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In recent decades, the research on autonomous driving technologies has enabled
the automotive industry to introduce vehicles supported by Advanced Driver-Assistance
Systems (ADAS) to the market. These systems render the daily driving experience safer and
more attractive to humans. The majority of existing assistive driving solutions are ranked
between Level-1 and Level-3 autonomy, involving mainly supportive systems. However,
no one in the industry is even close to attaining Level-4 and Level-5 autonomy, a challenge
that demands vehicles’ operation in any road network and weather condition. It is evident
that reaching the ultimate autonomous operation (Level-5) necessitates that future vehicles
be equipped with advanced perception and cognition capabilities that will allow them to
cope with urban, rural, and semi-structured environments. Recent advancements in sensors
have provided 3D data that further augment the perception capabilities of autonomous
vehicles, while the machine learning community has released powerful neural networks
that amplify the vehicle’s awareness regarding its surroundings. However, few such
approaches have reached mass production—mainly due to the fact that such solutions
typically require the existence of an abundance of data to train the respective models and
powerful computational units, which hinders their adoption from the automotive industry.

This Special Issue in Machines, entitled “Autonomous Driving: Advancements in
Cognitive Perception Systems for Increased Level Autonomy”, compiles some of the recent
research achievements and investigations in the field of autonomous driving, with an
emphasis on perception methods to increase autonomy. It comprises 12 papers, which can
be categorized into three groups as follows:

Surroundings perception and measurements for autonomous driving: Liu et al. [1] examine
the detection of three-dimensional (3D) objects for the perception of the surroundings in
autonomous driving scenarios. They address this problem by utilizing a graph neural
network (GNN) detector for 3D object detection in LiDAR point clouds, which incorporates
a neighbor feature alignment mechanism. Qi et al. [2] propose an extended network-based
fusion target detection algorithm that combines the complementary perceptual performance
of in-vehicle sensing elements, the cost-effectiveness, and maturity of independent detection
technologies. Feature-level fusion is used, and training and testing are carried out on the
nuScenes dataset and test data from a homemade data acquisition platform. Wei and
Huang [3] introduce a framework for multiple object-tracking in autonomous driving that
addresses occlusion issues. The framework comprises two stages: object representation and
data association. Appearance, motion, and position features are used to characterize objects
in the object representation stage. To generate appearance features, a spatial pyramidal
pooling hash network was designed, which generates multiple-level representative features,
being mapped into a similarity-preserving binary space known as hash features. These
hash features retain visual discriminability while improving computational efficiency.
Tong et al. [4] present a lightweight vision-based approach for detecting vehicle taillight
intentions in real time, with a focus on improving small object detection using a multi-
scale strategy. Detecting the intentions of vehicle taillights is a crucial task for intelligent
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vehicles to make informed decisions. However, achieving high detection accuracy while
maintaining real-time performance is a significant challenge in practical scenarios. Finally,
to address the measurement of the distance and speed of the vehicle ahead, Qi et al. [5]
propose a multi-cue fusion monocular velocity and ranging framework to improve the
accuracy of monocular ranging and velocity measurement. Existing vehicle distance and
speed estimation algorithms based on monocular cameras have limitations and do not
take into account the relationship between the underlying features of vehicle speed and
distance, while the proposed framework utilizes the attention mechanism to fuse different
feature information, and the network is trained through the distance velocity regression
loss function and the depth loss as an auxiliary loss function.

Control methods for Advanced Driver-Assistance Systems: The current growth in car
ownership is contributing to traffic congestion, but cooperative adaptive cruise control
(CACC) technology offers a solution. Xie and Xiao [6] propose an active anti-disturbance
following control method based on bystander vehicle intention recognition and trajectory
prediction. This method can alleviate the disturbance caused by passing vehicles, improve
passenger comfort, and suppress multi-vehicle oscillation. Han et al. [7] propose a novel
tire–road peak friction coefficient estimation method that takes into account the effective
contact characteristics between the tire and the 3D road. The method considers the influence
of road roughness and texture on the results, thus achieving accurate estimation of the
tire–road peak friction coefficient, which is crucial in the transportation field to enhance
vehicle safety performance and improve road maintenance efficiency. Savari and Choe [8]
investigate different forms of human feedback, including head direction versus steering
and discrete-versus-continuous feedback to feed deep reinforcement learning algorithms.
They use a real-time human demonstration from steering and human head direction
with discrete or continuous actions as human feedback in an autonomous driving task.
Chong et al. [9] propose an autonomous driving method for buses by detecting nearby
obstacles and predicting their motion. A modular pipeline is developed for long-term
trajectory prediction of dynamic obstacles for an autonomous bus. They propose a training
method to improve the trajectory prediction module’s performance and achieve a 10 Hz run-
time. Practical challenges associated with deploying autonomous buses are also discussed,
and solutions for each task are proposed.

Viewpoint/position papers: With the continuous advancement of the automotive sector
and autonomous driving technology, it is crucial to continuously research and identify key
areas that can contribute to the continuous improvement of system autonomy. In addition to
designing new components, it is important to establish uniform test procedures. Moreover,
though the concept of self-driving vehicles has gained widespread acceptance, there are
still several aspects requiring further development. This poses several technological, legal,
and economic challenges, such as data protection, liability for torts, and road traffic law.
Dollorenzo et al. [10] focus on the analysis of testing phases of a vehicle, with an emphasis
on post-processing the tests using suitable software and routines to create an overall
summary report, with the aim being to propose a tool that: improves the generation of
test maneuvers for advanced driver-assistance systems; and automates the data collection
and analysis phase of tests for lane system support systems, autonomous emergency
braking, and car-to-pedestrian nearside child. Balaska et al. [11] examines the concept
of driverless last-mile delivery using autonomous vehicles, highlighting the challenges
and limitations in the current technology that hinder level five autonomous driving. They
also describe the existing perception and cognition systems of autonomous vehicles and
their future capabilities in achieving complete autonomous last-mile delivery, as well as
efficient robotic process automation in logistics for warehouse/distribution center-to-hub
delivery. Finally, with a view to developing the regulatory framework of remote operation
solutions, Hoffmann and Prause [12] examine a case study of a start-up (Vay) developing
such solutions in Germany. The research is situated in the context of Smart Cities and
Industry 5.0, and it proposes specific modes of compliance for future perspectives.
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