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Abstract: This paper presents the design of a new control scheme for a group of omnidirectional
robots in a multi-robot system operating in an environment with obstacles. The control scheme
uses a decision agent based on discrete-time Markov chains and takes into account the state of
the system, obstacle positions, and geometries to manipulate targets, providing robustness against
measurement uncertainties. The decision process is dynamic, with state information updating at
each time step and tasks being executed based on the hierarchy determined by quadratic hierarchical
programming. The system’s stability in the mean-square sense is analyzed through the study of a closed-
loop stochastic system, and the effectiveness of the proposed control scheme is demonstrated through
numerical simulations, including a comparative analysis with a finite-state machine decision agent.

Keywords: mobile manipulation; discrete-time Markov chain; multi-robot systems; hierarchical
quadratic programming

1. Introduction

The demand for advanced technology has increased due to the growing popularity
of multi-robot systems in industry and warehouses for logistics tasks. These systems are
essential for performing tasks that cannot be handled by a single robot, and are more cost-
effective and durable than specialised robots [1]. This makes them ideal for use in flexible
manufacturing cells or automated warehouses [2–4]. However, the current challenge is
to effectively manipulate objects with mobile robots in large warehouses. Non-inertial
multi-robot systems offer a solution to this problem, as they can operate in a much larger
workspace than inertial robots. Among mobile robots, holonomic robots have proven to
be effective in performing manipulation tasks in various applications, such as material
handling, warehouse management, and assembly line production. These robots have high
flexibility and manoeuvrability as they can move in any direction and orientation. However,
the design and control of such robots can be challenging, requiring careful consideration
of the robot’s dynamics and control algorithms to ensure safe and effective manipulation
of objects [5]. Despite this advantage, there is still a need to enable them to manipulate
a wider range of object types with specific end effectors [6,7]. Further research is needed
to improve the efficiency of these systems and to overcome any challenges that may arise
during their deployment.

Manipulation by caging refers to a method of controlling groups of robots to interact
with and manipulate objects in the environment [8]. This method is based on the idea of
surrounding and holding an object with the action of multiple robots. This approach offers
several advantages over traditional manipulation methods, such as increased stability,
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robustness to external disturbances, and the ability to manipulate objects with complex
shapes and textures. To achieve this type of manipulation, it is often necessary to break it
down into simpler behaviours. These behaviours may include establishing and maintaining
contact between the manipulators and the object, moving the object to a desired position,
and releasing the object. In this paper, we focus on a manipulation scheme that is capable of
manipulating regular cylindrical objects rather than those with complex shapes. Although
complex figures may require more sophisticated manipulation techniques, regular shaped
objects are more common in warehouse environments and can be manipulated efficiently
using simple grasping and manipulation strategies. In addition, the perception and local-
ization required for the manipulation task are simplified because regular objects are easier
to recognize and track in the environment. Therefore, our decision to focus on regular
shaped objects is motivated by the practical considerations of warehouse applications.
Nevertheless, the proposed manipulation scheme can be extended to handle more complex
shapes by incorporating additional perception and planning capabilities.

Transition processes are useful for coordinating cooperative behaviour in a multi-
robot system. Specifically, the transition process is a sequence of specific behaviours,
whose fulfilment in the correct order contributes to the performance of a specific task
autonomously. In a multi-robot system, the autonomy of the transition process is attained
by integrating a decision agent that manages the transition between the behaviours executed
by each robot during the process [9,10]. In Ref. [11], a solution is proposed to integrate a
transition agent using flags to change the system behaviour. This behaviour consists of
task sequences, moving groups of robots between work areas, but relies heavily on sensor
precision due to error dependence [12–14]. Additionally, the described solution increases
the complexity of working with groups of tasks. From here, the problem of the phase
transition arises, which has been worked on in Ref. [15], where a kinematic controller
capable of handling several conflicting tasks in a multi-robot system is proposed; this
proposal considers the performance of both cooperative tasks as well as individual tasks. In
Ref. [16], a task set is proposed for object handling and transportation. The method utilizes
internal distances between robots to form relatively rigid formations, ignoring clamping
methods. The transition process is managed by a state machine, the transition agent,
which changes the state based on a metric determined by the designer. In consequence,
the system’s reliability depends on the operator’s knowledge and the sensitivity of the
sensors. Regarding the task transition planning, the authors in Ref. [17] focus on the
task planning aspect of home service robotics, where sequences of actions are generated
to complete tasks based on high-level and low-level actions. However, unlike classical
planning methods, task planning in the home environment is fraught with uncertainty and
change, which requires consideration of human–robot interactions. In addition, this paper
discusses the challenges and current approaches to accomplish the task under uncertain
and incomplete information. In Ref. [18], a dynamic control for mobile robots with an
integrated manipulator is presented. This work proposes a robust controller that ensures
finite-time convergence of the error in the presence of parametric uncertainties. The work
integrates a finite-state machine (FSM) with transitions of predetermined lapses. This type
of FSM works only under the premise that the predetermined transition time is greater
than the convergence time of the system.

Our proposed scheme focuses on transitions as events in a probability space and utilizes
measurements to adjust the probability measure of each event to formulate a stochastic con-
trol system. Stochastic systems are well-suited for scenarios where the phenomenon under
investigation is influenced by unpredictable factors. They have been applied in the field of
multi-robot systems, resulting in innovative navigation approaches in stochastic environments
(such as wind currents and flexible patterns) [19,20]. In Ref. [21], the authors analyse network
applications and information processing, where access to information depends heavily on
human interaction. To enhance this, a medium access control based on stochastic models is
proposed to improve the management of information flow. In Ref. [22], a Markov chain-based
methodology is proposed to define system behaviour subject to random forces. Additionally, in
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Ref. [23], the authors present a control design for stochastic perturbations using observer-based
output feedback with a Markov chain and the invariant ellipsoid approach.

Following this line of research, it is necessary to find useful qualities to analytically
evaluate a stochastic system. In our proposal, stability in the mean-square sense was adopted.
This stability notion is a deeply studied quality of the behaviour of stochastic differential
systems, which is used to demonstrate the desired properties of such systems [24,25]. In
Ref. [26], the mean square lemma is analysed. It shows, through system causality, that having
a bound on the mathematical expectation of the state, output, or stochastic phenomenon is
sufficient to prove mean-square stability of the entire closed-loop system [27].

The main contribution of this paper is the development of a novel decision agent,
represented by a discrete-time Markov chain (DTMC), which ensures the stability of a
comprehensive manipulation scheme. This scheme uses information from the environ-
ment and a group of robots to execute a set of behaviours that achieve the goals of the
manipulation task [28]. Furthermore, our proposal is robust to uncertainties that may
occur during the manipulation, keeping the desired behaviour according only to the actual
conditions of the task, which makes it more reliable and applicable to real-world scenarios.
Additionally, a stability analysis of the manipulation scheme is presented, demonstrating
that the mathematical distribution of the DTMC is dependent on the error of the robot task
and the resulting closed-loop system is stable in a mean-square sense, thereby confirming
the stability of the manipulation scheme.

The paper is organized as follows. Section 2 presents the methodology of the proposed
manipulation scheme. Section 3 describes the equations of motion of the multi-robot
system. Section 4 details the tasks that the multi-robot system can perform. Then, Section 5
shows how to deal with tasks simultaneously with hierarchical quadratic programming
(HQP). Section 6 explains how the tasks are grouped in a space defined as “action phases”.
Section 7 describes the construction of a Markov chain with a state-measure-dependent
distribution. Section 8 shows simulations that support the operation of the complete scheme,
demonstrating that the proposed DTMC decision agent provides significant improvement
in performance when compared with a FSM agent. Finally, the conclusions of the work and
future work based on the results of this research are presented in Section 9.

2. Manipulation Scheme

The methodology involved in constructing the manipulation scheme consists of six
process blocks: Robot, Environment, Tasks, Phases, DTMC, and finally HQP. The blocks are
connected as shown in Figure 1. In the Robot block, the dynamic model of the multi-robot
system is found, from which the state of all the agents in the system is obtained. In the
environment block all the information of the workspace and the assignment of objectives
of the scheme are defined, such as the position and size of the obstacles, the selection of
the objective, and the desired position of the objective. The Tasks block obtains the values
of the tasks available to the multi-robot system in the form of errors, whose minimization
represents the fulfilment of the task. The tasks are computed with the information of the
environment and robots, which includes both cooperative and individual tasks. In the
Phases block, tasks are grouped into distinct phases, defining the necessary behaviour
for the robot to perform the target manipulation process. The DTMC process block has a
transition agent, represented by a DTMC, which selects a Phase based on the completion
of the previous one, as it uses a state-measured probability distribution. Finally, the HQP
block generates a control input to the multi-robot system that seeks the fulfillment of the
tasks contained in the selected phase simultaneously.

In the context of modelling our decision agent, it is important to choose a suitable
mathematical model that can maintain consistent performance despite potential uncertain-
ties. While conventional DTMC and FSM are common mathematical models for discrete
systems, modelling decision agents requires selecting a model that can effectively address
robustness to unexpected events and consider its limitations. Our focus is on DTMC as
it has been shown to be effective in handling uncertainties and randomness [23,29]. On
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the other hand, FSM, which relies on deterministic rules, is limited in its ability to model
probabilistic behaviour [15,18], and constructing an accurate FSM-based decision agent can
be complex and requires specialized knowledge of the system. Despite this, the proposed
manipulation scheme has the disadvantage of requiring a simultaneous transition of the
behaviour of each of its agents. Therefore, without reconsidering a more specialised Markov
chain, it is currently not possible to implement it in a decentralised manipulation scheme.

We implement this scheme in a simulation study by considering a group of Festo
Robotinos. We chose these robots since they represent a versatile and powerful mobile robot
platform suitable for a wide range of applications, including material handling, warehouse
management, and research [30]. The Robotino’s omniwheels provide smooth and accurate
motion, enabling precise positioning for object manipulation.

Figure 1. The Manipulation scheme involves six interconnected blocks: 1. Robots, representing the
omnidirectional robots; 2. Environment, the operational space for the robots; 3. Tasks, the specific
goals to be achieved by the robots; 4. Phases, the stages involved in the manipulation scheme;
5. DTMC, which utilizes a discrete-time Markov chain; and 6. HQP, which computes the control of
the robots to carry out simultaneous tasks.

3. Dynamic Model

For implementing the scheme, the Robot block represents a group of n omnidirectional
robots, with its dynamic model. The notation used in the scheme is presented in Table 1.
The position and orientation of this group of robots is represented by ξ =

[
qT

1 · · · qT
n
]T ,

where qi =
[
xi, yi, θi

]T is the position and orientation of the mobile frame pi attached to
the centre of the i-th robot, with respect to the inertial frame O. Let us define the rotation
matrix Ro

p(θ) as

Ro
p(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (1)

then, for a total representation of the system, it is defined

Ro
p = blkdiag

[
Ro

p(θ1), · · · , Ro
p(θn)

]
(2)

which is the block-diagonal matrix that relates the frame P to the frame O. To determine the
velocities of each of the n robots in the P frame, we introduce the space η =

[
ηT

1 , · · · , ηT
n
]T ∈ R3n

with ηi ∈ R3 defined as
ηi = Ro

p(θi)
T q̇i =

[
ẋi ẏi ωi

]
(3)

where Ro
p(θi)

T is the transpose of the rotation matrix from frame P to O at orientation θi,
and q̇i is the velocity of the i-th robot in the O frame.



Machines 2023, 11, 442 5 of 20

These robots have an omnidirectional configuration that is achieved with three holo-
nomic wheels coupled equidistant around the main body [5]. In order to better understand
the mathematical representation of the robot, the variables used in (4) are described in
Table 1. The robot seen in Figure 2 is represented mathematically by

M̄iη̇i + hi = τi

M̄i = Ro
p(θi)MiR

p
o (θi) + ET MφiE

hi = Ro
p(θi)MiṘo

p(θi)ηi

τi = ETτφi

(4)

where the matrix E encodes the wheel configuration and represents the holonomic wheel
projection as

E−1 =

 0 r2
√

3
3

r3
√

3
3

2r1
3

r2
3

r3
3r1

3b
r2
3b

r3
3b

 (5)

where b is the distance between the robot centroid and the wheel, and ri is the radius of the
wheel i.

Table 1. Common variables used.

O Inertial Frame
P Referential in the robot C.o.M.
n number of robots
ξ robot extended state
qi i-robot state
xi i-robot position along x-axis
yi i-robot position along y-axis
θi i-robot orientation along z-axis

RP
O(θ) Rotation Matrix from Frame O to P
RP

O(θ) Extended Rotation Matrix
Mi i-robot inertia Matrix
Mφi i-robot wheels inertia Matrix
hi non-linear Vector from i-robot
τi i-robot control input
τφi i-robot control input for each wheel
M Extended inertia Matrix
h non-linear extended vector from i-robot

eQ Q-task error
JQ Q-task Jacobian
J̇Q Time derivative from JQ
uQ Q-task auxiliary control
S Behaviour state space
Sj j-state of behaviour
αj j-state distribution

Figure 2. Omni-wheeled robot representation.
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A compound system is defined to represent the dynamic behaviour of a group of robots,

Mη̇ + h = τ

M = blkdiag[M̄1, · · · , M̄n]

h = [hT
i , · · · , hT

n ]
T

τ = [τT
i , · · · , τT

n ]
T

(6)

4. Multi-Robot Tasks

Manipulation by caging is a complex task that requires coordination and precision
among various simpler tasks. To perform this type of manipulation, a set of individual tasks
is designed and executed in a specific sequence. These tasks are often geometric or kinematic
in nature and are used to guide and control the motion of objects towards a desired location.
The success of manipulation by caging is dependent on the proper execution of these smaller
tasks, which can include tasks such as grasping, positioning, and releasing. The combination
of these individual tasks results in a smooth and accurate final outcome. In accordance
with (6), the presence of obstacles in the workspace is taken into account to formulate the
available tasks for the robot to perform the manipulation. These tasks are modelled through
the application of inequality or equality constraints in a quadratic programming framework.
Each task is characterized by an error function, the optimization of which serves to minimize
the error and thereby indicate successful task completion.

4.1. Equality Tasks

We consider equality tasks to be those tasks that are active at all times. We refer to
regulation and geometric formation tasks. Tasks can be assigned to individual agents or
multiple agents working in coordination. The equality tasks used here are described below.

4.1.1. Geometric Shape Formation

A geometric shape formation task, such as maintaining a circular formation with
vehicles, is demonstrated in Figure 3. In this particular case, the task limits the feasible
displacements of each robot over the circumference.

Figure 3. Geometric shape formation.

This is a local task function because each vehicle reaches the perimeter of a given
circumference without the need to know the location of other team members. The error
function of the task is defined as

eci =
1
2
(qi − qc)

T(qi − qc)− r2 ∈ R3 (7)

where r is the radius and qc = [xc, yc]
T ∈ R2 is the centre of the circle. The circular task error

function is described as ec = [ec1, ec2, ..., ecn]T ∈ Rn, where its time-derivative is ėc = Jc ξ̇.
The task Jacobian Jc =

∂e
∂ξ ∈ Rn×3n is calculated as:

Jc = blkdiag
[[
(q1 − qc)

T , 0
]
· · ·
[
(qn − qc)

T , 0
]]

(8)
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and the double time derivative is computed as ëc = Jcη̇ + J̇cη where J̇c is defined as:

J̇c = blkdiag
[[

q̇T
1 , 0
]
· · ·
[
q̇T

n , 0
]]

(9)

4.1.2. Regulation Task
Individual

In order to reach an individual target, as can be seen in Figure 4, the error function is
defined as

eri = ξ − ξd ∈ R3n (10)

where ξd is the desired state of the system, which also implies a desired position and
orientation for each of the robots. The time derivative of (10) is ėri = ξ̇ − ξ̇d, with ξ̇d = 0
since it is a regulation task. Then, the task Jacobian becomes

Jri = In ∈ Rn×n (11)

Since Jri is constant, its time derivative becomes J̇ri = 0.

Figure 4. Individual regulation task.

Cooperative

This task is designed to reach a target as a group while the vehicles can keep a desired
formation, see Figure 5. It consists in regulating the centroid of the formation towards a
desired object. The centroid of the formation is q̄ =

[
x̄ ȳ

]T ∈ R3, where

x̄ = 1
n

n

∑
i=1

xi, and ȳ = 1
n

n

∑
i=1

yi (12)

Figure 5. Cooperative regulation task.

Then, the error function becomes

er = q̄− q̄d ∈ R2 (13)
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It is straightforward to adapt the task error for tracking purposes if the target is a
time-varying function: ėr = Jr ξ̇ − ˙̄qd, where the task Jacobian of n agents is given by

Jr =
[

Jti Jt[i+1] · · · Jtn
]
∈ R2×3n

Jti =

[
1 0 0
0 1 0

]
∈ R2×3 ∀ i ∈ {1, ..., n}

(14)

Since Jr is constant, its time derivative becomes J̇tn = 0.

4.2. Inequality Tasks

The proposed function to control the inequality tasks is a combination of an inequal-
ity and an activation function. The activation function, fac(ξ), determines if the task is
activated, based on the distance between the i-th robot and the target (obstacle, robot, or
formation), di. The activation function has a range of [0, 1] and is defined as:

fac(ξ) =
1
2
+

1
2

tanh(γ(di − d f )) (15)

where γ is a weight, d f is the activation distance, and di is the distance between the ith robot
and the target. The function has a smooth transition and is used for obstacle avoidance,
collision avoidance, and geometric permissible region, where the value of γ is negative.

4.3. Obstacle Avoidance

Avoidance tasks are at the top of the hierarchy of task stacks. They are essential for
proper navigation within a workspace populated by inert objects and robots. They prevent
robots from being damaged by accidental encounters in their defined tasks. In addition,
geometric formation tasks can be constructed with less processing, since it is not necessary
to precisely calculate the position of each robot, but it is enough to define the centroid of
the formation.

When the robot approaches the obstacles, the corresponding inequality constraint is
activated, as shown in Figure 6. In particular, each obstacle is embedded within a spherical
shell of radii rm and dM, with rm < dM. Thus, the obstacle avoidance task is defined as

eoa =


di,j − dM

di,j+1 − dM
...

di, k− dM

 ∈ Rk (16)

where di,j =‖ Ci − Cj ‖ is the distance from a centre point of the i-th robot Ci(ξ) ∈ R2, to
the nearest point over the j-th obstacle Cj ∈ R2. Assuming that Cj is constant, the time
derivative of (16) becomes ėoa = Joa ξ̇ where the task Jacobian is given by

Joa = LT
i JCi ξ̇ ∈ Rk (17)

where JCi =
∂Ci
∂ξ ∈ R2×n is the linear velocity Jacobian and Li =

[
li,jli,j+1...li,k

]
∈ R2×k with

li,j =
Ci − Cj

‖ Ci − Cj ‖
∈ R2 (18)

also, the time derivative of (18) is:

l̇i,j = lT
i,j JCi ξ̇

Ci − Cj

‖ Ci − Cj ‖2 − JCi ξ̇
‖ Ci − Cj ‖
‖ Ci − Cj ‖2 ∈ R2 (19)
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which is needed to construct L̇i = [l̇i,j l̇i,j+1, · · · , l̇i,k] ∈ R2×k in order to compute the double
time derivative of (16), ëoa = Joa ξ̈ + J̇oa ξ̇ where the time derivative Jacobian becomes

J̇oa = LT
i J̇Ci + L̇T

i JCi (20)

since JCi is constant, its time derivative becomes J̇Ci = 0.

Figure 6. Obstacle avoidance task.

4.4. Collision Avoidance

Because the group of robots shares the same workspace, it is necessary to consider the
evasion of the robots among themselves, as can be seen in Figure 7.

Figure 7. Collision avoidance task.

The collision avoidance task, eom, is obtained in the same way as the obstacle avoidance,
with the difference that Cj is considered as the position of the robot j, which implies that
JCi becomes

JCi =
∂Ci
∂ξ
−

∂Cj

∂ξ
∈ R2×3n (21)

If Ci = [xi, yi] and Cj = [xj, yj] then JCi has the form

JCi =
[

JC1 · · · JCk · · · JCn
]

JCk =



[
1 0 0
0 1 0

]
: k = i[

−1 0 0
0 −1 0

]
: k = j

02×3 : otherwise

(22)

Since J̇Ci is constant, its time derivative becomes J̇Ci = 0.
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4.5. Geometric Permissible Region

In this task, the allowable navigation area represents the interior of a circle, as shown
in Figure 8, where the robots must remain. Then, the structure of the task error and its
Jacobian are the same as in (7)–(9). However, we will consider it as an inequality task:

epi = ec fac(ξ) (23)

Jpi = Jc fac(ξ) (24)

J̇pi = J̇c (25)

Figure 8. Geometric permissible region.

5. Hierarchical Quadratic Programming

HQP is capable of handling multiple hierarchical objectives while ensuring that kine-
matic and dynamic constraints are satisfied, and provides a computationally efficient
solution by decomposing the problem into a hierarchy of sub-problems and solving them
iteratively. This allows us to ensure that the robot’s motion satisfies all the constraints,
while dealing with multiple objectives at different levels of the hierarchy.

A group of the tasks described in Section 4 can be performed simultaneously by the
multi-robot system in each of the phases of the scheme, so HQP is used to find a control
input τ, applied in (6), which fulfils all the tasks included in a phase. The main characteristic
of HQP is that lower priority tasks cannot affect higher priority tasks by solving a quadratic
programming cascade with slack variables. The main idea is to find a control signal that
obeys a set of p tasks to be executed simultaneously, as shown in the Algorithm 1.

Consider the double integrator system ë = u(t) and u(t) as a PD control law
u(t) = −Kd ė − Kpe, which is needed for HQP of the tasks defined in Section 4 [18].
The tasks are considered an error function of the form

e = f (ξ)− f d ∈ Rm (26)

We assume that (26) is twice differentiable with respect to time

ė = ḟ = J̄Ro
p(θ)η = Jη

ë = Jη̇ + J̇η
(27)

From (6) and (27), we obtain
ë = Qτ + µ (28)

where Q = JM−1 ∈ Rm×3n and µ = −Qh + J̇η is the task’s drift. The task-based inverse
dynamic is obtained by solving for τ in (28) as follows:

τ = Q#M(u− µ) ∈ R3n

Q#M = MQT [QMQT ]−1 = JT [JM−1 JT ]−1 ∈ Rn×m
(29)
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Q#M is the weighted generalized inversion of JM−1, and u is the auxiliary vector of
control inputs. To overcome possible conflicts among the tasks, the hierarchy between them
is imposed such that (29) becomes:

τ =
p

∑
i=1

τi ∈ R3n

τi = Q̄#M
i

(
ui + µi −Qi

i−1

∑
k=0

τk

)
∈ R3n

Ni = Ni−1 − Q̄#M
i Q̄i ∈ R3n×3n

(30)

where Q̄i = Qi Ni−1 ∈ Rmi×3n, Q̄#M
i = MQ̄T

i
[
Q̄i MQ̄T

i
]−1 ∈ R3n×mi , τ0 = 0 and N0 = In.

Notice that Ni belongs to the null space of Q̄i.

Algorithm 1 Task phase

Require: State of the group (ξ, ξ̇), Task phase S, δt
Ensure: Control input τ

GetRo
p with (2)

η = Ro
p ξ̇

Get M, h with (6)
Indicate the order of the tasks: S = [eoa, eci, · · · ]
Get task Jacobians: Js = [Joa, Jci, · · · ]
Get time derivative task Jacobians: J̇s = [ J̇oa, J̇ci, · · · ]
Get τ with (30)
Get η̇ with (6)

6. Action Phases

Each phase requires specific behaviour in the robots. Depending on the task, the robots
can work as a team or individually. However, they are always reacting to their environment
for obstacle and collision avoidance tasks.

The action phase Si is a set of tasks introduced in the HQP block to be fulfilled in a defined
hierarchy. Each Action phase considers the sets of task errors, task projector Jacobians, the time
derivative from the projector Jacobians, and a set of auxiliary control inputs that asymptotically
minimize each error of the Action Phase. The i phase of action is arranged in the group S.
For the purpose of this paper, four phases of action are considered, presented in Table 2,

Si =
{
{eni, Jeni , J̇eni , uni} ∈ S

}
(31)

The evaluation of whether tasks are fulfilled is measured through the error generated
by each task. A task is considered accomplished when its error remains in a neighbourhood
close to zero. Likewise, a phase is considered to be reached when the errors of all its tasks
are fulfilled. It is considered a state composed of the errors generated in the phase,

eSi = [eni ∈ Si] (32)

This state exists in a normed space of the phase whose vector norm provides us with
substantial information about the development of the task at each time step. A norm
‖ eSi ‖2 is proposed in order to have an analytical perception of the behaviour of the vector
eSi in a scalar way, even when the dimension of the vector changes between the existing
phases in the totality of the process.
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Table 2. Tasks to accomplish in each phase.

Phase Task Error Hierarchy

Phase 1 Formation
Obstacle avoidance eoa 1
Collision avoidance eom 2

Geometric formation eci 3

Phase 2 Grip

Obstacle avoidance eoa 1
Collision avoidance

(equidistant) eom 2

Geometric formation eci 3

Phase 3 Manipulation

Obstacle avoidance eoa 1
Collision avoidance eom 2
Permissible space epi 3

Cooperative regulation er 4

Phase 4 Waiting
Obstacle avoidance eoa 1
Collision avoidance eom 2

Individual regulation eri 3

7. Discrete-Time Markov Decision Agent

Definition 1 (Probabilistic space). Let Ω be a space with a family of subsets F (in this paper it
is considered as the set S), such that any subset Ai ∈ F is closed under accounting complements,
unions, and intersections. A family of subsets possessing these properties is known as a σ−algebra. If
a probability measure P is defined on the σ-algebra F, then the triple (Ω,F, P) is called a Probability
space and the sets in F are called random events.

Definition 2 (Markov condition). Consider a probability space from Definition 1 (Ω,F, P). Let
E be a finite or countable set of states and {Xn : Ω→ E, n ∈ N} a sequence of random variables.
The process is said to satisfy the Markov condition if for all integer n ≥ 0 and all j, in, . . . , i0 = X0
that belongs to E, it holds:

P(Xn+1 = j | Xn = in, ..., X0 = i0)
= P(Xn+1 = j | Xn = in)

(33)

Definition 3 (Distribution by state measure). Let E be a countable set. Each X ∈ E is called a
state and I is called a state space. We say that a subset α = {αX : X ∈ E}, where αX ∈ [0, 1], is a
measure on E ∀ X ∈ E. We work with a probability space (Ω,F, P) from Definition 1, a random
event Ξ that takes values of F and a random event {W : Ω→ E} with values in E. Then, it is said
that α defines a distribution by state measure if it satisfies the condition:

P(Ξ = SX) = P({αX : W(αt) = X}) (34)

Definition 4 (Mean-square stability). Let X = Xi : i ∈ N, if for every ε > 0, there exist δ > 0
such that E[X2

i ] < δ for all i ∈ N whenever E[X2
0 ] < ε then it is said that X is stable in mean-square

sense [31].

The Markov chain is a discrete-time stochastic process in which a random variable
that takes values of S changes over time. Its main characteristic is that it complies with the
Definition 2 [22]. The measurement of the phase for the system comes from the error vector
of (32). Likewise, the norm ‖eSi‖2 is proposed as a decision agent to affect the transition
matrix. A bounded exponential function is generated to provide information about the
tasks in each phase and ensure that the task has been completed before each transition.
This function depends on ‖ eSi ‖2,

αi = f (eSi ) = 1− e−‖eSi
‖2 (35)
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Notice the non-negative nature of the vector norm and the exponential envelope of
the function f (eSi ) → [0, 1]. A new transition matrix is defined, where the probability of
task development is based on relevant state measurement information for each element,

P( fi) =
pTiαi
µT

(36)

where µn = ∑m
i=1 pTiαi, pTi is the nominal probability, m is the number of states in the

system, and T is the current instant of the system. This obeys the requirement of a transition
matrix where the sum of the elements of each row is 1. After finding αi, it is balanced with
the complement probability, forcing P(S) = 1 with (36), this αi of State 1 is considerably
small, the measurement αj of State 2 is the complement and therefore takes higher values.

Theorem 1. Let a decision agent be represented by a probabilistic space (Ω,S, P(α)) and fulfil the
Markov condition with distribution by state measure as Definition 3. Then (Ω,S, P(α)) is stable in
mean-square sense according to Definition 4.

Sketch of the Proof. Once the decision agent, represented by a Markov chain, selects a
phase Si ∈ S, we obtain an error eni and therefore the computation of a control uni, which
is applied to the robot to minimize that error. Since αi measures the phase error eni, it will
change as the error converges to zero. Given the αi from (35), there is a direct proportion
relationship with eni, if the error takes values close to 0 then α in phase Si is close to 0,
ensuring the existence of δ. Since there are a limited number of transitions from the current
state, according to Definition 3, ε exists in every moment and implies that ε is less than
or equal to the number of possible transitions that exist in each phase. Then ε and δ from
Definition 4 always exist, which implies that the proposed decision agent is stable in the
least-squares sense.

The manipulation scheme is considered a stochastic system when it operates in a
closed loop since the random variable of the decision agent is being fed back. Therefore, it
is important to demonstrate the stability of the system with stochastic tools. The stability
presented in the decision agent ensures that the stability in the mean-squares sense is
preserved in the rest of the processes thanks to the causality of the events in the whole
manipulation scheme.

8. Simulation Results

To test the validity of the proposed manipulation scheme, which is described in
Figure 9, numerical simulation results are presented. The simulator was programmed in
Python3, on a computer equipped with an Intel® Core™ i7-8565U CPU @ 1.80 GHz and
8 GB RAM. The Markov chain’s transition probability is set at a 0.01 second sampling
time, affecting the duration of each phase. Each phase is expected to last 1500 steps with
this transition probability design. This means that the probability of staying in phase
Si is pni = 1499/1500 = 0.9993, which implies that the initial transition probability is
p[n+1]i = 1 − 0.9993 = 0.0007. Wheeled robots with a mass of m = 1 kg, an inertia
tensor of Iz = 0.0083 kgm, as well as an inertia tensor of the wheels of the wheeled robot
of Iφ = 0.01 kgm, and a radius of r = 0.20 m, are considered. There are obstacles at
C1 = [5, 15]m, C2 = [20, 0]m and C3 = [20, 15]m with a radius of ro = 3 m.
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Figure 9. Process blocks of the Manipulation scheme. 1. Robots, given by (6); 2. Environment;
3. Tasks, given from (7) to (25); 4. Phases, presented in Table 2; 5. DTMC, whose probability is given
by (36); and finally 6. HQP, given by (30).

8.1. Phase 1: Formation Phase

The robots are directed from their starting position to the border with the target
(eci), where strict avoidance of the obstacles and collision between them is important (eoa).
Therefore the task Phase is designed as

S1 = {eoa, eom(dmc = 0.2m, ds = 0.5m), eci} (37)

where dmc is the radius of the robots and ds is the security distance of the obstacles, which
indicates that eoa is more important than eci. The resulting trajectory is seen in Figure 10.

Figure 10. Formation phase.

8.2. Phase 2: Grip Phase

The robots must ensure that the object they are going to hold is kept in the centroid of
the formation, therefore, they must avoid the target space without separating from it, while
separating equally from each other. The task to accomplish is practically the same as the
first phase, however, they need to take a greater distance to avoid collisions between the
robots. Then

S2 = {eoa, eom(dmc = 2.5
√

3m, ds = 1.1rm), eci} (38)
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where dmc = 2.5
√

3 is the distance needed in order to form a circumscribed triangle
towards the objective as seen in Figure 11.

Figure 11. Grip Phase.

8.3. Phase 3: Manipulation Phase

Robots must maintain the desired permissible space in the formation while avoiding
obstacles on the stage. The task is completed when they move the object, that is, the centroid
of the formation to the desired position. Thus, the task phase becomes

S3 = {eoa, eom(dmc = 2.5
√

3m, ds = 5m), epi, etn(qd)} (39)

The behaviour can be seen in Figure 12.

Figure 12. Manipulation Phase.

Notice that the formation can avoid also the target to move since it is logically consid-
ered an obstacle.
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8.4. Phase 4: Waiting Phase

Once the robots have moved the target to the desired location, they separate from it
and head towards a pre-defined obstacle-free position, in order to finish the job or wait for
a new target. The task phase becomes

S4 = {eoa, eom(dmc = 0.2m, ds = 0.5m), eti(ξd)} (40)

The behaviour can be seen in Figure 13.

Figure 13. Waiting Phase.

Notice that in all the tasks one of the priorities is that the robots strictly avoid the
obstacles, therefore it would be a task of greater importance in all the phases. Although
the tasks of lower priority are projected into the null space of the stricter tasks, they find a
close solution for each of the tasks.

8.5. Variance Value and Phase Measure

The closed-loop system becomes a differential stochastic system. Therefore, the stabil-
ity analysis of the system has to consider tools applied in stochastic formulations.

The function αi, defined in (35) and based on the error within phase Si, serves as the
applied measure. The system exhibits robustness against uncertainty in α measurement, as
evidenced by the recurrent activation of obstacle and collision avoidance tasks in Figure 14,
without immediate transition until the error persists and the transition probability increases.
This is in contrast to other schemes where the transition occurs as soon as a flag is crossed,
leading to transition even in the presence of false positives arising from uncertainty in
sensor measurement.

Due to the behaviour of the α distribution in each phase, the variance of each phase starts
at zero and tends towards the next state until a transition occurs, as shown in Figure 16. The
variance in a finite-state Markov chain is always bounded since there are a limited number of
transitions from the current state. Thus, the validation of Theorem 1 is shown in Figure 16.
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Figure 14. Close up of the Measure from Figure 15.
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Figure 16. Variance given in each phase.

8.6. Comparison of DTMC and FSM in the Presence of Unexpected Failures

Figure 17 compares the DTMC and FSM decision agents for the same manipulation task
in the case of unexpected failures that lead to the loss of partial state information and therefore
the error in the measure of α of the system. The experience in the use of the system indicates
that a flag error limit of αFSM = 0.001 is necessary for the correct functioning of the FSM while
DTMC does not need such information. The failures occur between t = 5 and t = 10.

0 20 40 60 80
t (s)

0

10

20

30

40

50

60

si

Phase measure 

si

FSM

Figure 17. Comparison between DTMC and FSM decision agents.

The DTMC-based decision agent is able to recover from the failure and continues to
make the correct decision, while the FSM-based decision agent is unable to recover and
continues to make the incorrect decision. Note that at t = 5, due to the unexpected transition,
the FSM decision agent can no longer satisfy the behaviour in the first phase, which implies
that the following behaviours can no longer be satisfied. This highlights the advantage of
using DTMC-based decision agents, as they are more robust and can handle unexpected
failures better than FSM-based agents.
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9. Conclusions

This paper presents a manipulation scheme for robots to transport objects in a workspace
with obstacles. The novel decision agent proposed in this paper is the main contribution,
as it guarantees the stability of the scheme and offers an effective and efficient solution
for object manipulation in complex workspaces. The proposed decision agent is model-
free, relying solely on errors of tasks in each phase, which are dependent on workspace
information. Distribution by state measurement provides robustness against intermittent
event measurement and unexpected behaviours, as demonstrated in simulation results
comparing the DTMC agent with a FSM. The proposed approach reduces the required
expertise during implementation, as the decision agent handles most of the complexity.
The stability of the scheme was evaluated using mean-square analysis, with the variance
being constrained at all times. The scheme demonstrated the ability to change the phase
autonomously as the error approached zero, indicating its efficacy in ensuring stability.
Future work includes developing auxiliary controls to enhance the robustness against
parametric uncertainty and disturbances from contact forces.
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