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Abstract: The practical applications of integrated maintenance policies and quality for a multi-
component system are more complicated, still rare, and incomplete to meet the requirements of
Industry 4.0. Therefore, this work aims to extend the integration economic model for optimizing
maintenance policies and quality control parameters by incorporating the Taguchi loss function for a
multi-component system. An optimization model is developed based on preventive maintenance,
corrective maintenance policies, and quality control parameters with the CUSUM (Cumulative Sum)
chart, which is widely used for detecting small shifts in the process mean. The model was developed
to minimize the expected total cost per unit of time and to obtain the optimal values of decision
variables: the size of samples, sample frequency, decision interval, coefficient of the CUSUM chart,
and preventive and corrective maintenance intervals. The solution steps were employed by selecting
a case study in the Alahlia Mineral Water Company (AMWC). Then, the design of experiments
based on one-factor-at-a-time was used to evaluate the effect of selected decision variables on the
expected total cost. Finally, sensitivity analysis was performed on the selected decision variables to
demonstrate the robustness of the developed model. A predictive maintenance plan was developed
based on the optimal value of preventive maintenance interval, and the results showed that the
performance of the maintenance plan realizes the full potential of the integrated model. In addition,
the case study results indicate that the extended integrated model for multicomponent is the new
standard for the quality production of multi-component systems in future works.

Keywords: maintenance policies; statistical quality control; multi-component system; CUSUM chart;
Taguchi loss function; mathematical model

1. Introduction

Manufacturers face rising obstacles in today’s highly competitive business climate,
as well as the need for high levels of customer satisfaction. Therefore, they strive to
increase production performance by reducing breakdowns and quality losses in order to
maximize profit and preserve competitive advantages. Throughout manufacturing cycles,
systems or equipment wear down or degrade due to use and age. Moreover, systems
might malfunction at any time, which can impede production. Therefore, maintenance—
including inspection, repair, and replacement—is essential for boosting systems’ availability
and ensuring continuous production. Based on how they intend to handle failures and
maintenance, there are two types of maintenance policies: preventive and corrective [1].
In practical applications, corrective maintenance (CM) is used to return equipment to its
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operational state after failure; as a result, this kind frequently results in severe delays and
substantial financial losses. To reduce the likelihood of equipment failure or degradation,
preventive maintenance (PM) is carried out at predetermined intervals or in accordance
with predetermined criteria. These plans come with expenses, including those for samples,
downtime, repairs, and inspections, among others. After that, integrating these two
maintenance policies will result in cost savings.

Moreover, a good PM policy will lower the breakdown rates and process variances
and maintain the expected productivity of the machine [2,3], which improves the quality
levels. Therefore, quality control and maintenance policies are linked to cost savings and
improving production performance. Furthermore, this will be ineffective when PM is
performed on a single component (or machine) in a complicated production system. Hence,
PM tasks should be performed on multi-component systems. Performing group PM tasks
can significantly reduce total downtime and associated costs, such as labor costs, lost
productivity due to machine breakdowns, and other production losses [4].

Since systems have many interrelated components, modeling and optimizing mainte-
nance plans must consider the interactions between these connected components. These
interactions also offer the chance for collective maintenance, which might lead to cost
savings. Several approaches and models have been studied for maintenance optimization
in multi-component systems [2,5–10]. However, there are few approaches (or models) for
maintenance optimization in real-world multi-component systems. In earlier work by
Dekker and Roelvink [11], a heuristic replacement strategy was utilized, applicable only if
a fixed component category had been replaced. In another study, Huang [12] presented
a new method based on the cost boundary condition for replacement scheduling and
inferred that their approach is more effective. Similarly, Samrout et al. [13] presented an
ant colony optimization method to minimize the PM cost of the multi-component system
with constant failure rates. Moreover, Laggoune et al. [14] proposed a PM plan method
for a multi-component system with random failures. Recently, the literature has reported
integration methodologies for the multi-component system [15]. Magnanini and Tolio [16]
proposed a mathematical model for preventive maintenance to minimize maintenance, in-
ventory, and backlog costs. Furthermore, Andreas et al. [17] developed a holistic approach
based on reinforcement learning algorithms to optimize maintenance plans to improve
resource utilization in manufacturing systems.

Integrating quality control and maintenance policy models has been gaining popular-
ity recently among researchers and industrial companies for improving product quality
and reducing maintenance costs [18]. Several studies have been performed on integrating
quality control and maintenance policy, and it was suggested that process quality control
and machine maintenance should be examined simultaneously for cost-effectiveness. Inte-
grating quality control and maintenance choices has been proven to considerably lower
total production costs for single-machine units and multi-stage production systems. The
studies by [19–23] showed that combining SPC (Statistical Process Control), maintenance
policy, and production planning in the industrial system can significantly reduce costs.
From a historical viewpoint, researchers began constructing combined economic models of
control charts and maintenance utilizing X-bar control charts because of the association
between quality control and maintenance [24–27]. Other studies by Baker [28] and Mont-
gomery and Heikes [29] were conducted on the non-exponential probability distribution
function of the in-control period. Consequently, Lorenzen and Vance [30] developed a
unified model that is flexible enough to apply to a situation where production continues or
ceases during the search or repair time. In addition, a study by Tagaras [24] integrated an
economic model for maintenance procedures, process control, and other design parameters.
After that, Rahim [25] developed a model for designing the optimal parameters of an X-bar
control chart and PM periods for a manufacturing system with an increasing failure rate
that follows the Weibull distribution.

Over time, researchers have paid greater attention to exponentially weighted moving
average (EWMA) control charts than X-bar charts [31–33]. For example, Sultana et al. [34]
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developed an economic model using an EWMA control chart based on the VSIFT (variable-
sampling interval with fixed time) sampling policy and preventive maintenance. However,
many studies currently prefer CUSUM over X-bar and EWMA charts. Moreover, CUSUM
responded quickly and accurately when identifying shifts within one or two standard
deviations [35].

Shrivastava et al. [36] developed a new model to combine PM and SPC-based CUSUM
charts and determined the decision variables optimization, which effectively minimizes the
total cost per unit of time. In addition, Li et al. [37] introduced a new integrated model for
joint CUSUM control chart parameters and an age-based PM policy. They used a recursive
algorithm and multiphase system to model each phase. Saha [38] recently integrated a new
economic model for maintenance policy and quality control. Using the CUSUM control
chart, the researcher monitored the process’s mean and variance. Taguchi’s quadratic loss
function and a modified linear loss function were utilized to calculate the in-control and out-
of-control processes. Farahani et al. [39] integrated a model to optimize statistical quality
control policy: sample size, sampling interval, control limit, and preventive maintenance
policy. The proposed model was developed based on a continuous Markov chain and
−
X Chart to minimize the cost per unit of time. Regarding the multi-component system,
works based on integrated maintenance policy and quality control are limited. Only one
study integrated the quality and PM policy for the multi-component system by Al-Shayea
et al. [40]. They utilized an EWMA chart to present a new model for integrated PM and
SPC for a multi-component system.

It is evident from the literature mentioned above that the practical applications of
integrated maintenance policies and quality for a multi-component system are more com-
plicated and still rare and incomplete. Although a multi-component system provides a
precious and comprehensive analysis that readily minimizes the overall maintenance costs
and sustains high-quality products, very limited studies were conducted regarding the
integrated quality and PM models for the multi-component system. Furthermore, multi-
component systems require a complicated procedure that demands additional data than
conventional methods. Moreover, this recent work requires a deep understanding and
analysis of the small shift process. It is an ideal system for investigating a wide range
of failure rates. Therefore, there is a need to develop a new model for integrating the
CUSUM chart and PM policy for multi-component systems, which considers the limits
and gaps in the previous studies. This research aims to extend the developed model by
Pandey et al. [41] for integrating maintenance policy and quality control chart for the
multi-component system using the CUSUM chart incorporating the Taguchi loss function.

The structure of this paper is as follows. The problem description is provided in
Section 2. Section 3 describes the research methodology and explains the formulation of a
multi-component system cost model. The selected case study is described in Section 4 to
show how the constructed model may be used. Section 5 presents the results of the design
of experiments and the sensitivity analysis to study the effects of decision variables on the
expected cost. Finally, Section 6 presents the conclusions inferred from the research and
provides future research directions.

2. Problem Description

Maintenance of multi-component systems is essential to ensure optimal functioning
and longevity. Multi-component systems comprise multiple interconnected and inter-
dependent parts, and failure of any one part can have significant consequences for the
entire system. According to a study by Kamal, Arumugam, and Yousuf [42], “neglecting
the maintenance of multi-component systems can lead to catastrophic consequences, in-
cluding system failure, loss of production, and environmental disasters.” Therefore, the
maintenance of multi-component systems is critical for ensuring their reliable and safe
operation, minimizing downtime, and maximizing productivity and profitability. In this
paper, to improve the efficiency of such systems as well as their production quality, we
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considered the integration of statistical process control and maintenance policies for a
multi-component system.

To address the quality issue, we have assumed that, at any period, the production
process can be generally divided into two states. The first one is an in-control state which
indicates that the production is smoothly running with no problems during a specific
period. The second stage is the out-of-control state which happens after a certain amount of
time due to machine (components or parts) wear or worker error, and products with quality
issues are produced during this state. In addition, to address the machine down-times issue,
we assume that downtimes can be categorized into the following two classes, according to
their consequence on the production process [36]:

- Type 1 (F1) is related to the mechanical failure of the machines in the system.
- Type 2 (F2) is quality-related and is observed when the production process goes into

an out-of-control state. When such failures are observed, an immediate shutdown
occurs, and all corrective actions are carried out to restore the process to its normal
operation (i.e., the in-control state). However, the process may also worsen due to
external causes, such as operator mistakes, bad quality parts, environmental effects,
etc. In this case, the process is reset to the in-control state.

The process was monitored to observe any occurrence of either type of failure (F1 and F2)
or any external causes (E). Therefore, these types of maintenance and quality planning
failures must be considered. An optimization model is developed to generate integrated
maintenance plans and quality control parameters for a real production system consisting of
N components (i.e., a multi-component system). The following assumptions are considered
while developing the optimization model:

- Each automatic machine can process only one part at a time, which imposes a single
characteristic to quality (CTQ).

- Failure modes (F1 and F2) are independent. Failure reports from the company’s records
were used to obtain these probabilities.

- The required resources to detect, maintain and restore the process are always available,
so no waiting times are considered.

3. Proposed Integrated Optimization Model

Figure 1 illustrates the adopted methodology to develop the proposed integrated opti-
mization model. The proposed model integrates maintenance plans and quality control pa-
rameters to help improve the quality of the production operation in a real multi-component
production system. The following steps briefly summarize the adopted methodology:

- Step 1: Defining the problem. The performance of the manufacturing system is
significantly impacted by the breakdown of machines with multi-component.

- Step 2: Select the quality control chart and maintenance policy to develop the model.
- Step 3: Select the production system.
- Step 4: Monitor the selected machine with multi-component using a CUSUM chart.
- Step 5: Monitor the failure and repair rate. In this step, the data related to the

mean time between failure and the mean time to repair all selected components were
gathered and fitted for suitable distributions.

- Step 6: Develop the integrated model based on CM, PM intervals, and CUSUM chart
parameters.

- Step 7: Solve the developed integrated maintenance policy and quality control mathe-
matical model.

- Step 8: Sensitivity analyses were conducted to illustrate the robustness of the devel-
oped model due to the stochastic nature of the problem under investigation.

- Step 9: Discuss the obtained results.
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In the developed optimization model, we have suggested using the CUSUM control
chart for detecting minor shifts in the process mean (i.e., normal state) during operation.
The CUSUM control chart has been proven effective in such cases (i.e., analyzing quality
characteristics of a product or monitoring failures that cause the process mean to shift
during operation) [36–38], which motivates us to use it in our integrated model. For more
details about the CUSUM control chart calculations, the reader is referred to [43]. The
notations used in the developed model with their descriptions are listed in the appendix
(under the List of Abbreviations section). However, we will define all the notations used in
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the text after the proposed model (i.e., objective function and constraints). The following
stochastic and non-linear optimization model is proposed to solve the considered problem:

Minimize E[TC](M∗Q)CUSUM (1)

Subject to
nmin ≤ ni ≤ nmax ∀i = 1, . . . , N (2)

hmin ≤ hi ≤ hmax ∀i = 1, . . . , N (3)

dmin ≤ di ≤ dmax ∀i = 1, . . . , N (4)

kmin ≤ ki ≤ kmax ∀i = 1, . . . , N (5)

tPM
min ≤ TPM

i ≤ tPM
max ∀i = 1, . . . , N (6)

where E[TC](M∗Q)CUSUM is the expected total cost per unit of time function, which is a
stochastic and non-linear function that includes maintenance (corrective and preventive)
and quality (using CUSUM control charts) related costs. E[TC](M∗Q)CUSUM can be cal-
culated using Equations (7)–(25). While n, h, d, k, and TPM

i are the decision variables
representing sample size, sampling frequency, control limit coefficient, decision interval,
and preventive maintenance interval, respectively. The model will be solved to identify
the optimal values for n, h, d, k, and TPM

i while minimizing the total expected cost per
unit of time (E[TC](M∗Q)CUSUM). The model introduces the lower and upper bounds for
each decision variable using constraints (2)–(6). The model will also predict the preventive
maintenance interval, as shown in the case study section (Section 4).

As mentioned above, the expected total cost function per hour (E[TC](M∗Q)CUSUM)
consists of corrective maintenance cost (CCM), preventive maintenance cost (CPM), and cost
of process quality loss ([CQ]P−F). Thus, it is calculated as follows:

E[TC](M∗Q)CUSUM = CCM + CPM + [CQ]P−F (7)

According to Pandey et al. [41], the corrective and preventive maintenance cost can be
estimated as follows:

CCM =
N

∑
i=1

{[
tCM
i × (P× CPL + CL) + FCCM

i

]
× nCM

i

}
(8)

CPM =
N

∑
i=1

{[
tPM
i × (P× CPL + L) + FCPM

i

]
× nPM

i

}
(9)

where tCM
i and tPM

i are the repair times required to perform a corrective and a preventive
maintenance action on component i, FCCM

i and FCPM
i are the fixed cost of corrective and

preventive maintenance actions conducted on component i, nCM
i and nPM

i are the expected
number of corrective and preventive maintenance actions to be performed on component
i, P is the production rate (Carton/h), CPL is the cost of production lost (USD/h), and
CL is the cost of maintenance labor (USD/h). The expected number of corrective and
preventive maintenance actions (nCM

i and nPM
i ) are estimated, based on the assumption

that the component i failures follow a Weibull distribution, as follows [44,45]:

nCM
i =

tPM
i∫

0

αi
γi

αi
tαi−1dt (10)
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nPM
i =

te

TPM
i

(11)

where αi and γi are the ith component’s shape and scale parameters of the Weibull distribu-
tion, and te is the evaluation time. The preventive maintenance interval (TPM

i ) can also be
estimated as follows [44]:

TPM
i = γi

[
tPM
i

tCM
i (αi − 1)

]1/αi

(12)

Al-Shayea et al. [40] extended equations 10, 11 and 12 for multicomponents.
Finally, the expected costs associated with process quality loss during the evaluation

period ([CQ]P−F) are calculated using the following equation:

[CQ]P−F = E
[
Cp
]
× te

tc
(13)

where E
[
Cp
]

is the expected cost of process quality, and tc is the length of time between
sequential in-control periods of a process cycle. On the one hand, E

[
Cp
]

includes the oper-
ating cost during the in-control and out-of-control states, which consists of the following
cost functions:

• E
[
C f

]
: the expected cost of false alarms, which includes the cost of both investigating

and analyzing the false alarms, and it is given as

E
[
C f

]
= C f × t f ×

S
ARL0

(14)

where C f is the cost associated with false alarms, t f is the time required to investigate false
alarms, and S is the expected number of samples. At the same time, the process is in the
in-control state, and ARL0 is the average run length when the process is in the in-control
state. Both S and ARL0 can be obtained as follows [41]:

S =
e−λh

1− e−λh (15)

where h is the sampling frequency (the decision variable from Equation (3)) and λ is the total
process failure rate due to external (λ1) and machine degradation (λ2), where λ = λ1 + λ2.

ARL0 =
e(2kb) − 2kb− 1

2k2 (16)

where k is the control limit coefficient of the CUSUM chart, and b = d + 1.661, where d is
the critical threshold associated with the CUSUM chart.

• E[Cs]: the expected sampling cost per cycle, which can be calculated as follows [45]:

E[Cs] =
(F + V × n)×

{
1
λ + t f × S

ARL0
+
[

h×
(

ARLMC
1 × λ2

λ + ARLE
1 + λ1

λ

)]
− τ + (n× ts)

}
h

(17)

where F is the fixed cost, V is the variable cost, n is the sample size (the decision variable
from Equation (2)), ARLMC

1 represents the average run length during a period of out-of-
control operation due to machine failure, ARLE

1 is the average run length during an out-of-
control period caused by external reasons, τ represents the average elapsed time between
the last sample before an assignable cause and its occurrence when the maintenance and
quality policies are linked, τ is also estimated as h/2, and ts is the time required for
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sampling and chart plotting. Similar to ARL0 obtained in Equation (16), ARLMC
1 and ARLE

1
are calculated using the following equation:

ARL1 =
e−2b(δ−k) + 2b(δ− k)− 1

2(δ− k)2 (18)

where δ is the process magnitude, which has the value δMC for ARLMC
1 and δE for ARLE

1 .

• E[Lin]: the quality loss per unit of time in the control state, which is calculated using
the Taguchi loss function (TLF), and is given as [45]

E[Lin] = P× Aσ2

n∆2 ×
[

1− 2k√
2π

e
−k2

2 − β

]
+
(

R′ × P× Cr
)

(19)

where A is the scrap or rework cost, R′ is the percentage of non-conforming units in an
in-control state, and ∆ is a tolerance factor.

• E[Lout]MC: the quality loss per unit time when the process is in an out-of-control state
due to machine degradation, which is also calculated using the Taguchi loss function
(TLF) and is given as [45]

E[Lout]MC = P× Aσ2

n∆2 ×


(
1 + δ2

MC × n
)
×
{

1− f
(
k− δMC ×

√
n
)
+

f
(
−k− δMC ×

√
n
) }

+

k+δMC×
√

n√
2π

e
−(k−δMC×

√
n)2

2 + k−δMC×
√

n√
2π

e
−(k+δMC×

√
n)2

2

+
(

R′δMC
× P× Cr

)
(20)

where f (�) is the normal density function of a quality characteristic in an out-of-control
state, and R′δMC

probability of non-conforming items being produced as a result of machine
failure.

• E[Lout]E: the quality loss per unit of time when the process is in an out-of-control state
due to external factors (E), which is also calculated using the Taguchi loss function
(TLF) and is given as [45]

E[Lout]MC = P× Aσ2

n∆2 ×


(
1 + δ2

E × n
)
×
{

1− f
(
k− δE ×

√
n
)
+

f
(
−k− δE ×

√
n
) }

+

k+δE×
√

n√
2π

e
−(k−δE×

√
n)2

2 + k−δE×
√

n√
2π

e
−(k+δE×

√
n)2

2

+
(

R′δE
× P× Cr

)
(21)

where R′δE
probability of non-conforming items being produced due to external factors.

• E[Cr]: the expected cost of detecting and repairing the process due to external causes
(E).

E[Cr] = CS × tr ×
λ1

λ
(22)

where CS is the cost of resetting the process, and tr is the expected time to reset the process.

• E[CCM]F2
: the expected cost of resetting and restoring the process (through CM) after

a downtime of Type 2 (F2), which is calculated as follows:

E[CCM]F2 =
{

MTF2
CM × [P× CPL + L] + FCCM

p

}
× λ2

λ
(23)

where MTF2
CM is the time required for corrective repairs, and FCCM

p is the fixed cost for the
conducted corrective repairs.

Thus, E
[
Cp
]

is obtained as follows:

E
[
Cp
]
= E

[
C f

]
+ E[Cs] + E[Lin] + E[Lout]MC + E[Lout]E + E[Cr] + E[CCM]F2

(24)
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On the other hand, tc includes time spent in control, time spent out of control, and
time spent resetting processes or restoring machines. According to Pandey et al. study [45],
the expected cycle length (tc) can be calculated as follows:

tc =

[
1
λ
+ t f ×

S
ARL0

]
+

[
h×

(
ARLMC

1 × λ2
λ

+ ARLE
1 ×

λ1
λ

)]
− τ + (n× ts) + ta +

[
tr ×

λ1
λ

+ MTF2
CM ×

λ2
λ

]
(25)

where ta is the time required to determine the occurrence of assignable causes.
Based on the developed integrated optimization model introduced above in Equations

(1)–(25), an optimal predictive maintenance plan will be developed to reduce defects and
improve productivity. Figure 2 shows a flowchart for this process, which will result in
developing a predictive maintenance policy based on the optimized maintenance interval
for each machine (or component), i.e., TPM

i .
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4. Case Study

An automatic filling system is part of a fully automatic water bottling production
line that is installed and operates in the National Mineral Water Company (AMWC). As
shown in Figure 3, an automatic filling system is a filling machine consisting of the main
components: Fill box flux, Flowmeter, Valve battery, Seals and O-rings for filling heads.
Those components have been determined based on each component’s importance and
relation to this study. In this study, the filling machine represents a real-life application that
demonstrates the suitability of the extended integration model. Maintenance and quality
are two major issues in the company. The number of failures increased due to insufficient
maintenance plans for detecting and preventing the failure of the main components. In
addition, those failures influence product quality. However, the maintenance of this
automated machine is very complex and needs a model for reducing the number of failures
and enhancing product quality. This study aims to develop an integrated maintenance
policy and quality model to overcome these issues.
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5. Results

Failure data for machine components are collected and analyzed using the ReliaSoft
Weibull++6 software to fit the distribution for each component. The analysis results show
that each component failure can be modeled by a Weibull distribution. In addition, the
Weibull distribution parameters (shape and scale parameter) for each component failure
were used to calculate the number of failures and the preventive maintenance interval.
Table 1 shows the Weibull parameters of the filling machine components.

Table 1. Parameters of maintenance for filling machine components.

(Ni) Components Number Shape
Parameter αi

Scale
Parameter γi

(hr)

Component Cost
during

Replacement
(USD)

Sub-Component/
Consumable Cost

through Repair
(USD)

TRCMi
(h)

TRPMi
(h)

1
Filling
Head 54 19,440

(USD 360/pc) - - -

Seals and
O-rings for

filling
heads

108 set 3.7761 1294.3 8700
(USD 80.55/pc) 90 2 4

2 Flowmeter 54 1.4934 4426.8 162,000
(USD 3000/pc) n/a 1.25 n/a

3 Valve
Battery 14 1.7101 3745.1 14,000

(USD 1000/pc) 350 1 9

4 Fill box
Flux 27 1.3329 4768.7 26,490

(USD 981/pc) n/a 1.5 n/a

The filling machine runs in three shifts per day, 8 h per shift, for six days per week. The
machine fills 330 mL water bottles with a process mean of 327 mL. and a process standard
deviation of 1.5. The size of the shift that is due to external reasons is δE = 1, and the shift
due to machine failure is δm/c = 0.8, which happens randomly and causes the process means
to shift from µ0 to (µ0 + δ). The process quality monitoring is being monitored by using
a CUSUM chart analysis. At this stage, the sought-after critical to quality characteristic
(CTQ) is the shortage in filling the bottle’s water volume. According to the adapted quality
control policy, samples of filled water bottles were taken from the production line every
hour (h), inspected by the naked eye, confirmed, and measured using a liquid measuring
cup. The CUSUM chart is implemented as shown in Figure 4. It is evident that there is a
shift in the process mean. This shift in the process is due to failure in the Seals and O-rings
of the filling head (component number one) and valve battery (component number three).
To solve this issue in the quality acceptance and to eliminate the process shifts, the PM
must be scheduled and periodically replace the O-rings, change the O-rings of the valve
battery, or change the card and check the inner springs of the valve battery.

The initial values of the necessary parameters of the process quality control chart to
develop the integrated model are presented in Table 2.

The developed model is composed of mathematical equations to find the optimal
values of sample frequency, sample size, the width of the control chart limit, and the pre-
ventive maintenance interval while minimizing the total expected cost of the maintenance
and quality control. A computer programming code of the integrated model has been
developed using MATLAB2020a. An optimal set of decision variables that minimizes
the expected total cost per unit of time for the system (E[TC](M∗Q)CUSUM) are presented
in Table 3.
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Table 2. Initial parameters and their values in the case study.

Parameter Value Parameter Value

P (cartons/h) 600 F (USD/bottle) 0.016
ts (h) 0.33 V (USD/bottle) 0.036
t f (h) 0.5 Cr 0.138
ta (h) 0.5 C f 9.2
tr (h) 0.25 Cs 9

L(USD)/h 10 ∆ 3
CPL USD/h 8 A USD/bottle 0.069

δE 1 δMC 0.8

Table 3. An optimal set of decision variables for the proposed model.

Variables Optimal Value

n 1
d '10
h 5
k 0.10166

TPM
i 800

E[TC](M∗Q) CUSUM 81.5479

5.1. Design of Experiments Based on One-Factor-at-a-Time

The one-factor-at-a-time approach was used to study the influence of the addressed
decision variables on the expected total cost. Figure 5a illustrates the impact of sample
frequency (h) on the anticipated total cost. Other parameters, decision interval, sample
size, and preventive maintenance interval, were kept constant. It can be observed that the
sampling frequency increases from 1 to 5, and the expected total cost slightly decreases
and increases with the increase in h. Pandey et al. [45] found that the total cost decreases
by reducing the sampling frequency from 2 samples per second to 3.5 samples per second
and increases with increasing sample frequency. Figure 5b depicts the anticipated total
cost decrease with the increase in decision interval (d). This can be explained by the fact
that the increase in interval (d) will decrease the ARL, which will reduce the probabilities
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of repair, rejection, and out-of-control costs. Figure 5c shows the expected cost variations
with the change in the control limit coefficient (k). It shows that the cost remains constant
and started to rise with a value of 0.6 and higher for the control limit coefficient (k). Since
the standard deviation value is fixed, increasing the control limit coefficient (k) value will
increase the region between the control limits, which, in turn, increases the possibility of a
poor product being accepted. Thus, rejection, repair, and out-of-control costs also decrease.
Regarding the effect of preventive maintenance interval on the total cost, Figure 5d shows
how the total cost decreases with the increase in PM interval until it reaches a certain point
where the cost goes up again. That increase in cost is because longer PM intervals come
with a higher probability of failure, which results in more costs (CM and replacement costs).
The point with the minimum maintenance cost is the optimal PM interval.
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Figure 5. The impact of selected decision parameters on the expected total cost. (a) illustrates the
impact of sample frequency (h) on the anticipated total cost, (b) the anticipated total cost decrease
with the increase in decision interval (d), (c) the expected cost variations with the change in the
control limit coefficient (k), (d) the total cost decreases with the increase in PM interval until.

Therefore, the obtained optimal ranges of the decision variables of the developed
maintenance and quality control model are summarized in Table 4. In addition, the
obtained optimal range of CUSUM chart parameters will be used to develop the CUSUM
chart for monitoring product quality.

Table 4. Ranges of optimal values for the five decision variables.

Decision Variables Ranges

n 1
d 8–'10
h 4–5
k 0.10166

TPM
i 750–850

5.2. Sensitivity Analysis

The sensitivity analysis issue is crucial and has been used for estimating the effects of
the cost variables and process over the selected range on the integrated model of preventive
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policy and statistical quality control chart. In addition, this analysis further illustrates
the relationship between CUSUM parameters and preventive maintenance, as well as the
performance of the integrated model [39]. A sensitivity analysis was conducted on the
importance of cost and process variables. Table 5 presents the selected variables and their
range. Level 1 is the basic level employed to solve the integrated model for the secreted case
study. Levels 2 and 3 were chosen based on the company allowance policies, representing
the increase in the primary level by +10% (level 2) and +20% (level 3). After identifying
the range, the developed model was solved according to the presented values of each
variable to calculate the total cost per unit of time. The obtained results illustrate that the
expected total cost per unit of time values are close to the optimal values found earlier in a
similar setting. Consequently, the results show that the optimum design of the integrated
maintenance policy and quality control chart model based on the CUSUM chart is generally
robust to errors in variable estimation. The analysis shows that the proposed integrated
model is robust to errors in variable estimations up to (+20%).

Table 5. Results of the sensitivity analysis and influence range of the basic variables on
E[TC](M∗Q)CUSUM.

Parameter Basic Level 1
Level 2
(+10%)

Level 3
(+20%)

E[CT](M∗Q)CUSUM
Basic Level Level 2 Level 3 Range

ts 0.33 0.363 0.396 81.5479 81.5479 81.5479 81.5479
tf 0.5 0.55 0.6 81.5479 81.5479 81.5479 81.5479
ta 0.5 0.55 0.6 81.5479 81.5479 81.5479 81.5479
tr 0.25 0.275 0.3 81.5479 81.5479 81.5479 81.5479
A 0.069 0.0759 0.0828 81.5479 81.5479 81.5479 81.5479
F 0.016 0.176 0.0192 81.5479 81.5479 81.5479 81.5479
V 0.036 0.0396 0.0432 81.5479 81.5479 81.5479 81.5479
Cr 0.138 0.1518 0.1656 81.5479 81.5479 81.5479 81.5479
Cf 9.2 10.12 11.04 81.5479 81.5479 81.5479 81.5479
Cs 9 9.9 10.8 81.5479 81.5479 81.5479 81.5479
Lp 8 8.8 9.6 81.5479 89.6698 97.7117 81.5479–97.7117
L 10 10.10 12 81.5479 81.5496 81.5815 81.5479–81.5815

5.3. Preventive Actions to Reduce the Defects

More frequent defects are analyzed and evaluated periodically, and proper preventive
actions are taken to keep these defects at a minimum. A policy is set to monitor the
components in the filling stage and implement a preventive maintenance interval (TPM

i )
to predict future failures. The policy calls for each component to be checked against all
possible failures in a very cost and time-effective way so that the filling process runs
smoothly and the system is more available for production. Therefore, machine breakdown
is much less, and the cost is reduced.

Based on this study, the developed predictive maintenance introduces preventive
maintenance intervals (TPM

i ) with a timely schedule for preventive maintenance jobs for
the N-components in the filling machine to spot any possible failure or defect. These
preventive maintenance intervals should take place every 800 h. Figure 6 shows the
improvement in total cost per hour. The total cost per hour is only USD 81.5479, which
is much less than USD 163.12 by approximately 50% of lost production per hour due
to product defects and the waste of production time during the repair of these defects.
Therefore, the results indicate that the performance of the developed integrated model
realizes the full potential of the maintenance model.
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The results obtained from the CUSUM chart were used to optimize the preventive
maintenance interval (TPM

i ). Table 6 lists the developed solutions based on the optimized
TPM

i values for the main causes that should be implemented to reduce defects.

Table 6. The developed maintenance plan for multi-components based on optimal TPM
i .

No. Components

1

Seals and O-rings for filling heads
Problem Leakage in water

Root causes Replace the Seals and O-rings
Solution Periodically replace the O-rings

2

Flowmeter
Problem Water not flowing or continually flows

Root causes Malfunction with the internal electronic card
Solution Replace the flowmeter

3

Valve Battery
Problem Water not flowing according to the set level

Root causes
The presence of an air leak from the O-rings

An issue with the electronic card of the valve battery
An issue in the inner Spring of the valve

Solution
Change the O-rings of the valve battery or change the card.

Change the inner springs of the valve battery

4

Fillbox Flux
Problem The filling cycle is not initiated, or filling heads are not working

Root causes
An issue with the motherboard.
The problem with the data cable

The problem with the control system

Solution
Check the electronic card for repair or replacement if available otherwise, replace it with a new Fillbox

Repair the cable data or replace
Reinstall the program for the Fill box to reset the system

6. Conclusions

This study proposed an extended integrated economic model for maintenance policies
(maintenance interval) and CUSUM chart parameters for the multi-component system.
This integration model is used to predict and optimize the preventive maintenance interval,
sampling interval, sample frequency, sample size, and control limit chart to minimize the
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total cost per unit of time. The case study illustrates the problem, and sensitivity analysis
demonstrates the dependence between quality control parameters and maintenance. The
model has the following potential utilizations:

- Managers can control the quality of produced units and monitor the production line
and its different states using the proposed solution steps.

- The proposed methodology helps to identify the optimal preventive maintenance
interval needed to improve production output and minimize downtime with enhanced
product quality.

- A maintenance plan for a multi-component system was developed based on the
optimal value of preventive maintenance interval. The result showed that the total
cost was reduced by approximately 50% compared with the current system.

This study shows that maintenance and process quality control based on the CUSUM
chart is a more effective and powerful integrated model for improving product quality
and process performance. This study could be expanded to include the integrated quality
control and reliability-centered maintenance policy using the mixed EWMA and CUSUM
control charts to detect a shift in the process mean.
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List of Abbreviations
Notation Descriptions
Decision variables

h
Sample frequency (average number of samples obtained in one
second (NO/second)

d Decision Interval (hours)
k Coefficient of control limit
n Sample size
TPM

i Preventive maintenance interval (hours)
Parameters
CTQ Critical to quality characteristic
f (�) The normal density function of quality characteristic (�)
nCM

i Number of corrective maintenance actions
nPM

i Number of preventive maintenance actions
E[Lin] Quality loss per unit time in the control state (USD)
E[Lout]MC Quality loss per unit of time due to machine degradation (USD)
E[Lout]E Quality loss per unit of time due to external factors (E) (USD)
N Number of components
nPM

i Number of preventive maintenance for ith component
P Production rate (Carton/hour)
S Expected number of samples while the process is in-control

R′
The proportion of non-conforming units when the process is
in-control state

R′δMC

Probability of non-conforming items produced due to machine
failure

R′δE

Probability of non-conforming items produced due to external
factors
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δ Magnitude of shift
µ0 Target value (mm)
σ0 Standard deviation
λ Process failure rate
λ1 Failure rate due to an external factor
λ2 Failure rate due to machine degradation
αi The shape parameter of Weibull distribution for ith component
γi Scale parameter of Weibull distribution for ith component
∆ Tolerance factor
Cost parameters
A Scrap or rework cost (USD)
CCM Corrective maintenance cost (USD)
CpM Preventive maintenance cost (USD)
[CQ]P−F Cost of process quality loss ([CQ]P−F) (USD)
E
[
Cp
]

The expected cost of process quality (USD)

E
[
C f

]
The expected cost of false alarms (USD)

E[Cs] Expected sampling cost per cycle (USD)

E[Cr]
The expected cost of detecting and repairing the process due to
external factors (E) (USD)

E[CCM]F2

The expected cost of resetting and restoring the process
(through CM) after a downtime of Type 2 (USD)

Cf Cost of investigating a false alarm per unit of time (USD)
CS Cost of resetting (USD)
CPM The expected cost of preventive maintenance (PM) (USD)
[CQ]P−F The expected total cost of quality loss due to process failure
E[TC](M∗Q)CUSUM Expected total cost per unit of time (USD/hour)
F Fixed cost of the sample (USD)
FCCM

i Fixed cost for corrective maintenance (USD)
FCCM

p Fixed cost of corrective maintenance of ith component (USD)
FCPM

i Fixed cost of preventing maintenance of ith component(USD)
CL The labor cost (USD/hour)
CPL Cost of production lost (USD/hour)
V The variable cost of the sample
Statistical properties parameters

ARL0
Average run length in-control state (average number of samples
taken before a false alarm occurs)

ARL1 Average run length in an out-of-control state
ARLE

1 Average run length due to external factors
ARLMC

1 Average run length due to machine failure
Time parameters

tCM
i

Repair times required to perform corrective maintenance
(hours)

tPM
i

Repair times required to perform preventive maintenance
(hours)

MTF Mean time between process failure (hours)

ta
An estimate of the time it takes to determine if assignable causes
have occurred (hours)

tc Cycle time (hours)
te Time evaluation period (hours)
tf False alarm search time (hours)
tr Expected time to reset the process (hours)

tCM
i

Time required for corrective maintenance of ith component
(hours)

tPM
i

Time required for preventive maintenance of ith component
(hours)

ts Time for the sample and plot a chart (hours)
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