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Abstract: This paper elaborates on the modeling and control of an Unmanned Aerial Vehicle (UAV)
for delivery purposes, thereby integrating computer-aided design, multibody dynamic modeling, and
motion control analysis in a unified framework. The UAV system designed in this study and utilized
for item delivery has a quadcopter structure composed of four arms connected to a central trunk. In
this investigation, the proposed design of the delivery drone is systematically modeled employing
the multibody approach, while SIMSCAPE MULTIBODY is the software used for performing the
dynamic analysis and for devising the final design of the control system. To this end, starting from
the CAD model designed using SOLIDWORKS, the control system of the quadcopter is developed by
performing dynamic simulations in the MATLAB/SIMULINK environment. Additionally, another
fundamental contribution of this paper is the analytical derivation of the nonlinear set of algebraic
constraint equations peculiar to the present multibody system, which characterizes the kinematics
of the delivery drone and describes the relative angular velocity imposed between two rigid bodies
as nonholonomic constraints. Furthermore, as discussed in detail in this paper, the choice of the
propulsion system and the design of the individual components heavily depends on the structural
and functional needs of the UAV under study. On the other hand, the control system devised
in this work is based on cascaded Proportional-Integral-Derivative (PID) controllers, which are
suitable for achieving different maneuvers that are fundamental for the motion control of the delivery
drone. Therefore, the final performance of the UAV system is a consequence of the regulation of the
feedback parameters that characterize the PID controllers. In this respect, the paper presents the
refining of the parameters characterizing the PID controllers by using both an internal MATLAB
tool, which automatically tunes the controller gains of single-input single-output systems, and by
observing the resulting transient behavior of the UAV system, which is obtained through extensive
dynamical simulations. The set of numerical results found in this investigation demonstrates the
high performance of the dynamical behavior of the UAV system designed in this work.

Keywords: UAV system; delivery drone; multibody dynamics; holonomicandnonholonomic con-
straints; PID control; SOLIDWORKS; MATLAB/SIMULINK; SIMSCAPE MULTIBODY

1. Introduction
1.1. Formulation of the Problem of Interest for This Investigation

The acronym UAV stands for Unmanned Aerial Vehicle. This family of aerial mechani-
cal systems represents a class of aircraft that can be remotely piloted by following a given
flight plan or by using a ground-based command station [1]. The principal differences
between conventional aircraft and UAVs can be found in avionics, communication systems,
data management, and flight autonomy [2,3]. Originally, UAVs were typically used for
military applications, such as reconnaissance missions and aerial attacks [4]. Subsequently,
their use also shifted to civil applications due to their potential for exploration and monitor-
ing. The main advantage of UAV systems compared to conventional aircraft is the capacity
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to carry out complex and dangerous missions at lower economic costs [5,6]. Another
peculiarity of UAV systems is the possibility of serving as a support for robotic mechanical
systems for performing multiple repetitive tasks in the case of large-scale industrial appli-
cations [7–9]. In fact, since UAVs can work autonomously, their modern use is becoming
interconnected with several robotic systems [10].

In mechanical and industrial engineering applications, the use of Computer-Aided
Design (CAD) programs and Computer-Aided Engineering (CAE) software plays a cen-
tral role [11,12]. In this context, the need for the Integration of Computer-Aided Design
and Analysis (I-CAD-A) is day by day becoming of paramount importance in several
engineering areas [13–15]. To this end, Multibody System Dynamics (MBD) represents
a fundamental tool for performing reliable and advanced computer simulations of the
kinematic and dynamic behavior of rigid–flexible articulated mechanical systems. General-
purpose multibody software allows for automatically generating and numerically solving
the differential-algebraic form of the equations of motion describing the dynamic behav-
iors of complex mechanical systems. This process is based on the preliminary geometric
analysis carried out employing computer-aided design software, which is currently used
exclusively for the creation of complex geometric shapes [16,17]. It is therefore apparent
that the integration of computer-aided design and analysis tools will be prominent in
modern engineering applications.

From a general perspective, the process of analysis can be seen as the verification of
the performance of an already existing mechanical system. The synthesis process, on the
other hand, is represented by the design of a mechanical system that is aimed at achieving
the required specifications of the project [18,19]. In the mathematical modeling of a multi-
body system, the system degrees of freedom are the minimum number of independent
parameters necessary and sufficient to uniquely define the configuration of the mechanical
system [20,21]. For example, for a rigid body moving in space, six degrees of freedom are
defined: three rotational and three translational coordinates. In the mathematical modeling
of multibody mechanical systems made up of rigid bodies, two general formulation ap-
proaches can be followed. These are the Minimal Coordinate Formulation (MCF) and the
Redundant Coordinate Formulation (RCF). In the former approach, the analysis is based
on a number of generalized coordinates equal to the number of degrees of freedom of the
dynamical system to be modeled. In the latter approach, on the other hand, the number
of generalized coordinates employed in the description of the motion of the mechanical
system of interest is greater than the system degrees of freedom. While the first approach is
adopted only in the case of machines and mechanisms having a simple structure, the second
approach is typically used in the dynamic analysis of complex multibody systems since
it allows for the systematic development of the equations of motion [22,23]. Therefore,
the RCF is the general multibody formulation utilized in this work for modeling the case
study of this investigation.

1.2. Literature Review

The scientific literature over the last twenty years has mainly been focused on the
construction of UAV systems and on the development of various control methods. Kant et al.
statically analyzed individual components of pre-existing drone models [24]. Ballous et al.
designed a drone to transport medical items [25]. Zhafri et al. focused on optimizing the
materials for the mechanical design of drones [26]. Meenakshipriya et al. designed and
fabricated a 3D-printed UAV model, and then tested its dimensions and roughness [27].
Benito et al. suggested a series of criteria to design a UAV with a payload [28]. Tnunay et al.
designed an auto-tuner to make the proportional-derivative controller more robust [29]. De
Simone et al. designed a proper set of control inputs for a UAV system, considering the wind
disturbance action [30]. Hai-long et al. devised a proportional-integral nonlinear controller
for the attitude control and the trajectory tracking of drone systems [31]. Amir and Abbass
proposed a simplified mathematical model of a UAV system [32]. Razinkova et al. studied
an adaptive compensation controller for the position tracking error of quadrotor UAVs [33].
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Fernando et al. focused on a simulator and a laboratory platform to facilitate the future
development of control algorithms, automatic navigation systems, and trajectory planning
for quadrotors [34]. Pessen et al. proposed a method for tuning the parameters of the PID
controller of a drone [35].

The body of knowledge apparent from the literature concerning UAV systems is quite
extended, thereby demonstrating the growing importance of such topics for engineering
applications. In recent years, the popularity of UAVs has grown because they can meet a
wide range of needs. In particular, quadrotors play a central role in aerial development due
to their versatility in both the civil and military sectors. Fixed-wing drones such as airplanes
require a proper track for takeoff and landing, while quadcopters can take off vertically
from a given airstrip [36]. Furthermore, drones can be used for the delivery of goods,
as proposed in this research. In this vein, the challenges to address concern modeling,
such as dimensioning the components and choosing the best frame configuration, as well
as in controlling the various movements, such as hovering, rolling, and pitching [37].
Additionally, another important topic concerning the mathematical modeling of UAVs is
the identification of their structural model, and for example, the state estimation of the
system dynamics for attaining the attitude control [38–40].

A rigid multibody system is a dynamical system that consists of solid bodies connected
by kinematic joints that limit their relative motion [41–43]. These are mechanical devices
that restrict the motion of the members of a machine or mechanism, and they are formed
by an appropriate coupling of surfaces between two contiguous bodies. These contacting
surfaces are called conjugate surfaces and they identify a kinematic element, while the
set of two kinematic elements forms a kinematic pair [44]. From a mathematical point of
view, the equations describing the motion of multibody mechanical systems are nonlinear
ordinary differential equations, while the equations modeling the motion restrictions of the
kinematic pairs are nonlinear algebraic equations, thereby leading to a highly nonlinear
set of differential-algebraic equations [45]. The study of multibody dynamics, also called
direct dynamics, is the analysis of how these systems move under the influence of specific
applied forces, torques, and moments. The study of the opposite problem, i.e., which set of
generalized forces is required to make the mechanical system move in a specific manner, is
called inverse dynamics, and this is an important topic that is closely related to the field of
nonlinear control and state estimation [46,47].

1.3. Scope and Contributions of This Study

The goal of this research paper is to thoroughly describe the modeling of a UAV system
serving as a delivery drone, an autonomous flying machine that was specifically conceived
for the transportation and delivery of light goods. This derives from complete CAD model
creation to multibody model development and the subsequent design of an ad hoc control
system. The first challenge to face in this research endeavor is the choice of the components
of the propulsion system, which depends on the object to carry, representing the payload of
the UAV system. In the case of the study considered in this work, the delivery drone must
carry six beers, forming a pack of about two kilograms. Although the present delivery
drone is designed for beer delivery, it can easily carry any object of the same weight and
therefore can be used for different purposes. The virtual prototype of the delivery drone
designed in this study is medium-sized, needing a space of about two square meters to
land. However, it is still suitable for delivery in modern apartment buildings. The design
concept devised in this investigation envisages a transport that is fully automated, with no
intervention of the customer on the drone required in order to recover the goods.

In this paper, a CAD model of the virtual prototype of the UAV system serving as a
delivery drone was developed first. Then, by using the geometric information provided by
the CAD model, a multibody model was created. By doing so, the resulting simplified CAD
model was subsequently imported into the MATLAB simulation environment using the
software called SIMSCAPE MULTIBODY. The delivery drone is provided with the input
of the trajectory to follow, which was designed using MATLAB and SIMULINK. This is
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necessary to determine the position error and the force quota needed for achieving the
system guidance. For this purpose, the motion control is realized using separate PID con-
trollers, which were designed with one for each movement. More specifically, while the PID
controller regulating the drone altitude was manually calibrated by observing the system
feedback behavior, the cascade PID controllers for the two-dimensional cruise motion were
adjusted with an internal MATLAB/SIMULINK tool called PID Tuner. In addition to the
flight scenarios concerning the take-off, cruise, and landing maneuvers, a dynamical simula-
tion of the unloading of the beers was also performed employing SIMSCAPE MULTIBODY.
The dynamical simulations carried out in this study using SIMSCAPE MULTIBODY are
robust and efficient. The numerical results obtained in this investigation using MATLAB
are fully satisfying for the computer-aided design and analysis of the virtual prototype of
the proposed delivery system.

One of the main contributions of the present research work is the development of
a multibody model of the UAV system serving as a delivery drone that was promptly
designed in this investigation. The analytical development of an accurate multibody model,
as well as its subsequent computer implementation and dynamical simulations, is aimed
at the design and testing of the laws of motion to be provided as the input functions
to control the motion of the mechanical system under study. As shown in detail in the
manuscript, the delivery drone is modeled as a multibody system composed only of rigid
bodies endowed with a three-dimensional motion. In the multibody model devised in this
paper, the proper formulation of a nonlinear set of differential equations that describes
the dynamic behavior of the system under study is of primary importance. Furthermore,
the introduction of an additional set of nonlinear algebraic equations is equally essential
for the correct modeling of the effect of the mechanical joints, as well as the presence
of driving constraints imposed on the dynamical system to be controlled. Additionally,
in the mathematical description of all the mechanical actions applied to the delivery drone,
an appropriate set of externally applied forces, torques, and moments is included in the
multibody model. In the multibody model of the UAV system analyzed in this investi-
gation, for the mathematical description of the driving constraints associated with the
imposed rotational motion of the propellers, a set of nonholonomic algebraic constraints
is specifically devised and analytically formulated, thereby representing one of the most
important novelties and contributions presented in this research work.

To conceptually summarize the approach proposed and employed in this investigation,
one can refer to the schematic flowchart represented in Figure 1.

In the flowchart reported in Figure 1, all the fundamental steps followed in this
paper are schematically illustrated to clarify the scope and the contributions of the present
research work.

1.4. Organization of the Manuscript

The remaining parts of this manuscript are organized as follows. Section 2 is fo-
cused on the description and the mathematical modeling of the propulsion system of
the virtual prototype developed in this work. In Section 3, the main steps followed in
the computer-aided design of the UAV system of interest for this investigation are illus-
trated, the individual mechanical components designed using SOLIDWORKS are described,
and the reasons behind the design choices made are specified. Section 4 is devoted to the
multibody modeling of the virtual prototype of the UAV system designed in this research,
including the formulation of a new algebraic set of nonholonomic constraints suitable for
mathematically modeling the relative angular velocity imposed between the propellers
and the chassis of the delivery drone. In Section 5, the key features investigated in the
development of the control system devised for the proposed delivery drone are explained.
Section 6 describes the computer simulations carried out for analyzing the dynamical
behavior of the delivery drone, while Section 7 presents and discusses the numerical results
found in this investigation. In Section 8, a summary of the completed work is presented,
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the conclusions drawn in this research are reported, and some directions for future works
are commented on.

PROBLEM FORMULATION AND 
CONSTRAINTS DEFINITION

Specifications of a UAV for delivery purposes.

Choice of desired payload and total weight.

CAD MODEL DESIGN
Design for assembly-based dimensioning and material selection:

- Frame and support arms;

- Propeller shaft and bearings;

- Motor supports and transmission system;

- Payload crate;

PROPULSION SYSTEM CHOICE
Quadcopter configuration:

- Mathematical model of the propellers and the electric motors;

- Choice of the battery and the ESC;

MULTIBODY MODEL DEVELOPMENT
Formulation of the constraint equations characterizing the UAV.

CONTROL SYSTEM SYNTHESIS
Design of the PID control actions using standard and cascaded 
control architectures.

DYNAMIC SIMULATIONS
Import of the MBD model in the SIMSCAPE MULTIBODY environment
to perform dynamic simulations.

NUMERICAL RESULTS
Analysis and interpretations of the numerical results to evaluate the 
performance of the delivery drone. 

PID PARAMETERS TUNING 
USING MATLAB TOOLS

FLIGHT PARAMETERS 
ASSESSMENT

Figure 1. Flowchart of the approach followed in the paper.

2. Propulsion System Description and Modeling
2.1. Main Concept

The virtual prototype of the UAV system serving as a delivery drone that is designed
in this study is a quadcopter. Consequently, the first problem to be addressed in the design
phase is the ideation of the propulsion system. The propulsion system is fundamental in
the design of quadcopters because it considerably influences their performance. In general,
the propulsion system consists of four fundamental parts, that is, motors, propellers,
batteries, and electronic speed controllers. The specifics of these components must be
properly matched to work efficiently and for avoiding accidents. For instance, the selection
of motors and propellers is carried out simultaneously to obtain the best combination in
terms of thrust, efficiency, and dimensions of the frame. Therefore, this section is devoted
to the propulsion system description and modeling, thereby addressing one by one all the
requirements for the design of the desired quadcopter working as a delivery drone.
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2.2. Propellers

Propellers provide the required thrust to the prototype of the quadcopter designed in
this work. Propeller function is of paramount importance and is analogous to the that of
the fixed-wing design of airplanes. The geometric parameters that mainly affect propeller
performance are the diameter and the pitch. Therefore, in engineering practice, propellers
are described by an identification number of four digits. The first two numbers specify the
diameter measured in inches, while the second two numbers define the propeller pitch
measured in inches. The pitch is a measure of the theoretical forward travel of a propeller
during one revolution, assuming no loss of energy to slippage. Propeller pitch is used to
select a propeller for a specific application based on the desired thrust and RPM range.
Another fundamental parameter that characterizes each propeller refers to the number of
blades. For instance, standard propellers available for sale in the market have two or three
blades. Propellers having two blades are more efficient, but they generate less thrust than
those having three blades. The materials used for manufacturing the propellers also affect
their dynamic response. Typical materials employed for the manufacturing of propellers
are plastic, wood, and carbon fiber. Plastic propellers are very common but they suffer from
severe self-induced vibrations and are quite fragile. Propellers made of wood are heavy
and stiff, but less responsive to speed changes. Carbon fiber propellers are the best option
because they are stiff and light, and they generate less mechanical vibrations.

2.3. Electric Motors

Electric motors convert the electrical energy of batteries into the mechanical energy
of the propellers. The selection of these components strongly depends on the payload of
the UAV system of interest. Heavier UAVs need larger motors due to their higher power
requirements. The electric motors mainly used for quadcopters are DC motors since they
are more efficient and cheaper than AC motors. The geometric dimensions of an electric
motor are described by a number having four digits. The first two numbers indicate the
width of the motor, measured in millimeters, while the last two numbers indicate the
height, measured in millimeters. Another important parameter used for identifying DC
motors is referred to as the KV value. This parameter approximately specifies the number
of RPMs that the motor revolves under a single volt of electric tension. For example, electric
motors having high values of the KV parameter are faster and drive smaller propellers.
For these reasons, these kinds of DC motors are employed in racing drones. Electric motors
having low values of the KV parameter, on the other hand, are slower and more suitable
for supporting the propulsion systems of delivery drones.

2.4. Batteries

The batteries provide power to the electric motors. Currently, there are three dif-
ferent types of batteries, namely lithium polymer (LiPo), nickel metal hydride (NiMH),
and lithium-ion. Because of their higher energy density and their ability to bear a higher
stress without burning out, the most commonly used family of batteries are LiPo batteries,
which are suitable for UAV systems in general. A fundamental parameter that characterizes
the performances of batteries to be considered is the discharge rate, which defines the max-
imum current tolerable by the propulsion system without accidents. For the UAV system
designed in this investigation as a delivery drone, the battery chosen is a 12S, 10,000 (mAh)
battery with a discharge rate of 30 (C). The symbol S stands for series, indicating that
the cells are connected in series to increase the voltage of the battery pack. Each cell in a
lithium polymer (LiPo) battery pack has a nominal voltage of 3.7 (V), so a 12S battery pack
would have a nominal voltage of 12× 3.7 (V) = 44.4 (V). The number of cells in a battery
pack affects both the voltage and the capacity of the battery.

2.5. Electronic Speed Controllers

Electronic Speed Controllers (ESCs) are electronic components that guide the speed of
the motors by processing the autopilot signal. Another function of the ESC is to transform
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the DC current coming from the batteries into a three-phase AC current to supply power
to the electric motor. There are also other auxiliary functions such as battery protection.
The ESC chosen for the virtual prototype of the proposed UAV system has an amperage of
80 (A) supplied to the electric motors.

2.6. Propeller Modeling

By knowing the diameter Dp expressed in (m), the pitch Hp expressed in (m), and the
number of blades Bp of a propeller, it is possible to estimate the thrust force FT expressed in
(N) and the torque moment Mp expressed in (N ×m). The thrust and the torque can be
obtained from the following formulas:

FT = ρCT

(
N
60

)2
DP

4 (1)

Mp = ρCM

(
N
60

)2
DP

5 (2)

where CT and CM are the dimensionless thrust and torque coefficients, respectively, while
N denotes the revolutions per minute of the propeller. The parameter ρ represents the
air density expressed in (kg/m3), which varies with the altitude h expressed in meters
according to the following simple law:

ρ =
273Pa

101325(273 + Tt)
ρ0 (3)

where Pa represents the atmospheric pressure, Tt is the atmospheric temperature, and the
standard air density ρ0 is equal to 1.293 (kg/m3) when the temperature is 273 (K). The at-
mospheric pressure Pa measured in (Pa) can be estimated as follows:

Pa = 101325
(

1− 0.0065
h

273 + Tt

)5.2561
(4)

The coefficients CT and CM are functions of propeller data. These two dimensionless
coefficients can be determined by using the following formulas:

CT = 0.25π3λζ2BPK0
ε arctan( HP

πDP
)− α0

πA + K0
(5)

CM =
1

8A
π2Cdλζ2BP

2 (6)

where Cd is another dimensionless coefficient given by:

Cd = C f D +
πAK0

2

e

(
ε arctan( HP

πDP
)− α0

)2

(πA + K0)
2 (7)

More specifically, the parameter Cd represents the drag coefficient defined as:

Cd =
2Fd

ρu2S
(8)

where Fd is the drag force, ρ is the mass density of the fluid, u is the flow velocity, and S is
the reference area. Experimental values of the previous coefficients vary over the following
ranges: A = 5–8 (−), ε = 0.85–0.95 (−), λ = 0.7–0.9 (−), ζ = 0.4–0.7 (−), e = 0.7–0.9 (−),
C f D = 0.015 (−), α0 = −π/36− 0 (rad), and K0 = 6.11 (−). For the design of the UAV
system developed in this study, the following values were chosen: A = 5 (−), ε = 0.85
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(−), λ = 0.75 (−), ζ = 0.5 (−), e = 0.83 (−), C f D = 0.015 (−), α0 = 0 (rad), and K0 = 6.11
(−). The coefficient A = Dp

/
cp is the aspect ratio, where Dp is the propeller diameter and

cp is the blade average chord length. The coefficient C f D is the zero-lift drag coefficient,
which depends on the thickness of the blade, the Reynolds number, and the angle of attack.
The parameter e = 1.78

(
1− 0.045A0.68)− 0.64 is the Oswald factor. The parameter λ is a

correction coefficient, while the parameter ε is another correction factor that arises due to
downwash. The parameter α0 is the zero-lift angle of attack [48,49].

2.7. Choices of Motors and Propellers

Through an iterative process, based on the analysis of the mathematical models of the
propellers, it was possible to choose a combination of propellers and motors that meets the
required specifications. The delivery drone to be designed is a quadcopter. Thus, the total
thrust required must be divided into four contributions generated by its four propellers.
In addition, the motors must meet a thrust-to-weight ratio that is equal to two, which is a
common design choice made for delivery drones. In the case of the UAV system designed
in this investigation, the total mass is about 10 (kg). Consequently, the thrust force that
each motor coupled to the propeller must offer must be more than 5 (kgf). For the reasons
mentioned before, the chosen combination of motors and propellers consists of propellers
having a diameter equal to 22 (inch) and a pitch equal to 7.4 (inch), and high-efficiency,
low-KV motors with a maximum power output of 1400 (W). In summary, the parameters
chosen for the electric motors are shown in Table 1.

Table 1. Parameters chosen for the electric motors.

KV Motor Weight Idle Current Internal Resistance Peak Current Maximum Power

150 (RPM/V) 273 (g) 1 (A) 85 ± 5 (mΩ) 29.7/26.5 (A) 712.8/1272 (W)

3. UAV System Computer-Aided Design
3.1. Complete Geometric Model

The development of a virtual model of the delivery drone allows the design engineer
to evaluate various aspects of the UAV system of interest without creating a physical proto-
type. In the case of the virtual prototype of the UAV system developed in this investigation,
the CAD model was created in SOLIDWORKS, which is a three-dimensional design and
drafting software that allows for the construction of complex geometric shapes. Every
single component was designed to meet the design needs of the delivery drone. Then,
the individual components were mated to create the finished assembly. The geometric anal-
ysis performed on the CAD model was challenging and absorbed a considerable amount
of time because it was necessary to guarantee the correct functionality and disassembly
of the single components forming the UAV system of interest [50,51]. The final result
of this process is shown in Figure 2, while the single parts of the final assembly will be
subsequently presented, thereby specifying the material and the design choices made.

Figure 2. Final rendering of the proposed UAV system serving as a delivery drone.
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As shown in Figure 2, the CAD model of the UAV system is composed of four support
arms, four propeller shafts, four bearings, four motor supports, four DC motors controlling
the propellers, four belt transmissions, a central frame, a beer crate, four rollers, four roller
supports, a roller motor, an external case, landing gear, and a battery cover. All these
mechanical components are described in detail below by following the criteria met for their
geometric design.

3.2. Support Arms

The CAD model of the UAV system encompasses four support arms for properly
distancing the blades of the propellers from the main body of the central chassis. Therefore,
the length of each arm is a consequence of the propellers chosen, as discussed in detail
in Section 2. In the proposed prototype, the frame is about one meter off from the central
frame to avoid interference between the propellers during flight. The length of each arm is
denoted with R and can be calculated as:

R =
rmax

sin( θ
2 )

(9)

being:
rmax = 1.05rp ∼ 1.2rp (10)

where rmax is the maximum radius of a propeller, rp represents the radius of the chosen
propellers, and θ identifies the angle between the support arms. In particular, the geometric
model of the mechanical system at hand was designed such that θ = π/2 (rad), rp = 0.2794
(m), rmax = 0.3517 (m), and R = 0.4974 (m). As shown in Figure 3, at the edge of each arm
there is a slot for the shaft, which can be housed horizontally.

Figure 3. Components forming each support arm.

The material chosen for the support arm is carbon fiber to ensure lightness and
strength. The configuration chosen for the arms is QuadX because it was experimentally
verified that it is more efficient [52–54]. This configuration also makes access to the beers
more manageable, which represent the payload of the delivery drone designed in this
investigation. Otherwise, the arms would interfere with the opening of the case hatch.
Additionally, the cross-sections of the support arms are designed to be octagonal, to create
proper reference planes for positioning the motor and its support.

3.3. Propeller Shafts and Bearings

As can be seen in Figure 3, the shaft of each propeller has a larger central section that
serves as a shoulder for the positioning of the bearings and their respective supports on
both sides. By using the holes in the support, it is possible to mate the shaft to the arm, so
that the bearings do not move. The matching between the shaft and the pulley, and the one
between the shaft and the propellers, are ensured by two grains.

Axial ball bearings are used to support the axial thrusts generated by the propulsion
system. In the case of the proposed design of the UAV system, the radial force is in fact
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negligible compared to the axial one. The bearings were inserted into custom-made
aluminum housings, as represented in Figure 3. These triangular-shaped supports are
designed to allow for a correct centering of the bearings, and to avoid disassembly caused
by the thrusts of the propulsion system.

3.4. Motor Supports and Belt Transmissions

The UAV system is equipped with a gearbox on each arm. Thus, each electric motor
is not located on the axis of each propeller. As a result, the motors require the design of
proper mechanical supports to fasten them to the drone arms. These additional mechanical
supports are represented in blue in Figure 3. For simplicity, the geometry of each additional
mechanical support is identical to one of the arms, thereby guaranteeing a better matching.
The material chosen for the motor supports is aluminum. These supports are designed
for facilitating the installation of the motors, with their rotors directed toward the top.
This also helps to reduce the elastic deflection of the propeller shafts. On the base of each
support, there are four holes aligned with the corresponding holes already present on the
motor. Four M4 screws are used to fasten the stator of each electric motor to the base of
their mechanical supports, therewith leaving the rotor free to transmit motion.

The gearbox chosen to transmit the mechanical power from the electric motor to the
propellers is a belt transmission shown in Figure 4.

Figure 4. Arm disassembly showing the belt transmission.

This solution is more efficient and quieter than gears. The belt links two pulleys whose
transmission ratio is 2:3.

3.5. Central Frame

As shown in Figure 5, the central frame of the UAV system serving as a delivery drone
resembles the polygonal geometry of the arms.

There are recesses in the structure that reduce the weight of the frame without affecting
its functionality, as well as its structural strength and integrity. The main function of the
central chassis is to connect the four arms to the crate for transporting the beers representing
the payload of the UAV system. The material chosen is carbon fiber for its lightness and
rigidity, as mentioned previously. The space between the two plates of the frame is used for
the positioning of the electronics, such as the flight controller and the ESCs. The electronics
are fixed to the structure with cable ties.

3.6. Beer Crate

As mentioned before, the payload of the proposed UAV system serving as a delivery
drone is represented by beverages such as beer. Beers are transported by a crate fastened to
the structure of the UAV system, as shown in Figure 6.
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Figure 5. Drone central frame disassembly.

Figure 6. Beer crate.

Inside the crate, there is a conveyor belt on which the beers are placed. The delivery of
the beers involves a series of operations. Once the quadcopter has landed, the customer can
make payment via NFC. The signal is sent to the controller, which in turn opens the linear
actuator that locks the door. The DC motor, housed outside the case, starts the conveyor
belt rollers. The beers, owing to their own weight and because of the push of the rollers,
open the door and slide on it. Thus, the customer can pick up the beers. When the beers
are recovered, the torsional spring of the hinge closes the door again. This system helps
to minimize the contact between the UAV and the customer, who might unintentionally
damage the delivery drone.

3.7. Rollers, Roller Supports, and Roller Motor

Four rollers serve to support the conveyor belt transporting the beers representing
the payload. The shaft of the rollers acts as a shoulder for the two bearings. The first
bearing, the shaft, the second bearing, and a cap are inserted into the outside of the rollers
by following this order, as shown in Figure 7.
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Figure 7. Rollers of the conveyor belt.

This assembly sequence serves to lock the bearings in place. There is a hole in the first
roller for the insertion of the DC motor shaft.

The assembled rollers are positioned on special supports, as shown in Figure 8.

Figure 8. Roller supports.

The supports serve to facilitate the installation of the rollers inside the crate. The sup-
ports are L-shaped and have four holes. The holes on the lower surface allow for the fixing
of the crate, while those on the upper surface are necessary for the placement of the rollers.
The supports are necessary for positioning the rollers inside the crate. To guarantee an easy
assembly and disassembly process, it was not possible to mount the rollers directly inside
the crate because there would be no room for assembly. Because of the presence of the
supports, the rollers are assembled outside and then fastened to the external crate.

As shown in Figure 9, the DC motor that controls the rotation of the rollers is attached
to the outside of the case.

Figure 9. The DC motor commanding the rollers.
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The process for fixing the case is facilitated by two aluminum plates, which are placed
with one inside and one outside, and then secured with screws. To avoid interference prob-
lems, the motor is the first component to be assembled in the case. The plate represented in
Figure 8 is the one on the outside. Another equal plate is collocated in the same position
inside the case.

3.8. External Case, Landing Gear, and Battery Cover

The outer case is made of ABS plastic. Holes on the bottom surface of the case are
required for fastening the rollers by supports. A plexiglass door closes the case. Plexiglass
reduces friction between the beers and the door, thereby allowing them to slide without
stopping. It is also an aesthetic choice because it lets the customer see the beers representing
the payload of the delivery drone. The door hinge is equipped with a torsion spring that
closes the door once the beers are picked up. To prevent the door from accidentally opening
during flight, a linear actuator electronically locks it. This result is checked in a multibody
simulation environment described in detail below in the manuscript.

The case of beers should not touch the ground because a certain angle is required for
the beers to slide. For this purpose, the delivery drone is equipped with a simple landing
gear composed of four cylindrical tubes connected by T-shaped supports. As shown in
Figure 5, screws connect the landing gear to the central frame.

The battery is protected from the weather by a cover. The cover is made of plastic and
is fixed to the frame with two flaps.

4. UAV System Multibody Modeling
4.1. Mathematical Background

In the case study in point, namely the kinematic and dynamic analysis of a UAV system
working as a delivery drone, the laws of motion are provided as input functions to control
the motion of the mechanical system at hand. Subsequently, both the processes of analysis
and the synthesis of the control system are carried out. As shown below, the delivery
drone is modeled as a multibody system composed only of rigid bodies endowed with a
three-dimensional motion. While the differential equations considered in the mathematical
modeling of the present problem take into account the dynamic behavior of the system
under study, the additional algebraic equations appended to the set of differential equations
serve to describe the effect of the mechanical joints and the presence of driving constraints
imposed on the dynamical system to be controlled. Furthermore, a proper set of externally
applied forces, torques, and moments is considered for the mathematical modeling of all
the mechanical actions applied on the delivery drone modeled as a multibody system.

4.2. Kinematic and Dynamic Analysis

The following is a description of the differential-algebraic equations of motion used to
define the multibody model of the UAV system under consideration. As anticipated before,
the fundamental approach employed for the mathematical modeling of the present UAV
system serving as a delivery drone, which represents the case study of this investigation, is
the Redundant Coordinate Formulation (RCF). Thus, although the dynamical system at
hand has a number of degrees of freedom equal to n f = 6, i.e., the three spatial translations
and the three finite rotations of the chassis, its multibody model is based on a set of nq
redundant generalized coordinates, where nq > n f . More precisely, the Three-Dimensional
Reference Point Coordinate Formulation with Euler Angles (3D-RPCF-EA) is the multibody
formulation approach adopted in this work [55,56]. In the 3D-RPCF-EA, the Cartesian
coordinates of a material point attached to each rigid body are employed as the translational
coordinates, while the set of rotational coordinates used is represented by the Euler-Cardan
angles based on the X−Y− Z sequence. By doing so, assuming a space dimension equal to
d = 3, and by denoting the generic rigid body with the superscript index i, the first angular
displacement denoted with φi represents the system roll, the second angular displacement
denoted with ϑi represents the system pitch, and the third angular displacement denoted
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with ψi represents the system yaw. The vector of rotational coordinates pertaining to the
generic rigid body i is thereby donated with the vector θi of dimensions nθ = 3. In this
context, the rotation matrix Ai of a generic rigid body i is therefore a d× d matrix given by:

Ai = Ai
xAi

yAi
z (11)

being:

Ai
x =

 1 0 0
0 Cφi −Sφi

0 Sφi Cφi

, Ai
y =

 Cϑi 0 Sϑi

0 1 0
−Sϑi 0 Cϑi

, Ai
z =

 Cψi −Sψi 0
Sψi Cψi 0
0 0 1

 (12)

where the following abbreviations are used:{
Cφi = cos(φi)

Sφi = sin(φi)
,
{

Cϑi = cos(ϑi)
Sϑi = sin(ϑi)

,

{
Cψi = cos(ψi)

Sψi = sin(ψi)
(13)

Consequently, in the 3D-RPCF-EA, the number of generalized coordinates of each rigid
body is given by nb = d + nθ = 6. To this end, one can define the following generalized
coordinate vector denoted with qi of dimensions nb × 1 associated with the generic rigid
body i:

qi =

[ (
Ri)T

(
θi
)T

]T
(14)

being:

Ri =

 xi

yi

zi

, θi =

 φi

ϑi

ψi

 (15)

where Ri denotes a vector of dimensions d× 1 containing the translational coordinates
of the generic body i, θi denotes the vector of rotational coordinates of the generic body
i having dimensions nθ × 1, while xi, yi, and zi respectively represent the longitudinal,
lateral, and vertical linear displacements of the center of mass pertaining to the rigid
body i, whereas φi, ϑi, and ψi respectively represent the roll, pitch, and yaw rotational
displacements of the same body, as introduced before. The multibody model of the UAV
system under study is composed of Nb = 5 rigid bodies, identified as follows:

1. Central frame: body i = 0.
2. Propeller I: body i = 1.
3. Propeller II: body i = 2.
4. Propeller III: body i = 3.
5. Propeller IV: body i = 4.

Where each rigid body is unambiguously labeled with the integer number i. By math-
ematically modeling the delivery drone as a multibody mechanical system composed of
Nb = 5 rigid bodies deployed in a three-dimensional space, the resulting dynamical model
is based on a set of redundant coordinates in number equal to nq = Nbnb = 30. As a result,
it is apparent that the complete form of the multibody system generalized coordinate vector
referred to as q of dimensions nq × 1 is given as follows:

q =
[ (

q0)T (
q1)T (

q2)T (
q3)T (

q4)T
]T

(16)
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In the 3D-RPCF-EA, the mass matrix Mi of dimensions nb × nb and the inertia
quadratic velocity vector Qi

v of dimensions nb × 1 of each rigid body i respectively as-
sume the following analytical forms:

Mi =

[
miI O
O

(
Ḡi)T Īi

Gi Ḡi

]
, Qi

v =

 0

−
(
Ḡi)T

(
ω̄i ×

(
Īi

Gi ω̄
i
)
+ Īi

Gi
˙̄G

i
θ̇

i
)  (17)

where the collocation of the reference point Ōi of each body-fixed reference frame i is
assumed to be coincident with the center of mass Gi of the same rigid body, mi is the
mass of the generic rigid body i, I denotes the d × d identity matrix, Īi

Gi identifies the
inertia matrix of the rigid body having dimensions d× d evaluated with respect to the
body-fixed coordinate frame, ω̄i is the angular velocity vector of the rigid body i having
dimensions d× 1 projected on its reference system, and Ḡi is the transformation matrix
having dimensions d× nθ that allows for determining the local angular velocity from the
time derivative of the rigid body rotational coordinates. By selecting a proper body-fixed
reference system that is the principal of inertia, the inertia matrix denoted with Īi

Gi assumes
the following simplified form:

Īi
Gi =

 Ii
xx 0 0
0 Ii

yy 0
0 0 Ii

zz

 (18)

where Ii
xx, Ii

yy, and Ii
zz represent the principal mass moments of inertia pertaining to the

rigid body i. The conversion of the time derivative of the rotational coordinate vector θ̇
i

into the local angular velocity vector ω̄i, as well as the conversion of the time derivative of
the body generalized coordinate vector q̇i into the local angular velocity vector ω̄i, can be
explicitly performed as follows:

ω̄i = Ḡiθ̇
i
= W̄iq̇i (19)

where in the case of the X−Y− Z sequence of Euler angles, the transformation matrices
Ḡi of dimensions d× nθ and W̄i of dimensions d× nb are respectively given by:

Ḡi =

 Cϑi Cψi Sψi 0
−Cϑi Sψi Cψi 0

Sϑi 0 1

, W̄i =
[

O Ḡi ] (20)

where O denotes a d × d zero matrix. For the UAV system modeled as a multibody
mechanical system in this study, the inertial properties of each component, including the
mass of the payload mp attached to the chassis of the delivery drone, are reported in Table 2.

4.3. Mechanical Joints

The multibody system analyzed herein is mechanically held together by the presence
of Nc,h = 4 holonomic algebraic constraints mathematically modeling the kinematic joints,
which are identified as follows:

1. Revolute joint I: constraint k = 1.
2. Revolute joint II: constraint k = 2.
3. Revolute joint III: constraint k = 3.
4. Revolute joint IV: constraint k = 4.

Where each kinematic pair is unambiguously labeled with the integer number k.
Thus, to guarantee the rotation imparted by the electric motor to each propeller in the
computer simulation, four revolute joints are considered as the mechanical constraints
inserted between the central frame of the delivery drone and the four propellers forming
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the quadcopter. By using the multibody approach to the analysis of articulated mechanical
systems, revolute joints are modeled using holonomic bilateral constraint equations [57,58].
This type of joint constrains the relative motion between two rigid bodies by granting
nk

f = 1 relative degrees of freedom between its members, and therefore, it is mathematically

described by nk
c,h = 5 effective algebraic constraint equations in a three-dimensional space.

The total number of holonomic algebraic equations is therefore equal to nc,h and is given by:

nc,h =
Nc,h

∑
k=1

nk
c,h = 20 (21)

The schematization of a generic revolute joint between two spatial rigid bodies is
represented in Figure 10.

Table 2. Inertial properties of each rigid body of the delivery drone.

Descriptions Symbols Data (units)

Payload mass mp 2 (kg)

Central frame mass m0 8 (kg)

Central frame first moment of inertia I0
xx 0.27 (kg·m2)

Central frame second moment of inertia I0
yy 0.26 (kg·m2)

Central frame third moment of inertia I0
zz 0.42 (kg·m2)

Propeller I mass m1 5.6× 10−3 (kg)

Propeller I first moment of inertia I1
xx 9.8× 10−6 (kg·m2)

Propeller I second moment of inertia I1
yy 8.6× 10−4 (kg·m2)

Propeller I third moment of inertia I1
zz 8.6× 10−4 (kg·m2)

Propeller II mass m2 5.6× 10−3 (kg)

Propeller II first moment of inertia I2
xx 9.8× 10−6 (kg·m2)

Propeller II second moment of inertia I2
yy 8.6× 10−4 (kg·m2)

Propeller II third moment of inertia I2
zz 8.6× 10−4 (kg·m2)

Propeller III mass m3 5.6× 10−3 (kg)

Propeller III first moment of inertia I3
xx 9.8× 10−6 (kg·m2)

Propeller III second moment of inertia I3
yy 8.6× 10−4 (kg·m2)

Propeller III third moment of inertia I3
zz 8.6× 10−4 (kg·m2)

Propeller IV mass m4 5.6× 10−3 (kg)

Propeller IV first moment of inertia I4
xx 9.8× 10−6 (kg·m2)

Propeller IV second moment of inertia I4
yy 8.6× 10−4 (kg·m2)

Propeller IV third moment of inertia I4
zz 8.6× 10−4 (kg·m2)
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Figure 10. Mechanical scheme of a generic revolute joint.

Considering two generic rigid bodies denoted respectively by the integers i and j,
and denoting by integer k the kinematic constraint associated with the generic revolute joint
at hand, the corresponding constraint equations are embedded in the nonlinear constraint
vector denoted with the vector Ψk of dimensions nk

c,h × 1. The precise mathematical
expression of the holonomic algebraic equations representing a generic revolute joint
labeled with k can be written in a general and compact vector form as follows:

Ψk =

 ri(P)− rj(P)(
vi

1
)Tvj

3(
vi

2
)Tvj

3

 = 0 (22)

where ri(P) and rj(P) respectively represent the global position vectors of dimensions
d× 1 of the collocation point P of the generic revolute joint k expressed, considering the
kinematic representation of the rigid bodies i and j, while vi

1, vi
2, and vi

3 represent a triplet
of unit vectors of dimensions d× 1 forming a rigid triad attached to the revolute joint k
modeled as belonging to the rigid body i, whereas vj

1, vj
2, and vj

3 represent a triplet of unit
vectors of dimensions d× 1 forming a rigid triad attached to the revolute joint k modeled
as belonging to the rigid body j. By employing the multibody version of the fundamental
formula of rigid kinematics, the absolute position vectors ri(P) and rj(P) are respectively
defined as follows:

ri(P) = Ri + Aiūi(P), rj(P) = Rj + Ajūj(P) (23)

where ūi(P) and ūj(P) respectively represent the local position vectors of dimensions d× 1
of the material point P associated with the body-fixed reference systems of the generic rigid
bodies i and j connected by the revolute joint k. Additionally, the unit vectors v̄i and v̄j

of dimensions d× 1 represented in Figure 10 mathematically define the direction of the
revolute joint axis by considering the local reference frames attached to the rigid bodies i
and j. Thus, one can write:

v̄i
3 = v̄i ⇒ v̄i

1
v̄i

2

}
= triad(v̄i

3) ⇒


vi

1 = Aiv̄i
1

vi
2 = Aiv̄i

2
vi

3 = Aiv̄i
3

(24)
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and

v̄j
3 = v̄j ⇒ v̄j

1
v̄j

2

}
= triad(v̄j

3) ⇒


vj

1 = Ajv̄j
1

vj
2 = Ajv̄j

2
vj

3 = Ajv̄j
3

(25)

where the function triad(v) creates in output a right-handed triad of unit vectors v1, v2,
and v3 of dimensions d× 1 starting from the unit vector v of dimensions d× 1 taken in
input [59]. The Jacobian matrix of the constraint equations associated with the revolute
joint for a spatial multibody system is denoted with the matrix Ψk

qk having dimensions

nk
c,h × 2nb, and it is defined as follows:

Ψk
qk =

[
Ψk

qi Ψk
qj

]
=


Li(P) −Lj(P)(
vj

3

)T
Di

1
(
vi

1
)TDj

3(
vj

3

)T
Di

2
(
vi

2
)TDj

3

 (26)

where Li(P) and Lj(P) respectively represent the Jacobian matrices having dimensions
d× nb of the global position vectors ri(P) and rj(P) associated with the material point P,
whereas Di

1, Di
2, and Dj

3 respectively represent the Jacobian matrices having dimensions

d× nb of the global direction vectors vi
1, vi

2, and vj
3. For a generic rigid body i, the Jacobian

matrices Li(P) and Di are respectively defined as follows:

Li(P) =
[

I Ai
(

˜̄ui(P)
)T

Ḡi
]

, Di =

[
O Ai

(
˜̄vi
)T

Ḡi
]

(27)

where ˜̄ui(P) and ˜̄vi respectively represent skew-symmetric matrices of dimensions d× d
associated with the vectors ūi(P) and v̄i. The quadratic velocity vector of the constraint
equations associated with the revolute joint for a spatial multibody system is denoted with
the vector Qk

d,Ψ of dimensions nk
c,h × 1 and it is defined as follows:

Qk
d,Ψ =


−L̇iq̇i + L̇jq̇j

−
(

vj
3

)T
Ḋi

1q̇i − 2
(
v̇i

1
)T v̇j

3 −
(
vi

1
)TḊj

3q̇j

−
(

vj
3

)T
Ḋi

2q̇i − 2
(
v̇i

2
)T v̇j

3 −
(
vi

2
)TḊj

3q̇j

 (28)

The constraint quadratic velocity vector associated with the holonomic algebraic
equations describing the revolute joints is a highly nonlinear vector that absorbs the terms
that are quadratic with respect to the generalized velocities of the multibody system. This
vector is of fundamental importance for the correct computer implementation of the index-
one form of the equations of motion that include the set of holonomic constraints. For the
UAV system modeled as a multibody mechanical system in this study, the geometric
properties of each mechanical joint are reported in Table 3.

In Table 3, the scalar quantity R represents the length of each support arm measured
from the center of mass of the central frame to the axis of the revolute joints associated with
each propeller.
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Table 3. Geometric properties of each kinematic joint of the delivery drone.

Kinematic
Pair
Number

Kinematic
Pair
Type

First
Body
Number

Second
Body
Number

First Body
Location Point
and Joint Axis

Second Body
Location Point
and Joint Axis

k Name ik jk


ūik =

[
x̄ik ȳik z̄ik

]T

v̄ik =
[

v̄ik
x v̄ik

y v̄ik
z

]T


ūjk =

[
x̄jk ȳjk z̄jk

]T

v̄jk =
[

v̄jk
x v̄jk

y v̄jk
z

]T

1 Revolute 0 1


ū0 =

[ √
2

2 R −
√

2
2 R 0

]T

v̄0 =
[

0 0 1
]T


ū1 =

[
0 0 0

]T

v̄1 =
[

0 0 1
]T

2 Revolute 0 2


ū0 =

[ √
2

2 R
√

2
2 R 0

]T

v̄0 =
[

0 0 1
]T


ū2 =

[
0 0 0

]T

v̄2 =
[

0 0 1
]T

3 Revolute 0 3


ū0 =

[
−
√

2
2 R

√
2

2 R 0
]T

v̄0 =
[

0 0 1
]T


ū3 =

[
0 0 0

]T

v̄3 =
[

0 0 1
]T

4 Revolute 0 4


ū0 =

[
−
√

2
2 R −

√
2

2 R 0
]T

v̄0 =
[

0 0 1
]T


ū4 =

[
0 0 0

]T

v̄4 =
[

0 0 1
]T

4.4. Driving Constraints

In the multibody model of the UAV system analyzed in this investigation, the presence
of Nc,nh = 4 nonholonomic algebraic constraints is considered to mathematically describe
the driving constraints associated with the imposed rotational motion of the propellers.
The aforementioned driving constraints can be listed as follows:

1. Imposed angular velocity I: constraint h = 1.
2. Imposed angular velocity II: constraint h = 2.
3. Imposed angular velocity III: constraint h = 3.
4. Imposed angular velocity IV: constraint h = 4.

where each set of driving constraints is unambiguously labeled with the integer number h.
Therefore, to properly guarantee an assigned angular rate of rotation imposed by the electric
motor to each propeller, four driving constraints are considered in the dynamic analysis
describing the kinematic conditions affecting the connection between the central frame of
the delivery drone and the four propellers forming the quadcopter. Adopting a systematic
multibody approach for the kinematic and dynamic analysis of articulated mechanical
systems, the driving constraints describing the prescribed angular velocity, relatively
imposed between the propellers and the central frame, are modeled as nonholonomic
bilateral constraint equations. For this purpose, the mathematical formulation of this
specific type of driving constraint is developed and proposed in this paper. First, since
the present family of driving constraints is represented by a set of nonholonomic algebraic
constraints, no degrees of freedom are removed via their introduction in the multibody
model. Second, in a three-dimensional space, the imposition of a relative angular velocity
between two rigid bodies is mathematically described by nh

c,nh = 3 effective algebraic
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constraint equations. The total number of nonholonomic algebraic equations is therefore
equal to nc,nh, and is given by:

nc,nh =
Nc,nh

∑
h=1

nh
c,nh = 12 (29)

The schematization of the fundamental geometric quantities relative to a generic
driving constraint, describing the imposed rotational motion between the propellers and
the central frame of the delivery drone, is represented in Figure 11.

x
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�
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Figure 11. Mechanical scheme of a generic driving constraint.

Considering two generic rigid bodies denoted respectively by the integers i and j,
the rotation matrices transforming the Cartesian coordinates of a generic material point
attached to each rigid body from the body-fixed reference frame to the global reference
frame are respectively denoted with Ai and Aj. Denoting with Ai,j the rotation matrix
that defines the orientation of an arbitrary body i with respect to a body-fixed reference
system attached to the rigid body j, one can easily demonstrate the validity of the following
matrix equation:

Ai = AjAi,j (30)

Starting from this fundamental kinematic relationship, the additive property of the
angular velocity vectors can be readily proven [59,60], leading to the following fundamental
vector equation:

ωi = ωj + ωi,j (31)

where ωi is the global angular velocity vector of the rigid body i expressed with respect
to the inertial reference system, ωj is the global angular velocity vector of the rigid body
j expressed with respect to the inertial reference system, and ωi,j is the global angular
velocity vector of the rigid body i measured with respect to the rigid body j. It is important
to note that the angular velocity vectors ωi, ωj, and ωi,j are all global vectors, that is, their
algebraic components refer to the inertial reference system. More importantly, Equation (31)
represents the fundamental building block for mathematically constructing the nonholo-
nomic set of algebraic constraints describing the imposition of the relative angular velocity
as an appropriate set of driving constraints. For this purpose, as already discussed in the
manuscript, one can first express the angular velocity vectors ωi and ωj in the following
general form:

ωi = Giθ̇
i
= Wiq̇i, ωj = Gjθ̇

j
= Wjq̇j (32)
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where:
Gi = AiḠi, Wi = AiW̄i, Gj = AjḠj, Wj = AjW̄j (33)

By knowing the geometric properties of the multibody system under study, the relative
angular velocity vector ωi,j can be written as follows:

ωi,j = Ωhvh = ΩhAiv̄h = ΩhAjAi,jv̄h = ΩhAjv̄h (34)

where Ωh represents the magnitude of the relative angular velocity vector, vh is the global
axis vector of the relative angular velocity vector, and v̄h denotes the local axis vector of
the relative angular velocity vector. Similarly, the relative angular acceleration vector is
denoted with the vector αi,j of dimensions d× 1 and can be mathematically defined as:

αi,j = Ω̇hvh = Ω̇hAiv̄h = Ω̇hAjAi,jv̄h = Ω̇hAjv̄h (35)

One can therefore readily formulate the desired nonholonomic conditions as follows:

ωi −ωj = ωi,j ⇔ Wiq̇i −Wjq̇j = ΩhAjv̄h ⇔ Θh = 0 (36)

where the corresponding constraint equations are embedded in the nonlinear constraint
vector denoted with the vector Θh of dimensions nh

c,nh × 1. The complete mathematical
expression of the nonholonomic algebraic equations describing a generic relative angular
rotation associated with the set of driving constraints labeled with h can be written in a
general and compact vector form as follows:

Θh = Wiq̇i −Wjq̇j −ΩhAjv̄h = 0 (37)

Additionally, the Jacobian matrix of the constraint equations associated with the
relative angular velocity imposed between two spatial rigid bodies is denoted with the
matrix Θh

q̇h of dimensions nh
c,nh × 2nb and it is given by:

Θh
q̇h =

[
Θh

q̇i Θh
q̇j

]
=
[

Wi −Wj ] (38)

Finally, the quadratic velocity vector of the constraint equations associated with the
relative angular velocity imposed between two spatial rigid bodies is denoted with the
vector Qh

d,Θ of dimensions nh
c,nh × 1 and it is given by:

Qh
d,Θ = αi,j + ωj ×ωi,j − Ẇiq̇i + Ẇjq̇j (39)

The constraint quadratic velocity vector associated with the nonholonomic algebraic
equations describing the driving constraints is a highly nonlinear vector that absorbs the
terms that are quadratic with respect to the generalized velocities of the multibody system.
This vector is of paramount importance for the correct computer implementation of the
index-one form of the equations of motion that include the set of nonholonomic constraints.
For the UAV system modeled as a multibody mechanical system in this study, the geometric
properties of each driving constraint are reported in Table 4.
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Table 4. Geometric properties of each driving constraint of the delivery drone.

Driving
Constraint Number

Driving
Constraint Type

First Body
Number

Second Body
Number

Relative
Geometric Axis

h Name ih jh v̄h =
[

v̄h
x v̄h

y v̄h
z

]T

1
Imposed relative
angular velocity 1 0 v̄1 =

[
0 0 1

]T

2
Imposed relative
angular velocity 2 0 v̄2 =

[
0 0 1

]T

3
Imposed relative
angular velocity 3 0 v̄3 =

[
0 0 1

]T

4
Imposed relative
angular velocity 4 0 v̄4 =

[
0 0 1

]T

4.5. External Forces and Control Actions

The multibody model of the UAV system under study is subjected to Ne = 4 external
forces, which are identified as follows:

1. Gravitational field: force l = 1.
2. Wind disturbance: force l = 2.
3. Contact force I: force l = 3.
4. Contact force II: force l = 4.

Where each external force is unambiguously labeled with the integer number l. For a
generic external force identified by the integer number l, which is associated with the force
vector Fl

e of dimensions d× 1, expressed in the global reference system and applied to the
material point P of the rigid body l, the corresponding generalized external force vector
denoted with Ql

e having dimensions nb × 1 can be obtained as:

Ql
e =

(
Ll(P)

)T
Fl

e =

[
Fl

e(
Ḡl
)T(

ūl(P)× F̄l
e

) ] (40)

In the multibody model of the UAV system at hand, while both the total gravity force
and the disturbance action of the wind are applied in the center of mass G0 of the central
frame, the first and second contact forces are respectively applied at the central tip points
A0 and B0 of the right and left T-shaped legs of the landing gear attached to the chassis.
On the other hand, in the multibody model of the UAV system developed in this work,
a number of control actions equal to Nu = 4 are considered for monitoring and guiding
the three-dimensional motion of the system. More specifically, the following set of control
torques applied to the propellers is assumed:

1. Propeller torque I: s = 1.
2. Propeller torque II: s = 2.
3. Propeller torque III: s = 3.
4. Propeller torque IV: s = 4.

Where each control torque is unambiguously labeled with the integer number s. For a
generic control torque identified by the integer number s, which is associated with the
torque vector T̄s

u of dimensions d× 1 expressed in the body-fixed reference frame of the
rigid body s, the corresponding generalized control force vector denoted with Qs

u having
dimensions nb × 1 can be obtained as:

Qs
u = (W̄s)

TT̄s
u =

[
0(

Ḡs)TT̄s
u

]
(41)
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As discussed in the description of the propulsion system, there is an explicit nonlinear
relationship between the magnitude of each control torque T̄s

u, which is denoted with Ms
p

and is applied to the generic propeller s, and the angular velocity imposed on the same
propeller given by Ωs = 2πNs/60, where Ns indicates the revolutions per minute of the
propeller labeled with the integer number s.

4.6. Differential-Algebraic Equations of Motion

The differential-algebraic form of the UAV system equations of motion modeled as a
multibody system can be readily obtained through a standard and systematic assembly
procedure. By doing so, the system mass matrix denoted with M and having dimensions
nq × nq is given by:

M =
Nb−1

A
i=0

Mi =


M0 O O O O
O M1 O O O
O O M2 O O
O O O M3 O
O O O O M4

 (42)

where the symbol A stands for representing the standard assembly process employed in
the field of multibody system dynamics. Similarly, the system inertia quadratic velocity
vector denoted with Qv and having dimensions nq × 1 can be readily assembled as follows:

Qv =
Nb−1

A
i=0

Qi
v =


Q0

v
Q1

v
Q2

v
Q3

v
Q4

v

 (43)

The system generalized external force vector denoted with Qe and having dimensions
nq × 1 can be readily assembled as follows:

Qe =
Ne
A

l=1
Ql

e =


Q1

e + Q2
e + Q3

e + Q4
e

0
0
0
0

 (44)

The system generalized control force vector denoted with Qu and having dimensions
nq × 1 can be readily assembled as follows:

Qu =
Nu
A

s=1
Qs

u =


0

Q1
u

Q2
u

Q3
u

Q4
u

 (45)

The system vector of holonomic algebraic constraints denoted with Ψ and having
dimensions nc,h × 1 can be readily assembled as follows:

Ψ =
Nc,h
A

k=1
Ψk =


Ψ1

Ψ2

Ψ3

Ψ4

 (46)
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The system vector of nonholonomic algebraic constraints denoted with Θ and having
dimensions nc,nh × 1 can be readily assembled as follows:

Θ =
Nc,nh
A

h=1
Θh =


Θ1

Θ2

Θ3

Θ4

 (47)

The system Jacobian matrix relative to the set of holonomic algebraic equations de-
noted with Ψq and having dimensions nc,h × nq can be readily assembled as follows:

Ψq =
Nc,h
A

k=1
Ψk

qk =


Ψ1

q0 Ψ1
q1 O O O

Ψ2
q0 O Ψ2

q2 O O
Ψ3

q0 O O Ψ3
q3 O

Ψ4
q0 O O O Ψ4

q4

 (48)

The system Jacobian matrix relative to the set of nonholonomic algebraic equations
denoted with Θq̇ and having dimensions nc,nh × nq can be readily assembled as follows:

Θq̇ =
Nc,nh
A

h=1
Θh

q̇h =


Θ1

q̇0 Θ1
q̇1 O O O

Θ2
q̇0 O Θ2

q̇2 O O
Θ3

q̇0 O O Θ3
q̇3 O

Θ4
q̇0 O O O Θ4

q̇4

 (49)

The system constraint quadratic velocity vector relative to the set of holonomic alge-
braic equations denoted with Qd,Ψ and having dimensions nc,h× 1 can be readily assembled
as follows:

Qd,Ψ =
Nc,h
A

k=1
Qk

d,Ψ =


Q1

d,Ψ
Q2

d,Ψ
Q3

d,Ψ
Q4

d,Ψ

 (50)

The system constraint quadratic velocity vector relative to the set of nonholonomic
algebraic equations denoted with Qd,Θ and having dimensions nc,nh × 1 can be readily
assembled as follows:

Qd,Θ =
Nc,nh
A

h=1
Qh

d,Θ =


Q1

d,Θ
Q2

d,Θ
Q3

d,Θ
Q4

d,Θ

 (51)

By employing the fundamental principles of classical mechanics and introducing
two sets of Lagrange multipliers, namely a set of nc,h Lagrange multipliers grouped in
the vector λ and associated with the holonomic algebraic constraints, as well as a set of
nc,nh Lagrange multipliers grouped in the vector µ and associated with the nonholonomic
algebraic constraints, the differential-algebraic form of the multibody equations of motion
describing the UAV system under consideration can be written as follows:

Mq̈ = Qv + Qe + Qu −ΨT
qλ−ΘT

q̇µ

Ψ = 0
Θ = 0

(52)

From a mathematical point of view, this is a nonlinear set of index-three differential-
algebraic equations, featuring holonomic and nonholonomic constraints, which is par-
ticularly challenging to solve analytically. Consequently, one needs to resort to proper
numerical methods for obtaining an approximate solution to the problem at hand, which
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must be reliable, accurate, and physically consistent. To achieve this goal, two general
approaches can be followed, although several viable computational approaches exist in the
multibody literature [61]. The two fundamental methods suitable for numerically solving
the general form of the multibody equations of motion are referred to as the Augmented
Formulation (AF) and the Embedding Technique (ET) [59]. In the AF, the system equations
of motion are properly transformed from the index-three form to the index-one form and
are subsequently rearranged in a matrix form that allows for the explicit computation
of the system generalized acceleration vector. In the ET, on the other hand, the system
equations of motion are readily transformed from the index-three form to the index-one
form, and subsequently, a proper velocity transformation matrix is used to obtain only the
generalized acceleration vector corresponding to the system degrees of freedom. However,
both the AF and the ET numerically suffer from the unwanted phenomenon of the drift of
the algebraic constraints, and therefore, they require the use of an effective stabilization
technique to enforce the constraint equations at the position and velocity levels [62–64].
The AF is the general multibody formulation approach employed in this research work for
performing the dynamic analysis of the delivery drone. Therefore, the resulting index-one
set of dynamic equations can be written as follows:

Mq̈ = Qv + Qe + Qu −ΨT
qλ−ΘT

q̇µ

Ψqq̈ = Qd,Ψ
Θq̇q̈ = Qd,Θ

(53)

As mentioned before, a reliable constraint stabilization procedure is necessary for cor-
rectly solving the index-one form of the differential-algebraic multibody equations. To this
end, the generalized coordinate partitioning method is adopted in this investigation [65,66].

4.7. Underactuated Dynamical System

Depending on the type, the number, and the collocation of the control actions, a con-
trolled multibody mechanical system can be modeled as a fully actuated or an underactu-
ated dynamical system [67,68]. In the case of a fully actuated multibody mechanical system,
the number of independently manipulable control actions denoted with nu is equal to the
number of degrees of freedom of the system denoted with n f , that is, nu = n f . Conversely,
in the case of an underactuated multibody mechanical system, the number of control
actions is less than the number of degrees of freedom, that is, nu < n f . The quadcopter de-
signed in this research work has four motors that rotate the propellers at different velocities.
The torques of the motors generate the thrust forces that allow the drone to move through
space. Physically, the UAV system at hand is modeled as a rigid body with six degrees of
freedom. However, the angular velocities of the propellers are the only parameters that can
be arbitrarily controlled to guide the motion of the UAV system. As a result, the system
under study turns out to be an underactuated multibody mechanical system because one
has n f = 6 and nu = 4. Since the UAV system does not possess an actuator for each
degree of freedom, some movements are not directly controllable. For example, in order to
move the UAV system forward, the delivery drone must first rotate in the desired direction.
In general, from a mathematical point of view, the underactuation characteristic of a multi-
body mechanical system can be identified and analyzed by observing the structure of the
generalized control force vector denoted with Qu that is used for controlling the system
motion [69,70]. In mechanical engineering applications, this vector features the following
general mathematical structure:

Qu = Buu (54)

where u is a vector of control actions having dimensions nu × 1 and Bu is the positioning
matrix describing the collocation of the actuators that has dimensions nq× nu. By analyzing
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the rank of the actuator positioning matrix relative to the multibody model of the delivery
drone system under study, one obtains:

ru = rank(Bu) = nu < n f (55)

The rank ru of the positioning matrix of the actuators is equal to the number of
manipulable control actions nu but it is lower than the degrees of freedom of the multibody
system n f . Therefore, the dynamical system at hand is an underactuated multibody
mechanical system. As mentioned before, underactuated mechanical systems are dynamic
systems that are particularly challenging to control since some movements or maneuvers
cannot be implemented [71]. However, as discussed below in the paper, by properly
defining the time laws of the control actions applied to the UAV system under study,
as well as by cleverly combining together some movements involving the degrees of
freedom of the drone system, it is possible to effectively achieve control of the system
motion in realistic scenarios.

5. UAV System Control Development
5.1. Control Strategy

In this section, the fundamental aspects addressed in the development of the control
system suitable for the UAV system considered as the case study are described. In general,
controlling a dynamical system means properly choosing the actions to be implemented to
modify and to improve the behavior of the mechanical system of interest [72]. By acting
on the forces, moments, and torques that are manipulable as the input variables of the
mechanical system, motion control can be achieved in output. The control strategy depends
on the specific mechanical system under study. For the UAV system analyzed in this
investigation, a combination of a feedforward (open-loop) plus feedback (closed-loop)
control scheme is utilized for achieving the motion control, as discussed in detail below.

5.2. PID Controller

To achieve the attitude control and the trajectory tracking of the UAV system, the con-
trol method best suited to the case at hand is the closed-loop (feedback) control method.
In this type of control, the control actions are based on the instant-by-instant variations of
the state of the dynamical system. Although there are more advanced feedback control
techniques, the one most widely used in industry is the Proportional-Integral-Derivative
(PID) controller. Accordingly, the closed-loop control scheme employed in this work is
represented in Figure 12.

ΣΣ ErrorReference

u�

u�

u�

Plant Output
+

+

+
+-

Figure 12. PID controller scheme.

As shown in Figure 12, the input of the PID controller is the error signal, which
is obtained by comparing the actual time evolution of the dynamical system, measured
through the sensors with the reference trajectory, which is planned offline in advance to
meet the desired goals. In general, the total control action of a PID controller denoted with
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u consists of three separate contributions: a contribution proportional to the error denoted
with up, a contribution proportional to the integral over time of the error denoted with ui,
and a contribution that is proportional to the derivative of the error over time, denoted
with ud. That is:

u = up + ui + ud (56)

where:
up = −Kce, ui = −Hcē, ud = −Rcė (57)

and

e = q− qr, ē =
∫ t̄

0
e(t̄)dt̄, ė =

de
dt

(58)

with q and qr being the actual and reference dynamical behaviors of the mechanical system,
respectively, whereas Kc, Hc, and Rc identify the coefficient matrices of the proportional,
integral, and derivative terms of the PID controller, respectively. In practical applications,
the parameters of a given PID controller reduce often to scalar terms that are simply
identified with the initial of their letters, namely, P, I, and D. Since the desired dynamical
behavior denoted by the vector qr is, in general, a function of time resulting from the
preliminary phase of motion planning, the PID control strategy formulated herein can be
inherently considered as a combination of a feedback plus feedforward control schemes.
A strategy of this type is very robust as it seeks to minimize, by its nature, the deviation
of the system behavior from the input instructions. However, the coefficient matrices of
the PID controller must be properly tuned to obtain a good performance from the system
guidance and the control of the motion.

In the virtual prototype of the UAV system, the PID controller provides as outputs the
time laws and assigns them to the torques generated by the four motors. More specifically,
in the computer simulation, the output of the PID controller is a torque, while in the real-
world case, the actual controller returns voltage values that the motors and the propellers
transform into propulsion forces. The physical transformation from the input voltage to
the thrust force can be performed through the use of mathematical laws. For this purpose,
the angular velocity of the propellers is proportional to the input voltage of the motors and
can be expressed as follows:

N = KVV (59)

where V denotes the input voltage, N represents the revolutions per minute of the motor,
and KV is the constant that transforms the angular velocity of the motor into the input
voltage. The mathematical laws that relate the angular velocities of the motors to the thrust
force were discussed in detail in Section 2.

5.3. UAV System Control

In this subsection, the characteristics of the control scheme for the UAV system devised
in this study are described. More precisely, to deliver the set of beers, the drone must follow
a trajectory consisting of a vertical take-off phase, a horizontal movement, and an eventual
yaw motion [73–75]. Consequently, the proposed control system simulates this trajectory
using three separate PID controllers for the three movements, namely the vertical motion,
the forward motion, and the yaw motion, as discussed in detail below.

5.3.1. Hovering and Vertical Motion

The first problem in the development of the control system is to make the delivery
drone reach a predetermined altitude and keep it in balance. From a physical standpoint,
in the center of mass of the drone acts the gravity force, while the four thrust forces, gener-
ated by the propulsion system, are applied to the edge of each arm. As a first approximation,
one can consider the center of mass as being equidistant from the four electric motors.
In the design phase, the authors tried to arrange the components symmetrically so that the
propulsion forces, all equal in magnitude, and the gravity force do not generate moments
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in the hovering configuration. This peculiar behavior of the delivery drone is schematized
in Figure 13.

Figure 13. Hovering and vertical motion.

If the vector sum of the forces is positive along the z-axis, there is an acceleration that
allows the quadcopter to lift [76]. In the opposite case, if the sum of the forces is negative
along the z-axis, there is a decrease in altitude. Consequently, the hovering phase occurs
when the sum of the forces is zero, as summarized in the equations reported below:

4
∑

i=1
FTi + Fg > 0, ascending motion

4
∑

i=1
FTi + Fg < 0, descending motion

4
∑

i=1
FTi + Fg = 0, hovering

(60)

A closed-loop PID controller attains the regulation of the vertical thrust. The values
obtained in the PID adjustment are a consequence of an iterative process. In general,
the overall performance of the system changes as the control parameters are modified
according to the behavior reported in Table 5.

Table 5. PID value adjustments.

Parameter Rise Time Overshoot Settling Time Error Stability

P decreases increases limited changes decreases get worse

I decreases increases increases could cancel get worse

D increases decreases decreases no effect improve

In the computer simulation of the UAV system analyzed in this work, the input
provided is a ramp signal that increases the altitude of the drone, followed by a stationary
signal that helps to maintain the final altitude. At the end of the hovering phase, the control
signal gradually decreases to ensure a safe landing of the delivery drone. In an actual
drone system, the height feedback signal comes from a special ultrasonic detector. This
detector sends a sound wave toward the ground and measures the height, calculating the
time it takes to return to the device. Alternatively, for higher altitudes, the height can be
measured using a barometer that obtains it as a function of pressure variation. The feedback
is subtracted from the input to obtain the error. In the computer simulation carried out
using SIMSCAPE MULTIBODY, on the other hand, precise position measurements are
provided by the mechanical joints.
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5.3.2. Longitudinal and Lateral Motions

The quadcopter cannot perform a simple translational motion decoupled from a
rotational motion because it does not have the necessary actuators [77,78]. For example,
the delivery drone needs to perform a roll movement in the first step to move right.
To perform the rotation, the motors must rotate at different angular rates. In particular,
the motors collocated opposite to the chosen motion direction must accelerate. This gives
the delivery drone the required net torque necessary to rotate around the longitudinal
axis. The vertical component of the thrust force and the force of gravity balance each other,
while the horizontal component of the thrust force serves as the propulsion force that
allows for realizing the translation. This configuration is schematized in Figure 14. More
specifically, the longitudinal displacement is schematically shown in Figure 14a, while the
lateral displacement is schematically shown in Figure 14b.

(a) Longitudinal displacement

(b) Lateral displacement

Figure 14. Longitudinal and lateral motions.

Furthermore, a cascaded PID control system guides the forward–backward two-
dimensional motion of the UAV system, as well as its longitudinal and lateral motions,
as shown in Figure 15.
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Figure 15. Cascaded PID controller.

In this type of feedback control scheme, there are two loops. The first one, called
the outer loop, takes as a reference the required position and generates a signal input
for the second loop, whereas the inner loop serves for realizing the attitude control of
the delivery drone. The GPS signal feedback of a real drone is simulated by reading this
information from the presence of proper mechanical joints in SIMSCAPE MULTIBODY.
The trajectory is planned during the design phase, while the roll angle input measurement
takes place during the flight using drone sensors such as gyroscopes and accelerometers.
The difference between the outer loop output and the measurement from the sensors will
be the input of the inner loop. As shown in detail below, an internal MATLAB tool, called
PID Tuner, allows for simplifying the tuning of the parameters that characterize the two
PID controllers.

5.3.3. Yaw Motion

The four propellers of the UAV system move two clockwise and two counterclockwise.
They are alternated to avoid the generation of a mechanical moment around the relative
vertical axis during roll and pitch operations. The fundamental static equation that describes
the yaw motion of the delivery drone can be written as follows:

4

∑
i=1

Mi = 0 (61)

where Mi represents the net torque produced by the propeller i. By changing the angular
velocities of the propellers, the total mechanical moment around the z-axis will no longer
be zero. Consequently, the drone will start to rotate on itself, as mathematically described
by the following dynamic equation:

4

∑
i=1

Mi + Izzω̇ = 0 (62)

where ω denotes the global angular velocity vector of the delivery drone and Izz identifies
the vertical mass moment of inertia of the UAV system. The angular velocity of the pro-
pellers that rotate clockwise must be higher than those that rotate counterclockwise so that
the drone rotates counterclockwise. Conversely, if the motors that rotate counterclockwise
run faster than the others, the drone will rotate clockwise.

The electronic control of the yaw motion is always of the closed-loop PID type. The de-
livery drone follows the yaw angle reference provided in the design phase. The gyroscopes
and accelerometers inboard the UAV system give a feedback signal to the system. The ap-
proach used in the simulation is to apply external forces to the axes of the propellers.
The propellers will rotate because of the conversion of the force rates into angular velocity
rates. The total mechanical moment about the vertical axis of the delivery drone is given by:

Mz = bT(−FT1 + FT2 − FT3 + FT4) (63)
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where bT is the drag constant that is calculated empirically. The rate of thrust required for
the yaw motion is added to one pair of motors moving in phase and subtracted from the
other two. Because of this, the overall thrust force does not change compared to the case of
no yaw motion. The rate of thrust for yawing augments the total thrust of the two motors
rotating simultaneously and decreases the thrust of the other two. Therefore, the global
thrust does not change compared to the no-yaw case.

5.4. PID Tuner

The MATLAB tool called PID Tuner is an extension included in the SIMULINK Control
Design Toolbox. Based on a linearized approximation of the dynamical system of interest,
also called the plant, it automatically provides the proportional, integral, and derivative
values of the parameters of a PID controller. To this end, the PID Tuner considers the plant
as the combination of all blocks between the output and input of the PID controller. The PID
Tuner bases its initial design on the open-loop frequency response of the linearized system.
However, the open-loop frequency-based model typically fails to properly simulate the
outputs of a complex system. It is necessary to identify a new plant through the input and
output data simulated by a proper MATLAB program that has been specifically designed
for this purpose. This program has several presets, one of which is the step impulse, whose
settings can be manually adjusted. At the end of the dynamical simulation, an output curve
is obtained. The software proposes various linear models to approximate the output curve.
They are transfer functions, in which parameters can be precisely adjusted either manually
or automatically. Transfer functions are functions that model the dynamic behavior of
a mechanical system in the frequency domain. The automatic estimation makes use of
iterative search models, including the Gauss-Newton algorithm. The linearized model
provides the software with a basis on which to adjust the PID parameters. It is possible to
refine the response amplitude–time curve according to preference by adjusting the desired
robustness and rise time. All the controlled models proposed by the software have an
accuracy of greater than 90 percent. This means that the linearized model proposed by
the MATLAB program corresponds to the real behavior in this percentage. In summary,
the parameters of the control system developed for solving the regulation and tracking
problems of the multibody model of the UAV system analyzed in this investigation are
thoroughly described by the data reported in Table 6.

Table 6. Numerical values of the controller parameters in the ascending, descending, and hover-
ing phases.

DISPLACEMENT TYPE LOOPS P I D

LIFT PID Simple loop 28 22 18

YAW PID Simple loop 129.11 81.29 7.17

ROLL CASCADED PID
Inner loop
Outer loop

−3.93
0.52

−0.09
0.037

−15.68
0.74

PITCH CASCADED PID
Inner loop
outer loop

3.93
0.52

0.089
0.037

15.68
0.74

Table 6 contains the parameter values of the PID controllers employed in dynamic
simulations as described in Sections 6 and 7. This table has four rows. The controlled move-
ment is reported in each row, while on the columns, there are further specifications such
as the type of PID controller, the type of loop, and the values of the controller coefficients
(proportional, integrative, and derivative).
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6. SIMSCAPE MULTIBODY Model Description
6.1. Computer Model of the Delivery Drone

This subsection covers the description of the SIMSCAPE MULTIBODY model of
the UAV system considered as the case study of this investigation. An overview of the
SIMSCAPE MULTIBODY model of the delivery drone is represented in Figure 16.

Figure 16. Delivery drone SIMSCAPE MULTIBODY model overview.

The computer implementation of the dynamical model in the SIMSCAPE MULTI-
BODY environment is described by analyzing one by one the individual subsystems and
their peculiarities. The modeling of the system was completed as anticipated in MATLAB
using the SIMSCAPE MULTIBODY software environment [79,80]. The various subsystems
represented in Figure 16 are analyzed in detail below.

The CAD model developed using SOLIDWORKS was imported in SIMSCAPE MULTI-
BODY as a single rigid body to simplify the subsequent computer implementation of
the dynamical simulations. Therefore, the complex model realized in a SOLIDWORKS
environment was exported as a single “.SLDPRT” file. The four propellers were imported
as four single “.SLDPRT” files. To model the six degrees of freedom of the drone in a
three-dimensional space, a bushing joint without any force element was taken from the
SIMSCAPE MULTIBODY library. This joint utilizes the Tait-Bryan angles commonly used
in aviation to describe the rotation of a three-dimensional rigid body. As discussed in detail
in Section 4, each propeller has a rotational degree of freedom, which was modeled in
SIMSCAPE MULTIBODY with a revolute joint. The actuation forces acting on the frame
are provided by a feedback control system and, in the case study under consideration, PID
controllers were chosen, as discussed in detail in Section 5.

The dynamical model is provided with a reference input that describes the trajectory
to be tracked. The input trajectory refers to the Cartesian coordinates of the drone center of
mass and is provided with signal builders in the SIMULINK library. These blocks allow for
the construction of complex time laws to guide the dynamic system. In particular, since
the delivery drone is only endowed with four control actuators, four control inputs are
supplied to the dynamical model to guide its motion: the vertical height to be reached
(translation along the z-axis), the longitudinal and lateral positions with respect to a hori-
zontal plane (translations along the x-axis and the y-axis), and a yaw angle with respect
to the same reference plane (rotation about the z-axis). The control subsystem calculates
the error concerning the measured position using the given input. The measured position
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is provided by the mechanical joint that simulates the sensors of a real drone. The PID
controller takes in input the error and converts it into a control action, which is represented
by a force quota that will be applied to the dynamic model, in correspondence with the axes
of the propellers. As discussed in the paper, this is equivalent to applying control torques to
the propellers or imposing the magnitudes of their relative angular velocities. In addition to
the actuation forces, other external forces were considered to simulate real-world conditions
by following the multibody model developed in Section 4. Primarily, these are the force of
gravity, and secondly, a stochastic force that models the disturbance action of the wind.

As anticipated, the signal builder block available in SIMULINK allows for providing
the reference inputs for the movement of the UAV system to the computer implementation
of the system equations of motion described in Section 4. In particular, the altitude is
a discontinuous function that has an ascending phase to set the desired altitude to be
reached, a constant phase to achieve hovering, and a descending phase for landing [81–83].
The two-dimensional motion follows the same pattern as the height signal, except for the
descending phase. After the hovering stage, the drone receives the displacement signal
along one axis and reaches the first desired position. Then, the second signal is activated,
thereby generating a displacement along the second axis. The two-dimensional displace-
ment signals can also be combined. Once the two-dimensional movement is accomplished,
the drone performs a turning maneuver around its axis.

In the proposed SIMSCAPE MULTIBODY model, the drone position is measured
instant-by-instant using the bushing joint in six separate signals: three spatial displace-
ments (longitudinal displacement, lateral displacement, and vertical displacement) and
three finite rotations (roll angle, pitch angle, and yaw angle). As shown in Figure 17, these
signals are connected to the measurement subsystem, which provides the error concerning
the reference that takes the PID controller as input.

Figure 17. Measurement subsystem.

The error and controller subsystem shown in Figure 18 consists of four independent
PID controllers, whose logic structures are described in detail in Section 5.

The first controller is the one that regulates altitude. It takes an error as the input and
generates a proportional reaction. The error is given by a block (’Sum’) that calculates the
difference between the instantaneous values of the references and the measurements. This
controller is based on a feedback loop. The second and third ones are two-dimensional
displacement controllers, modeled with a cascaded PID controller. The system is analogous,
in the case of the longitudinal and lateral displacements, along the x and y axes. Primarily,
the outermost PID block receives the position-related error. This PID generates a signal
that rotates the drone, creating a roll or pitch angle. The resulting angle is compared to
the angular position, measured by the bushing joint. The resulting error between the two
angles is used by the following PID to generate the force term required for the displacement.
The fourth controller is the yaw control, which consists of a feedback controller in which
an angular position is given as input. Similarly to the altitude PID controller, the error
is measured as the difference between the law provided by the signal builder and the
instantaneous position measured by the joint. Subsequently, a mathematical function
block converts the force rate to the angular velocity of the propellers. The change in
angular velocity generates a non-zero moment of inertia, thereby allowing for the turning



Machines 2023, 11, 464 34 of 48

motion to be achieved. The function that allows for the transformation from a force
signal to an angular velocity signal also measures the output voltage, the revolutions per
minute, and the absorbed power. The value of the multiplication constant is obtained from
experimental data related to the propellers.

The drone subsystem represented in Figure 19 consists of the drone frame and the
mathematical functions for the conversion of the force quotas in the rotation of the propellers.

Figure 18. Error and controller subsystem.

As already discussed before, the motion of the delivery drone is generated by four
forces actuated by the output of the PID controllers. To allow for proper motion, some
blocks in SIMSCAPE MULTIBODY perform the sum/difference of the components of the
forces to recreate the torques necessary for the motion of the UAV system. For instance,
for the hovering maneuver, the thrust forces that the four motors must provide are all
concordant and determined in this manner. Contrarily, in the case of the rolling maneuver,
two of the four forces will be concordant, and the other two, discordant. In the SIMSCAPE
MULTIBODY model, the thrust forces are applied to the frame at the propeller axes through
an external force block. To avoid the power of the motors exceeding the constructive
specifications imposed by the manufacturer, saturation blocks were used in order to limit
the maximum force to an imposed value. The same idea was implemented to regulate the
minimum thrust force, which cannot be negative.

In order to simulate the wind disturbances, an external force was included in the
dynamic model implemented in SIMSCAPE MULTIBODY. The force varies with the wind
velocity, which is randomly generated using a special function. This force is applied to the
center of mass of the UAV system and is described by the following mathematical law:

Fv =
1
2

CsSρv2 (64)

where S ∼= 0.06 (m2) represents the reference area of the drone opposing the current,
ρ = 1.22 (kg/m3) is the standard value of the air density, Cs = 1(−) denotes the shape
coefficient, and v identifies the relative wind velocity that results from the computer
simulation performed in SIMSCAPE MULTIBODY. The force law described before was
implemented in SIMSCAPE MULTIBODY through a user-defined mathematical function.

To ensure a proper landing, a plane on which the drone will come to rest at the end
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of the simulation was modeled in SIMSCAPE MULTIBODY as well. As represented in
Figure 20, the brick solid ’Base1’ was made rigid and modeled with a spatial contact force.

Figure 19. Drone subsystem.

Figure 20. Landing base.

To dampen the residual kinetic energy accumulated during landing and due to the
system inertia, a friction coefficient between the base and the landing gear ‘Base2’ was
considered. The body geometry is recognized as solid due to the convex hull function,
and a contact force is inserted between the two bodies to simulate a realistic collision.
The friction model considered is of the Coulomb type with a static friction coefficient equal
to µs = 0.5 (−) and a dynamic friction coefficient equal to µd = 0.3 (−). In SIMSCAPE
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MULTIBODY, this friction model is referred to as the smooth stick-slip model.
To allow the engines to shut down on landing, an ‘if clause’ was inserted in the logic

of the control system. Additionally, the condition for the propellers to stop rotating is
that the height of the center of gravity relative to the global reference must be less than
h = 0.05 (m).

6.2. Computer Model of the Beer Carrier

In this subsection, the fundamental elements necessary for performing a dynami-
cal simulation of the unloading of the payload using SIMSCAPE MULTIBODY are de-
scribed [84,85]. This operation takes place once the drone has landed. The SIMSCAPE
MULTIBODY model of the beer carrier is represented in Figure 21.

Figure 21. Beer Carrier SIMSCAPE MULTIBODY model.

The model that simulates the behavior of the payload consists of four subsystems.
The first one, which is referred to as the external frame subsystem, is the outer case that
contains the payload. The second one, which is referred to as the rollers subsystem,
represents the rollers that allow its release. The third subsystem, which is referred to as the
beer pack subsystem, models the six-pack beer. Finally, the fourth and last one, which is
referred to as the ground subsystem, is responsible for representing the contact between
the ground and the landing gear.

The structure of the box consists of a CAD model that schematizes its shape, developed
using SOLIDWORKS. The hinge is connected to this external structure through a revolute
joint, which allows only for one relative degree of freedom, and it is rigidly fixed to the
door. In the SIMSCAPE MULTIBODY model, the revolute joint block simulates both the
constraint and the internal mechanics of the hinge, which contains a torsional spring having
an elastic stiffness coefficient given by kt = 0.043 (N × m/rad). The data used for the
physical parameters concerning the torsional spring refer to a product that is actually
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available in the market. The equilibrium configuration of the torsional spring ensures
the proper automatic closure of the door immediately after the withdrawal of the beers.
The interior of the container and the door are modeled as one-sided constraints. The contact
with the parallelepiped representing the beers generates constraint reactions that are
modeled through the ‘Spatial Contact Forces’ block available in SIMSCAPE MULTIBODY.

The rollers, connected to the case with appropriate revolute joints, are schematized as
simple cylinders. The law of motion, provided in SIMSCAPE MULTIBODY as input via the
‘Ramp’ function, is a uniform rotary motion. The slope of the ramp represents the angular
velocity of the rollers, expressed in revolutions per minute. The connections between
the container and the rollers, which are in contact with the six-pack beer, are modeled in
SIMSCAPE MULTIBODY as holonomic constraints. Additionally, the presence of friction is
taken into account in the dynamical model to obtain realistic computer simulations. In fact,
it is the friction between the rollers and the crate that allows for the motion of the payload.

A three-dimensional rigid body with six degrees of freedom is employed in SIMSCAPE
MULTIBODY to represent the pack of beers. The model is a brick solid with dimensions
corresponding to those of a real pack of beers. On the other hand, the ground is modeled in
SIMSCAPE MULTIBODY through a brick solid with appropriate contact forces to simulate
additional one-sided constraints.

7. Numerical Results and Discussion
7.1. Presentation of the Numerical Results

This subsection presents the results obtained from this research work. The goal was to
create a virtual prototype of a UAV system with good functionality and features comparable
to those on the market. The numerical results found in this work demonstrate the feasibility
of the virtual prototype of the delivery drone designed in the present investigation. All
the dynamical simulations mentioned in this section were carried out by employing the
numerical values of the PID controller parameters reported in Table 6.

In the design and computer simulation phases, it was possible to evaluate the nu-
merical results obtained to verify their consistency with the dynamical behavior of a real
drone system having comparable characteristics and performance. From the design in the
SOLIDWORKS environment, the main inertia matrix and the position of the center of mass
of the entire UAV system were obtained. More specifically, the total mass of the delivery
drone is equal to m = 9.973 (kg), whereas the total volume of the UAV system is given
by V = 6.278× 10−3 (m3). Additionally, considering a local reference system placed in
correspondence with the plane containing the lower frame of the UAV system, the local
position vector of the center of mass of the delivery drone denoted with ūG and its local
inertia matrix denoted with ĪG are respectively given by:

ūG =

 x̄G
ȳG
z̄G

 =

 0.28× 10−3 (m)
−17.28× 10−3 (m)

0.42× 10−3 (m)

 (65)

and

ĪG =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 =

 0.2321 (kg ·m2) 0 0
0 0.2395 (kg ·m2) 0
0 0 0.3663 (kg ·m2)

 (66)

The direction vectors of the principal axes of inertia are respectively denoted with īG,
j̄G, and k̄G. These vectors are given as follows:

īG =

 īx,G
īy,G
īz,G

 =

 1.00× 10−3 (m)
0.00× 10−3 (m)
−0.05× 10−3 (m)

, j̄G =

 j̄x,G
j̄y,G
j̄z,G

 =

 −0.05× 10−3 (m)
0.00× 10−3 (m)
−1.00× 10−3 (m)

 (67)
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and

k̄G =

 k̄x,G
k̄y,G
k̄z,G

 =

 0.00× 10−3 (m)
1.00× 10−3 (m)
0.00× 10−3 (m)

 (68)

Since the local position vector of the center of mass of the UAV system is close to the
zero vector, the multibody formulation approach employed in Section 4 is mathematically
justified by the actual geometric properties of the delivery drone.

In Figure 22, the time evolutions in the three-dimensional space of the UAV system
translational coordinates obtained in MATLAB by simulating the SIMSCAPE MULTIBODY
model are shown. In particular, Figure 22a,b is relative to the planar displacement of the
delivery drone after the hovering maneuver, while Figure 22c represents the first phase of
reaching vertical altitude.
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Figure 22. Longitudinal, lateral, and vertical (linear) displacements of the drone chassis. The solid
lines ( ) refer to the time-laws supplied in input from the MATLAB program. The dashed lines
( ) refer to the measures detected by the sensors in the computer simulation, carried out using
SIMSCAPE MULTIBODY.

In Figure 23, the time evolutions in the three-dimensional space of the UAV system
rotational coordinates obtained in MATLAB by simulating the SIMSCAPE MULTIBODY
model are shown. In particular, Figure 23a–c respectively represent the roll, pitch, and yaw
angular displacements of the delivery drone.

In the MATLAB computational environment, the data relative to the number of
revolutions of the single propellers, the values of the input voltage, and the power absorbed
by the motors, obtained from the computer simulation performed using the SIMSCAPE
MULTIBODY model, were plotted, thereby verifying the coherence with the tables reported
by the producers of the components of actual drone systems found in the market. More
specifically, the values of the physical quantities mentioned before are plotted as a function
of time relative to the computer simulation. In Figure 24, the revolutions per minute of
each propeller are represented as a function of time. To this end, Figure 24a–d respectively
represent the revolutions per minute of the first, second, third, and fourth propellers.
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Figure 23. Roll, pitch, and yaw (angular) displacements of the drone chassis. The solid lines ( ) refer
to the time-laws supplied in input from the MATLAB program. The dashed lines ( ) refer to the
measures detected by the sensors in the computer simulation, carried out using SIMSCAPE MULTIBODY.
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Figure 24. Revolutions per minute of each propeller, plotted as a function of time.
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In Figure 25, the instant voltage of each motor is represented as a function of time.
To this end, Figure 25a–d respectively represents the voltage values of the first, second,
third, and fourth electric motors.
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Figure 25. Instant electric voltage of each motor, plotted as a function of time.

In Figure 26, the power absorbed by each motor is represented as a function of time.
To this end, Figure 26a–d respectively represent the power values of the first, second, third,
and fourth electric motors.

Through the simulation performed in the SIMSCAPE MULTIBODY environment,
it was then possible to evaluate the performance of the quadcopter designed in this in-
vestigation. A summary of the most relevant numerical results found is represented in
Figure 27.

Figure 27a shows the curve that relates the variation of the revolutions per minute
with the propulsive thrust generated by the propellers, expressed in (kg f ). The values refer
to the propulsive thrust generated by a single propeller. Another fundamental parameter
to be observed is the torque variation as a function of the number of revolutions of a single
propeller, as shown in Figure 27b. This parameter is useful for designing the mechanical
transmission system. The last plot represented in Figure 27c indicates the power absorbed
by each engine, which is useful for making evaluations regarding the propulsion system
used.

In Figure 28, the time evolutions in the three-dimensional space of the beer crate
representing the drone payload and obtained in MATLAB by simulating the SIMSCAPE
MULTIBODY model are shown. In particular, Figure 28a–c respectively represent the longi-
tudinal, vertical, and angular displacements of the beer crate that performs a planar motion.
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Figure 26. Power absorbed by each motor, plotted as a function of time.
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Figure 27. Thrust, torque, and power of each propeller, plotted as a function of time.
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Figure 28. Longitudinal, vertical, and angular displacements of the beer crate representing the drone
payload performing a planar motion obtained from the computer simulation, carried out using
SIMSCAPE MULTIBODY.

7.2. Discussion of the Numerical Results

In this subsection, a brief discussion about the quality of the numerical results found
in this investigation, and the challenges addressed in this study is provided. A performance
index based on Root-Mean-Squared Error (RMSE) is introduced to quantitatively compare
the trajectory designed in MATLAB, and is provided as input with the output data mea-
sured in the simulation carried out in SIMSCAPE MULTIBODY. The index is calculated
with the equation given below:

RMSE =

√√√√ 1
Nd

N

∑
i=1

(
ξi − ξ̄i

)2 (69)

where Nd are the number of data resulting from the time discretization, ξi is the reference
value, and ξ̄i are the output data. The computed values of the RMSE between the reference
(linear and angular) displacements and the resulting (linear and angular) displacements of
the delivery drone found in the dynamical simulations are reported in Table 7.

Through the numerical results obtained using the SIMSCAPE MULTIBODY model
and processed in the MATLAB computational environment, it was possible to verify the
feasibility of the virtual prototype of the delivery drone designed in this work. During the
design phase of the three-dimensional model, particular attention was paid to the position
occupied by the center of mass of the UAV system to allow for the mathematical simplifica-
tions in the multibody approach described in Section 4. Through the results found using
SOLIDWORKS and SIMSCAPE MULTIBODY, it was verified that the center of mass was
in a central position, in line with the plane containing the four arms of the drone. This is
necessary to ensure high stability during flight and to allow for smoother movements by
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the quadcopter. The results related to the mass of the UAV system were useful for design-
ing the propulsion system, and for verifying the realization of components that are not
directly available in the market. The data obtained from the multibody model indicating
the power, the revolutions per minute, and the input voltages are consistent with the chosen
propulsion system. The entire control system allows the drone to perform the maneuvers
imposed by the time law with a high degree of robustness and accuracy. As demonstrated
by the resulting dynamical behavior of the UAV system, optimal responses can be obtained,
even with varying external disturbances. In conclusion, the numerical results found us-
ing MATLAB and SIMSCAPE MULTIBODY are completely satisfying for the goal of this
investigation.

Table 7. Calculation of the RMSE for comparing desired trajectory with the output detected by the
sensors in the computer simulation, carried out in SIMSCAPE MULTIBODY.

Symbol Data (Units)

RMSEx 0.2373 (m)

RMSEy 0.2700 (m)

RMSEz 0.0981 (m)

RMSEφ 0.0334 (rad)

RMSEθ 0.0277 (rad)

RMSEψ 0.0220 (rad)

In this work, the study of the realization of a virtual prototype of the UAV system
serving as a delivery drone and its subsequent computer implementation required several
simplifying assumptions. First, it must be considered that the drone is a multiple-inputs
multiple-outputs (MIMO) system. In the context of the computer simulations, however,
it was considered as a set of several single-input single-output (SISO) systems in order
to divide and to control the problems of each movement (altitude, roll, pitch, and turn).
Another issue related to the development of the control system is that the simulation is
based on a simplification of the behaviors of brushless motors commonly used in actual
drones. While brushed motors can be controlled by a simple potentiometer that adjusts the
voltage, a brushless motor requires a specific controller that makes use of a Pulse-Width
Modulation (PWM) system. In the dynamical simulations, the electric motors are treated as
simply brushed motors whose angular velocity depends only on the input voltage. These
simplifications are useful for the dynamical simulations, but they make impossible an
eventual implementation on a real model without the opportune modifications. These
important issues will be addressed and solved in future investigations.

To summarize the principal outcomes of this work, Table 8 contains the main per-
formance parameters of the delivery drone, including hovering time, payload capacity,
flight range, maximum altitude, the maximum angle of inclination, and the maximum
forward velocity.

Table 8. Estimated performance data of the quadcopter designed in this study.

Parameters Data Units

Hovering time 19.3 min

Payload 9.9 kg

Flying range 12.1 km

Maximum takeoff altitude 5.3 km

Maximum tilt angle 58.9 °

Maximum forward velocity 20.7 m/s
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The performance data reported in Table 8 were obtained through special-purpose
software using an online simulator called Flight Evaluation, which estimated the main
features of the delivery drone based on its specifications. This software is freely available at
https://flyeval.com, accessed on 3 February 2023.

As far as the operational range of the delivery drone is concerned, for a standard UAV
system, the Radio Controlled (RC) transmitter and receiver operate on a radio frequency of
2.4 (GHz), which offers several advantages, including a reduced interference with other
transmitters, a lower power consumption, and a smaller occupancy volume. Typical RC
transmitters can provide a range of up to 1000 (m). The short control wavelength allows
for shorter transmit and receive antennas compared to other frequency ranges. However,
a disadvantage of this frequency range is its susceptibility to obstacles, which can cause a
low efficiency of the control signal. While a single channel allows for controlling only one
specific operation, quadcopters similar to the one designed in this study require at least
four channels for throttle, yaw, pitch, and roll control. Furthermore, additional channels
may be needed for auxiliary operations, such as for opening the door of the payload.

8. Summary, Conclusions, and Future Developments

The purpose of this research work was to design and analyze a quadcopter serving
as a delivery drone capable of performing a set of chosen operations. In the development
of the UAV system considered as the case study of this investigation, it was chosen to
design a system capable of transporting a pack of beers autonomously, thereby carrying
an approximately two kilograms payload. To this end, the delivery drone is based on the
classic design of a quadcopter, with the addition of a special box needed to transport the
beverages representing the payload. The design of the structure of the delivery drone is
based on the use of components that can be easily manufactured or that are readily found
in the market. The main structure of the delivery drone is made of a carbon frame having
four arms, a set of aluminum supports, and an ABS box. To simplify the final design, all
these mechanical components are bolted using common structural screws. The central
structure necessary to transport the load weighs about ten kilograms, a weight that is in
line with commercial drones. The choices of propellers, motors, and batteries were based
on a simplified propulsion model developed in this work. Additionally, the feasibility of
the geometric model was verified through 3D CAD drawings.

A simplified multibody model was developed, starting from the CAD geometry, in
order to be able to dynamically simulate the behavior of the proposed UAV system serving
as a delivery drone. As for the design of the control system, it was chosen to simulate the
behavior of the drone by using SIMSCAPE MULTIBODY, which is an additional software
available in the MATLAB simulation environment. This computer program allows for
accurately simulating, through appropriate blocks, the behaviors of multibody models
subject to internal and external forcing actions. The implementation of the multibody
model is carried out by importing simplified geometric models constrained by specific
kinematic pairs, which represent the mechanical joints that connect the components of the
mechanical system at hand. The virtual prototype of the delivery drone is subjected to
external forces such as gravity and wind force. The motion control of the delivery drone
is achieved through the use of a system of simple PID controllers that are arranged in a
cascade architecture. Once a time law is set for all the segments of the trajectory to be
followed by the UAV system, the behavior of the delivery drone is reproduced through
numerical experiments. The trajectory tracking was found to be very robust, even in the
presence of a variable forcing disturbance due to the wind. In addition to the flight simula-
tion, it was also chosen to test the automated movement of the beers contained in the crate,
thereby reproducing the delivery of the actual product representing the payload. In this
final scenario, in virtue of a proper choice of the motor and by leveraging the computer
simulations of the constraints, it was demonstrated through numerical experiments that
the payload can be correctly unloaded in a way that is consistent with the predictions.

From an analytical standpoint, one of the most important contributions of this paper

https://flyeval.com
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has been the development of a multibody model of the UAV system serving as a delivery
drone. The mechanical model based on the multibody approach proposed in this investiga-
tion is quite general, and therefore, it can be used for modeling and simulating the dynamic
behaviors of a large variety of quadcopters. More importantly, the paper proposes a novel
method for the mathematical modeling of the imposed relative angular velocity between
the propellers and the support arms of the UAV system. As shown in the manuscript, this
important analytical result is achieved through the mathematical formulation of a proper
set of algebraic constraints of nonholonomic nature, that is, a nonlinear system of algebraic
equations depending both on the generalized coordinates and the generalized velocities of
the quadcopter modeled as a multibody system. Standing the close relation between the
thrust force and rotation rate of the propellers, the formulation of nonholonomic algebraic
constraint equations mentioned before was also found to be fundamental for the motion
control of the delivery drone.

In today’s world, there is a significant push for the automation of logistics for indus-
trial and civil applications. To the center of the reflectors, there is the employment of flying
means for autonomous control. In recent years, some of the sectors that have seen expo-
nential growth from this point of view are multimedia (aerial shots and filming), rescue,
agriculture (both for monitoring and for the distribution of pesticides), geological surveys,
and parcel delivery. The biggest challenges expected in the future will be those related
to the noise of the devices and their coexistence. Among the most innovative solutions
to this problem, there are hybrids between flying devices, and bipedal or wheeled robots.
In this vein, this paper shows the workflow necessary to solve simple logistical problems
through the construction of a flying device. The UAV system designed in the present
work is adaptable to multiple situations, as it is based on a modular design. For example,
one could eliminate the product container representing the payload, and replace it with
different equipment, such as cameras, luggage racks, or rescue tools. In addition, it was
shown how a simple control system could be implemented, to highlight the potential of
modern software in the development and simulation of autonomous systems. In future
work, the approach employed in this investigation will be used for the computer-aided
design and the virtual prototyping of autonomous machines.
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