. Obtained performance for defined scenarios with different CAV penetration rates.

Scenario

Results Improvement

Motorway Area of Motorway Area of
Segment Interest Segment Interest

Number CAV Penetration Control TTS MTT Mean v Mean ρ TTS MTT Mean v Mean ρ
Rate Strategy [veh·h] [s] [km/h] [veh/km/ln] [%] [%] [%] [%]

1

No control 713.0 373.3 61.5 36.9 - - - -

RB-VSL 717.4 375.6 62.3 36.5 −0.6 −0.6 1.3 1.1

10% STM-QL-VSL1 702.4 366.5 62.8 35.3 1.5 1.8 2.1 4.3

STM-QL-VSL2 712.2 372.2 61.4 36.9 0.1 0.3 −0.2 0.0

STM-QL-DVSL 691.6 360.6 64.2 34.8 3.0 3.4 4.4 5.7

2

No control 664.4 340.5 75.1 29.5 - - - -

RB-VSL 649.3 333.0 75.7 29.2 2.3 2.2 0.8 0.7

30% STM-QL-VSL1 642.8 330.3 76.7 27.9 3.3 3.0 2.1 5.4

STM-QL-VSL2 635.8 328.2 77.9 27.4 4.3 3.6 3.7 7.1

STM-QL-DVSL 628.3 324.6 79.5 26.2 5.4 4.7 5.9 11.2

3

No control 628.1 315.2 81.0 27.3 - - - -

RB-VSL 627.4 315.5 81.3 26.6 0.1 −0.1 0.4 2.6

50% STM-QL-VSL1 618.6 311.7 83.0 25.3 1.5 1.1 2.5 7.3

STM-QL-VSL2 620.7 313.0 83.3 25.3 1.2 0.7 2.8 7.3

STM-QL-DVSL 609.9 309.4 85.7 24.1 2.9 1.8 5.8 11.7

4

No control 548.4 278.6 95.4 19 - - - -

RB-VSL 565.1 284.7 92.7 21.5 −3.0 −2.2 −2.8 −13.2

70% STM-QL-VSL1 542.6 276.7 96.3 18.3 1.1 0.7 0.9 3.7

STM-QL-VSL2 548.9 279.1 95.4 19.2 −0.1 −0.2 0.0 −1.1

STM-QL-DVSL 546.5 279 95.9 19.4 0.4 −0.1 0.5 −2.1

5

No control 489.2 254.2 103.4 16.8 - - - -

RB-VSL 506.5 259.2 100.2 18.9 −3.5 −2.0 −3.1 −12.5

90% STM-QL-VSL1 488.5 253.7 103.4 16.4 0.1 0.2 0.0 2.4

STM-QL-VSL2 489.2 253.8 103.6 16.2 0.0 0.2 0.2 3.6

STM-QL-DVSL 486.4 252.9 104.2 15.9 0.6 0.5 0.8 5.4

6

No control 412.9 230.7 112.5 12.3 - - - -

RB-VSL 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

100% STM-QL-VSL1 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

STM-QL-VSL2 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

STM-QL-DVSL 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

The obtained results for scenarios 1 and 2, including the posted speed limits, ρc,
vc, and TTS, are shown in Figure 5. Again, the results are obtained from a selected
representative simulation, which is an average simulation from the last 500 simulations
after 2000 simulations were run for each mixed traffic flow scenario. Firstly, it can be
observed that the proposed STM-QL-DVSL selected lower speed limits during increased
traffic demand compared to other control algorithms. In scenario 1, STM-QL-DVSL showed
a 3.0% improvement in TTS compared to the no control scenario. In contrast, RB-VSL
worsened the situation slightly by increasing TTS by 0.6%. For scenario 1, STM-QL-
VSL1 and STM-QL-VSL2 improved TTS by only 1.5% and 0.1% compared to no control,
respectively. In scenario 2, the proposed STM-QL-DVSL outperformed all other strategies
and improved TTS by 5.4%. On the other hand, RB-VSL, STM-QL-VSL1, and STM-QL-VSL2
reduced TTS by 2.3%, 3.3%, and 4.3%, respectively. All RL-based VSL algorithms improved
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mean ρ, mean v, and MTT compared to both no control and RB-VSL control. Among them,
STM-QL-DVSL performed the best. By using CAVs as actuators and state estimators for
VSL on an urban motorway, the proposed STM-QL-DVSL method improved the overall
MoEs. These observed improvements for scenario 2 indicate that with 30% CAV penetration
rate, the analyzed algorithms have sufficient input data used to estimate the traffic flow
using STMs as observed in the previous paper [28]. A more accurate representation of
the state of the traffic flow allows the agent to learn actions in the correctly represented
discrete states, which improves the performance of all analyzed algorithms that use STMs
as state representation. Those algorithms are, as mentioned, STM-QL-VSL1 and STM-QL-
VSL2 and STM-QL-DVSL. Furthermore, the results indicate that as the CAV penetration
rate increases from 30% to 100%, the influence of the increased number of CAVs on the
analyzed algorithms’ performance is less pronounced at higher penetration rates. Thus,
one can assume that the increase in the CAV penetration rate has the largest impact at small
penetration rates. After enough input data from CAVs are available, the state estimation
quality is sufficient for ensuring good operation of the developed VSL controller. In this
paper, this happens with a penetration rate of 30%, similar to the previously published
analysis conducted in the previous paper [28]. Thus, the obtained improvements were more
noticeable in scenarios 1 and 2, where the low CAV penetration rate provided sufficient
data for state estimation and appropriate speed limit applications. Incorporating CAVs
into mixed traffic flow had a positive impact on measures of TTS and MTT, as shown in
Figure 6. These improvements are mainly credited to the improved driving performance of
CAVs characterized by small vehicle headways and faster reaction time.

Figure 5. Obtained speed limits, speeds, densities, and TTS for scenario 1 (a,c,e,g) and scenario 2 (b,d,f,h).
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Figure 6. Change of TTT (a) and MTT (b) for different CAV penetration rates.

Significant improvements were observed in the mean ρ of the congested area, which
can be attributed in part to the improved driving characteristics of CAVs. Additionally,
the STM-QL-DVSL algorithm was found to reduce the speed of incoming vehicles in
the area of interest, resulting in a reduction in the impact of merging maneuvers of on-
ramp vehicles and a corresponding relaxation of shock-waves. This, in turn, allowed
on-ramp vehicles to merge more quickly and safely into the mainstream flow, resulting
in less pronounced interactions between vehicle flows and a reduction in the mean ρ in
the area of interest. Notably, the proposed STM-QL-DVSL algorithm resulted in an 11.7%
improvement in mean ρ in scenario 3 compared to the no-control strategy. In a scenario
with 100% CAV penetration rate, the implemented VSL approaches had no effect on the
traffic flow, indicating that the driving characteristics of CAVs alone were sufficient to
maintain a free-flow state and obviate the need for additional traffic control algorithms for
the simulated traffic demand case.

The selection of applicable speed limit zone position and the applied speed limits for
scenario 1 and scenario 2 is shown in Figure 7. One observation is that the STM-QL-DVSL
agent learned that the best applicable speed limit zone position is the one farthest from the
congested area when the mainstream traffic flow is increased. In addition, the STM-QL-
DVSL agent selected lower speed limits for scenario 1 compared to scenario 2. This indicates
that slowing mainstream vehicles sooner and with lower speeds further improves MoEs
by ensuring that vehicles are slowed earlier and their speeds are harmonized smoothly.
Comparing the speed limit zone positions between these two scenarios, it is noticeable
that as CAVs become more prevalent, the STM-QL-DVSL agent tends to clear congestion
more quickly and therefore more often selects the speed limit zone position closest to the
congested area. This can be attributed to the fact that more vehicles send data to determine
traffic states and receive speed limits, slowing down the main traffic flow faster. The STM-
QL-DVSL agent in other scenarios also tends to choose the speed limit zone position closest
to the congested area for two main reasons. First, the number of vehicles that receive
speed limits is larger, which helps reduce speeds faster. Second, the driving characteristics
of CAVs significantly improve traffic flow, slowly diminishing the need for frequent and
farther speed limit zone positions.
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Figure 7. Obtained speed limit zone positions and computed speed limits for scenario 1 (a) and scenario 2 (b).

6. Conclusions

The objective of this paper was to develop an algorithm for controlling VSL using
CAVs as mobile sensors and actuators. The proposed STM-QL-DVSL algorithm estimates
traffic conditions based on the transition speed of CAVs between urban motorway segments,
computed through STMs. The effect of the dynamic position of the STM-QL-DVSL zone on
traffic flow was analyzed. A simulation framework was used to evaluate the performance
of the algorithm under different mixed traffic flow scenarios. The results show that the
STM-QL-DVSL algorithm outperforms other control algorithms and the no-control case in
all MoEs. The most noticeable results for the STM-QL-DVSL configuration are evident in a
scenario with 30% CAV penetration rate. All MoEs were improved at the very low number
of CAVs, including scenarios with 10% and with 30% CAV penetration rate. The STM-
QL-DVSL agent learned that the best applicable zone is the one farthest away from the
congested area when the traffic flow of vehicles on mainstream flow is increased in scenarios
with low CAV penetration rates. Consequently, in scenarios with high CAV penetration
rates, the STM-QL-DVSL agent mostly chose the zone closest to the congested area due to
an increased number of CAVs with better driving characteristics that relieve congestion
faster. Furthermore, in a scenario with 100% CAV penetration rate, VSL is unnecessary as
the improved driving behavior of CAVs negates the need for speed regulation, at least for
the simulated traffic demand.
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Future work will explore the application of a multi-agent learning algorithm to STM-
QL-DVSL with dynamic VSL zone lengths, as well as the analysis of fluctuating traffic
flows with increased demand. Different traffic demand levels will be analyzed to obtain
insight into the impact of CAV penetration rates on the VSL need. It is also important to
dynamically adjust the length and position of VSL zones, which can be achieved without
the need to strictly define applicable VSL zones, presenting additional control output and a
possible future research direction. Furthermore, a more complex geometric design of an
urban motorway with vertical slopes will be examined with different traffic demand levels.
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