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Abstract: The aim of this paper is to present the genetic algorithm used in programming a solar
tracker robot. The solar tracker robot can be used to increase the efficiency of solar panels by rotating
them toward the Sun. When the efficiency of solar panels is increased, they can reduce the space
occupied by them. Efficiency can also be increased by genetic algorithms, where a solar panel can
evolve and thus track the Sun more precisely. The genetic algorithm implemented in the solar tracker
is the main focus of this paper. The genetic algorithm is presented with a flow chart and formulas.
After this, the system is implemented on a solar tracker robot and validated with real experiments.
The solar tracker robot algorithm is implemented in the C language on a microcontroller built on an
FPGA platform.

Keywords: embedded system; evolutionary computation; evolutionary robotics; genetic algorithms;
robotic assembly; robot control; robot programming; solar tracker

1. Introduction

The production of green energy today comprises clever substitutes for renewable en-
ergy [1]. Between 2000 and 2015, the number of solar panels installed increased by 41% [2].
Less well known is the fact that investment recovers in southern Europe in as little as
1.5 years and in northern Europe in about 2.5 years [3]. A photovoltaic system can provide
20 times more energy than was required for its creation if its lifespan is 20 years on aver-
age [4]. According to predictions, the energy generated by photovoltaic panels will be more
affordable in 5 years than the energy generated by burning gas or coal, and in 20 years it
will be the least expensive option [5].

The highest yield for a single-crystalline cell in silicon technology is 25.6%, and it
is 20.8% for a multi-crystalline cell. Cell efficiency has continued to grow. This number is
21% for the cadmium tellurium (CdTe) film and 20.5 percent for solar cells with copper
indium gallium selenide (CIGS) [6].

Its efficiency can be increased by up to 30% compared to the static version by using a
device that tilts the solar panel towards the Sun [7,8]. The efficiency of solar panels can be
improved, reducing their cost and the amount of space they consume [9]. Developing such
a robotic device is a difficult undertaking because it must operate in all weather conditions
because it is outside [10]. Implementation is a cross-disciplinary endeavor that involves
electronics, mechanics, mechatronics, automation, and software [11], which requires a
complex mathematical calculation to determine the relationship between the position of
the Sun and the amount of movement that robot motors must produce [12].

The originality and novelty of the system come from its modular design, universal
applicability, and adaptability, as well as its simplicity, low cost, and scalability.

A type of artificial intelligence known as genetic algorithms uses evolutionary methods
such as mutation and crossover to find the best solutions to complex problems [13]. They
can be used to solve problems related to optimization, robotics, and image recognition,
among others [14].
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Software genetics is a type of evolutionary optimization algorithm based on natural
selection and biological evolution [15]. The process of applying genetic algorithms to
software engineering problems such as problem solving, optimization, and learning is
known as “porting genetics to software” [16]. Software genetics makes it possible to
improve accuracy and scalability, as well as the development of robust and adaptable
solutions to complex problems [17]. Data mining, reinforcement learning, and robotics are
just a few of the possible uses [18]. Genetic inheritance, genotypes and phenotypes, fitness
functions, selection, crossover, and mutation are fundamental concepts of porting genetics
to software [19].

The transmission of genetic information from one generation to the next is called
genetic inheritance [20,21].

Phenotypes are the physical characteristics that are expressed in the underlying genetic
code of an organism, while genotypes are the underlying genetic code [22,23].

The fitness function is a function that is used to evaluate how well different solutions
to a problem perform relative to each other [24,25].

The process of selecting the best individuals from one generation to reproduce and
transmit their genes to the next is known as selection [26,27]. The process of recombination
of the genetic material of two parents to produce a new child with characteristics shared by
both parents is known as crossover [28,29].

The term “mutation” refers to sporadic modifications of the genetic code that make
possible evolution [30].

F. Yamasaki et al. utilized genetic algorithms to acquire the humanoid walking motion
and characteristics of the servo modules. This system also uses passive dynamic walking
(PDW), in which a structure with legs can walk down a slope without using actuators to
control it. In this case, it was a humanoid robot with 26 degrees of freedom (DoF) known
as PINO. To acquire continuous walking motion, a genetic algorithm was used, with the
fitness function consisting of the walking distance (longer is better) [31].

The fact that a real robot was used to learn to walk using genetic algorithms is a benefit
of this paper.

The only problem is that the length of the string was not specified in bits for this
experiment.

Jung-Sjik Kong et al. presented a genetic algorithm-based study of a humanoid robot’s
gait generation in a paper.

There were 22 degrees of freedom (DoF) available to the robot: 6 in each leg, 3 in each
arm, 2 in the main body, and 2 in the head. Each joint had gear reduction units (190:1 and
230:1) and two types of motors (4.5 W and 11 W). The robot was 75 cm tall and weighed
6.5 kg [32].

Humanoid robot gait planning was well implemented in this genetic algorithm imple-
mentation.

The system showed a real robot, but the paper only shows 3D simulations of the
humanoid gait planner robot. Genetic algorithms were used to plan the robot’s gait and
not to walk by itself.

The length of the string in bits is also not specified in this paper.
K. Endo et al., by demonstrating the co-evolution of the biped’s morphology and

walking pattern, presented the design of a real robot that makes use of evolutionary
computation. The robot, called PINO, was designed to use traditional servomotors found
in robotics in its joints [33].

In this paper it was discussed the development of a bipedal robot’s walking pattern.
Although the robot was designed, no actual robot has yet been tested. The walking

pattern serves as the basis for the genetic algorithm.
This paper did not specify the length of the string in bits.
Sang-ho Choi et al. presented a paper on the genetic algorithm’s optimal trajectory

generation for a biped robot.
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The robot model had eight AC servos, a DSP controller, a host computer, three DoF in
each leg, and two DoF in the balancing joints. It also had a reducer of 1/100 for the ankles
and 1/60 for the other parts of the body [34].

This article is interesting because it used genetic algorithms to create a trajectory for a
biped, this was simulated and tested it on a real robot.

The system’s only flaw is that it only generates a trajectory indicating where the robot
should walk rather than considering the robot’s walking method.

Due to the fact that to reduce time, a genetic algorithm evolves to a desired maturity,
it is useful to try different parameters for the genetic algorithm. The parameters of the
presented approach are very close to the parameters of other researchers published in
scientific papers.

2. Problem Solving
2.1. Theoretical Background

The aim of this paper is to present a robotic device that can determine where the Sun
is and move the solar panels accordingly (Figure 1) as a natural extension of the author’s
previous concerns.

The primary objective is to develop a working robotic prototype that can control and
rotate a solar panel farm, track the Sun, and improve efficiency. The robot will integrate
itself into the SmartCity domain and be able to adapt to the needs of the community,
providing real-time data on the best orientation in the area it serves.

There are three main components of the system: the mechanical component, which is
done with motors and movement limiters, a control component with a development board
and software, and the sensor system for precise positioning.

Figure 1. A simplified drawing of the proposed device.

In the configuration shown in Figure 2, four photoresistors or pyrheliometric sensors,
along with walls, will be used to separate the four quadrants of movement of the robot
along its two axes (0x, 0y). A Cartesian coordinate system will be used in the system.
In microelectromechanical systems (MEMS) technology, a tilt sensor can be used to add
inclination.
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Figure 2. Dividing the sensors with walls for the Sun-tracking robot.

The parameters of the genetic algorithm and all of the formulas are used to teach the
solar tracker robot to track the Sun.

The parameters of the genetic algorithm can be seen in Table 1. The parameters of the
genetic algorithm were based on experimental results. The total population is 150, which
is also based on experimental results, and this is the number of strings that will be used
to generate the command string for the solar tracker robot. This string will control the
servomotors on the solar tracker robot so that it can move as naturally as possible.

Since the generation number is 50, the command string obtained from the solar
tracker robot typically has the ability to move the servomotors of the solar tracker robot in
generation 50, allowing it to move as naturally as possible. Sometimes it is not need to get
to generation 50.

By dividing the generation number by the total generation number used in the tests,
the crossover rate can be calculated. In this way, if we divide 50 by 67, we obtain a crossover
rate of 0.75 in our case.

The probability of one gene mutating (or one character changing in the solar tracker
robot command string) is known as the mutation rate. In our example, a value of 0.01
indicates that there is a 1% chance that a gene will mutate or that a character in the solar
tracker robot command string will change.

Since the length of the string is eight bits, this actually means that our genes, which
are represented by characters in the solar tracker robot command string, have eight bits.
All characters have ASCII values of two hexadecimal digits; one hexadecimal digit has four
bits or four binary digits.

In the equation from Table 1, the fitness function is shown. By dividing the number
of matching genes (characters) by the total number of genes in a gene character array,
the fitness function (or match score) f is calculated. A gene (character) gi in the current
gene character array is compared to another gene (character) ti in the target gene character
array, assuming that both strings (character arrays) are the same length and are in the same
position in the gene character array.

Table 1. Parameters of the genetic algorithm.

Total population 150 Generation number 50
Crossover rate 0.75 Mutation rate 0.01
String length 8 bits

Fitness function f = s
n , gi = ti, i ∈ {0, ...n}

For the proposed genetic algorithm, when the system passed generation 50, the system
reached a maturity where it could follow the Sun with great precision. Under generation
50, the system had a lower precision. This information was obtained after many tests.
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The method to calculate the crossover rate or the crossover parameter Cp can be seen
in Equation (1). We divided the generation number Gn by the total generation number GT
to obtain this number, which in our case was 0.75:

Cp =
Gn

GT
=

50
67

= 0.75 (1)

The method of creating genes gi (characters) and, finally, the gene arrays or robot
command strings (character arrays) can be seen in Equation (2). This can be accomplished
by determining the ASCII value of some random numbers that fall within the ranges
of MIN and MAX. This limit includes the numbers between 0 and 9 and the colon (“:”)
and semicolon (“;”) characters, whose ASCII values are between 48 and 59. A generated
gene array will actually look like this: “9;120”, representing the movement angles for the
two motors, namely horizontal and vertical:

gi = ASCII(randMIN,MAX), MIN = 48, MAX = 59 (2)

It is clear from Equation (3) how a random middle point Pm can be calculated for
crossing two arrays of parent genes. A portion of the gene array will come from one parent,
and another portion will come from the other parent to produce a child. A child can inherit
more genes from one parent and less from another because the middle point is not always
symmetric but rather a random point. Assuming that both parent gene arrays are the same
length, a random number is generated between 0 and the length n of the arrays:

Pm = rand0,n (3)

Similar to biological genetics, mutation is required in computational genetics because
it prevents the generation of diverse offspring. Put another way, there is the possibility that
a child could be identical to a parent (when the random middle point Pm is at zero), which
would mean that evolution would be impossible. As a result, the solar tracker robot may
never move as naturally as possible. In computational genetics, as in biological genetics,
a child can have mutated genes and genes from his parents. Because of this, no two people
on Earth are the same; they may share genes, but we are all unique. Evolution is highly
dependent on mutation.

In Equation (4), the procedure to generate a random mutation can be seen. A random
number between 0 and 1 is generated, and if it is less than the mutation rate or the parameter
Mp, which in our case is 0.01, then a mutation is performed. To accomplish this, a new
gene called gi is created with an ASCII value that lies between the MIN and MAX limits (48
and 59, respectively), and the gene or character located in the loop index is replaced only if
the random number generated between 0 and 1 is less than the mutation rate or parameter
Mp, which is 0.01:{

rand0,1 < Mp, Mp = 0.01
gi = ASCII(randMIN,MAX), MIN = 48, MAX = 59

(4)

The process by which two gene character arrays cross can be seen in Figure 3 and in
Equations (5) and (6). The genes (characters) in the gene character array or the command
string of the solar tracker robot command string are represented by X and Y, respectively.
In fact, a random middle point has been calculated for each gene character array, and we
assume that it is of the same length. After that, up to the random middle point, the first
part of the child gene character array is the first part of the parent gene character array.
From the random middle point, the second part of the resulting gene character array (the
child) is the second part of the second gene character array (the parent). In this way, one
part of the child comes from one parent, and another comes from the other. Depending on
the randomly selected middle point of the character array, it may have more genes from
one parent than from the other. It is also possible, according to biological genetics, that a
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child is more similar to one parent than the other. When the random middle point is at
zero, the child will, in rare cases, be identical to one of the parents. The genetic algorithm
can reach a point where it cannot evolve or obtain the desired gene character array or the
command string of the solar tracker robot, which will result in the solar tracker robot not
moving naturally. In this case, the mutation is very helpful.

X0 X1 ... Xi ... Xn

+ ⇒ XO
0 XO

1 ... XO
i YO

i+1 ... YO
n

Y0 Y1 ... Yi ... Yn

Figure 3. Crossover.

{
X = (X0, ..., Xi, ...Xn)
Y = (Y0, ..., Yi, ...Yn)

(5)


i = rand0,n

XO
i = Xi, XO = (XO

0 , ..., XO
i )

YO
i+1 = yi + 1, YO = (YO

i+1, ..., YO
n

(6)

The mutation algorithm can be observed in Figure 4 and in Equation (7). The genetic
algorithm may reach a point where it cannot continue to evolve and, therefore, mutation
is necessary. In the mating pool, the parents are so similar to each other that there is no
chance of evolution in their offspring. The solar tracker command string, which would
allow the solar tracker robot to move naturally, cannot be obtained if evolution does not
occur. The following is how the mutation works. A random number is generated if it
is less than the mutation rate, which in our case is 0.01. This indicates that there is a 1%
chance that the genes will mutate. A mutation with a random character occurs at a random
location in the gene character array. A random number between the limits of MIN = 48 and
MAX = 59 is used to generate the random character, which is then transformed into the
ASCII character that corresponds to it. The mutated character is indicated by an asterisk (*).

X0 X1 ... Xi ... Xn ⇒ X0 X1 ... X∗i ... X∗n

Figure 4. Mutation. {
i = rand0,n

Xi = X∗i , X = (X0, ..., X∗i , ..., Xn)
(7)

The Euler–Lagrange formulation can be written as shown in Equation (8):

d
dt

∂L
∂θ̇i
− ∂L

∂θi
= τi, i = 1, ..., N, N = 2 (8)

Because the used two-motor solar tracker robot has two joints, N equals two.
The definition of the Lagrange function can be found in Equation (9):

L(θ, θ̇) = K(θ, θ̇)− P(θ) (9)

where K is the total kinetic energy of the robot, P is its potential energy, θi is the joint
variable for the ith joint, θ̇i is its first derivative, and τi is the generalized force (torque) at
the ith joint.

The dynamics of the joint space can be written as shown in Equation (10):

M(θ)θ̈ + C(θ, θ̇) + G(θ) = Φ(θ, θ̇, θ̈) (10)
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The generalized joint coordinates are represented by θ, the mass matrix or kinetic
energy matrix is represented by M(θ), the centrifugal and Coriolis forces are represented by
C(θ, θ̇), the gravity force is represented by G(θ), and the generalized forces are represented
by Φ(θ, θ̇, θ̈).

The dynamic equation can be computed by separating the dynamic terms after apply-
ing the Euler–Lagrange equations as shown in Equation (11):

∑
j

mkj(θ)θ̈j + ∑
i,j

ckij(θ)θ̇i θ̇j +
∂F
∂θk

= τk, k = 1, ..., N, N = 2 (11)

where mkk(θ) is the inertia in the joint k when it accelerates (mkk > 0), mkj(θ) is the inertia
observed in the joint k when the joint j accelerates, ckii(θ) is the centrifugal force coefficient
in the joint k when joint i is moving (ciii = 0, ∀i), and ckij(θ) is the Coriolis force in the joint
k when both joints i and j are moving, while the number of joints for the solar tracker robot
is N = 2.

A vector consisting of two generalized coordinates, with the positions of the two
particles being as depicted in Equation (12), can be used to describe the solar tracker robot
with two joints:

θ = [θ1, θ2]
T (12)

Equation (13) shows the kinetic energy of the solar tracker robot, assuming that the
particles have masses m1 and m2:

K =
2

∑
i=1

1
2

mi θ̇i
2 (13)

Here, Equation (14) shows the mass matrix M:[
m1 0
0 m2

]
(14)

In Equation (15), the centrifugal and Coriolis forces are described:

C(θ, θ̇) = θ̇TC(θ)θ̇ (15)

Because the solar tracker robot has two joints, if we continue to compute the centrifugal
and Coriolis forces equation, we will obtain the symmetric matrix shown in Equation (16),
where N = 2 is used in the sum:

C(θ) =
2

∑
i=1

(
∂Mi
∂θ
− 1

2

(
∂Mi
∂θ

)T
θ̇i

)
(16)

Equation (17) presents the factorization of c:

cj(θ, θ̇) = ∑
i

cij(θ)θ̇i (17)

Equation (18) represents the vectorized dynamic model of the robot:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ (18)

The kth dynamic is shown in Equation (19), which was obtained by applying the
Euler–Lagrange equations:

∑
j

mkj θ̈j + ∑
i,j

(
∂mkj

∂θi
− 1

2
∂mij

∂θk

)
θ̇i θ̇j +

∂F
∂θk

= τ (19)
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where θ̈ denotes the linear acceleration terms, θ̇ denotes the quadratic velocity terms, and θ
denotes the nonlinear configuration terms.

Equation (20) shows the total gravitational forces, where N = 2 is the number of rigid
bodies used in the sum because the solar tracker robot has two joints:

F =
2

∑
i=1

Fi (20)

In Equation (21), the gravity equation is shown:

Fi = −migTrci (21)

Here, g is the acceleration vector of gravity and rci is the location of the center of mass
of the link i.

The center of mass is given in Equation (22):

rcm =
1
M

2

∑
i=1

rimi =
1
M

∫
r · dm (22)

where rcm is the center point of the mass, M is the total mass of the element, r is the reference
location, and dm is the differential component of the mass at the point r.

In Equation (23), the inertia moment is shown. The summation becomes integral over
the entire body for a rigid body with a constant mass distribution:

I =
2

∑
i=1

r2
i mi =

∫
r2 · dm (23)

where mi is the mass of the particle i and ri is the distance from the particle i.
The inertia tensor (inertia matrix) of a rigid rotating body around a fixed point that is

not the center of mass can be expressed as shown in Equation (24):

I =

 Ixx − Ixy − Ixz
−Iyx Iyy − Iyz
−Izx − Izy Izz

 (24)

Equations (25)–(27) depict the mass moments of inertia (diagonal terms):

Ixx =
∫∫∫

(y2 + z2) ρ dv (25)

Iyy =
∫∫∫

(x2 + z2) ρ dv (26)

Izz =
∫∫∫

(x2 + y2) ρ dv (27)

Equations (28)–(30) represent the mass products of inertia, also known as the off-
diagonal terms:

Ixy =
∫∫∫

xy ρ dv (28)

Ixz =
∫∫∫

xz ρ dv (29)

Iyz =
∫∫∫

yz ρ dv (30)

2.2. The Proposed Genetic Algorithm

In Figure 5, the simplified diagram of the genetic algorithm can be seen. A solar tracker
robot that can learn to track the Sun can use this diagram.
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Some terms of biological genetics are used in the genetic algorithm, and their transla-
tions into software may be slightly different from their original meanings.

The strings that are sent to each motor or joint to move the solar tracker robot are the
deoxyribonucleic acids (DNAs ) or gene arrays, which are actually command strings or
character arrays. Actually, a gene should look like “9;120”, which shows that the numbers
represent the angle of movement of each motor at the joints of the solar tracker, with 9◦ at
one joint and 120◦ at the other joint. Gene arrays are command strings constructed from a
character array for the robot.

A gene is a number, such as “9”. Here, the phenotype is “9”, as the natural movement
of the solar tracker robot, for example, requires one joint to move 9◦. In the previous
example, the genotype is represented by the value of the American Standard Code for
Information Interchange (ASCII) for the character “9”, indicating that the genotype is 57.
Each time a gene is created, random ASCII numbers are created, which are then converted
into the appropriate character to produce the phenotype for the solar tracker robot or the
motor command string.

All DNAs, gene arrays, or solar tracker robot command strings (character arrays)
are the parents and will be placed in a mating pool to mate or crossover for the purpose
of producing a child or offspring. The crossover is accomplished by concatenating one
half of one parent (solar tracker robot command string) with the other half of the other
parent (solar tracker robot command string). The offspring or child will be created through
this procedure.

In genetics, the term “mutation” refers to the alteration of a random gene. This is also
present in biological organisms, and without it, some organisms would be too similar to
each other. Because of this, there are no two people who are identical; they share some
characteristics with their parents, but they are slightly different from each other. Because of
this, children with brown hair can sometimes be born to blond parents. Mutation is also
used because sometimes a system cannot evolve if there is no change in the genes. This
means that sometimes, when in the mating pool, the parents are very similar and only a
mutation can bring the system out of a dead end or from a situation from where it cannot
evolve. In programming, a mutation is the substitution of a random character for another
at a random location in the gene array. This is accomplished by generating a random ASCII
value which is then transformed into the corresponding character according to the ASCII
table and inserted in the gene array at a random position.

The genetic algorithm requires the following variables: totalPopulation (e.g., 150,
the number of parents (solar tracker robot command string) to mate with each other),
target (solar tracker robot command string to point toward the Sun), population (generated
solar tracker robot command character array (gene array)), and match (computed fitness
score array).

The generation of command character arrays (genes) of the solar tracker robot is
known as the population initialization step in this process.

Selection is the second stage. In this step, the fitness score (or the matching score) is
calculated, indicating that the solar tracker robot command with the highest fitness score is
the closest match. As a result, a breeding pool is created. The solar tracker robot command
strings that will be crossed over in the mating pool to produce a new offspring (solar tracker
robot command string) are here. Robot command strings with a higher fitness or matching
score are added to the mating pool more frequently. To have a better chance of mating
and producing offspring, the higher the fitness score, the more robot command strings are
added to the mating pool.
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Start

Input:
mutationRate
totalPopulation
target – string (angle)
population – character array (gene)
match – array with scores

Step 1: Population initialization

Step 2: Selection
Step 2a: Computing matching score
Step 2b: Building mating pool
Adding all members n-times according to the matching score

Step 3: Reproduction
Step 3a: Crossover
Step 3b: Mutation
Overwriting population with the new child

Output:
Executing the movement of the solar tracker

Stop

Figure 5. Simplified diagram of the genetic algorithm by which a solar tracker can track the Sun.

Reproduction is the third step. Reproduction is the crossover itself. Two random
robot command strings are taken from the mating pool and crossed over. Crossing over
is accomplished by joining the first half of the first robot command string with the other
half of the other robot command string. Mutation is a crucial component of the genetic
algorithm and is also present in biological organisms in genetics. When two very similar
robot command strings (the parents) cross, there is no way to find the target robot command
string (the child), which is where the motors should be positioned to produce the robot’s
most precise positioning. Mutating is the only way to obtain the target command string
for the robot in this situation. Mutation refers to altering the robot command string with
a random character and value. This indicates that there was a mutation in a gene (i.e.,
in a character from the robot’s command). This can be seen in biological organisms in
genetics, as a child with blue eyes can be the offspring of a parent with green eyes and
another parent with brown eyes. The new child will completely overwrite the following
population. This indicates that the new child will be in the mating pool, become a parent,
and be able to be crossed with another parent to produce his own offspring. The system
will continue to cross until the target robot command string is obtained. The child will
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create a new child. The number of generations required to obtain the target robot command
string varies, depending on the complexity of the command string. Each new child starts a
new generation. A target robot command string is created for one motor and then for the
other motor. After each generation, the robot’s command string is sent to the solar tracker,
which then starts tracking the Sun. After each generation, the program turns back to create
a new mating pool from the new generation.

2.3. Hardware Implementation

In Figure 6, the circuitry used in addition to the microcontroller board is visible.
The circuitry was made up of four photoresistors connected in series with four 1 kΩ
resistors that were connected to the first four analog input ports of the microcontroller.
Additionally, two 10 kΩ potentiometers were connected to the analog input ports A4 and
A5 to set the rotation speed and movement angle tolerances.

The servomotors were connected to the digital ports D9 and D10.
In the manner depicted in Figure 2, the photoresistors were connected, and in this

way, the robot moved in the same direction as the Sun, both horizontally and vertically. If a
solar panel was also attached, the robot could rotate the solar panel in the Sun’s direction,
increasing its efficiency by up to 30%.

The software on the microcontroller reads the photoresistors and controls the servo-
motors accordingly.

When wind sensors or anemometers are replaced with photoresistors, the algorithm
can also be extended to wind turbines.

Figure 6. Schematics of the solar tracker robot.

In Figure 7, the circuitry for the solar tracker robot can be seen, including the devel-
opment board with an ATmega328 microcontroller and breadboard. This circuitry can
also be used for simulation purposes. It is important to note that the potentiometers and
photoresistors are located outside the breadboard.

Figure 7. Circuitry for the solar tracker robot using an ATmega328 microcontroller development
board.
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3. Results
3.1. Experimental Results

The system had to be constructed using the block diagram in Figure 8. If we divided
the outer word using the x0y Cartesian coordinate system, as can be seen, then there
would be four photoresistors separated by walls to obtain light information from the four
quadrants. According to the x0y Cartesian coordinate system, there are two servomotors
that can facilitate movement. There is a breadboard with wires and electrical components
(potentiometers for the motors and resistors for the photoresistors). The development board
that oversees the entire system is the Digilent ZedBoard FPGA board. An ATmega328
microcontroller architecture that can be programmed in C language was chosen as the
preferred approach. The microcontroller was built on the FPGA system, due to the fact that
in the case of upgrading the system to a more performant microcontroller, this could be
accomplished just by reprogramming the FPGA.

Figure 8. Block diagram of the solar tracker robot.

In Figure 9, the results of the solar tracker robot experiment can be seen. The method
of gluing the servomotors together so that they could move horizontally and vertically can
also be seen. Furthermore, it is clear how the separation walls of the photoresistors were
constructed to receive light according to the four quadrants of the Cartesian system x0y.
The ATmega328 microcontroller was developed on the Zynq-7000 SoC of the ZedBoard
development board, which is used to control the entire system. The ZedBoard is easily
recognizable in the image. A breadboard with external circuitry that makes the system work
can also be seen. Photoresistors require resistors, and servomotors require potentiometers to
set the solar tracker’s rotation speed and tolerances for horizontal and vertical movements.

3.2. Discussions

The advantage of the system is that with two servomotors and a correct algorithm, a
solar tracker robot can be made which can follow the Sun, thus increasing the efficiency of
the solar panel. When the efficiency of a solar panel is increased, the space occupied by
solar panels can be reduced in a solar panel farm.

A possible disadvantage is that the genetic algorithm can sometimes take time before it
will reach a mature generation that can function as needed. It is also a task to try different
parameters of the genetic algorithm to find the best end result.

The idea of a solar tracker is not new. The novelty of this paper is to increase the
precision of a solar tracker with genetic algorithms. Other researchers have found that
efficiency can increase by up to 30% if a device is used that tilts the solar panels toward the
Sun. It is clear that rotating solar panels toward the Sun can increase their efficiency. The aim
of this paper is not to evaluate the efficiency of solar panel systems but to increase the
precision of a solar tracker robot using evolutionary algorithms. If the maximum efficiency



Machines 2023, 11, 430 13 of 16

of a solar panel is just above 25%, then an increase of 30% with a solar tracker would surely
compensate for the power consumption required for the servomotors and controller.

Figure 9. The solar tracker robot controlled by the Digilent ZedBoard FPGA board.

The genetic algorithm presented in this manuscript and the genetic algorithms of other
researchers that have been published in the scientific literature are compared in Table 2.

Table 2. Comparison of the parameters of the genetic algorithm of the proposed approach with other
similar methods.

GA Parameter Proposed
Approach

F. Yamasaki et al.
[31]

Jung-Shik
Kong et al. [32] K. Endo et al. [33] Sang-Ho

Choi et al. [34]

Total population 150 50 100 200 60
Generation

number 50 50 300 300 50

Crossover rate 0.75 0.9 0.08 0.8 0.92
Mutation rate 0.01 0.02 0.05 0.05 0.03
String length

(bits) 8 - - - 10

As can be seen in Table 2, the proposed approach has the parameters of the genetic
algorithm comparable to those of the known scientific literature. The total population was
slightly higher, because a high population value could result in greater diversity when
crossing. The generation number was quite low due to the fact that for the current approach,
50 was the maximum generation number when the system reached the desired maturity.
This was obtained after many trials. Sometimes, the generation number was 30 or even
lower. Compared to the results of other scientists, this is a very good result; the lower the
generation number, the better the genetic algorithm. The crossover rate was also lower
than that obtained by other researchers. The mutation rate was also very low. The last two
parameters show that the genetic algorithm does not need too many crossings or mutations
to obtain the desired result. The length of the string was not disclosed by the researchers,
who did not generate a command string to control the robot. The length of the string is the
length of the generated robot command string, and the length of this string differed for
each robot. To reduce the number of generations, the best solution is to use short strings
by having fewer bits, but if the command of the robot cannot be coded in fewer bits, then
there is no other solution than to use the command string regardless it’s length (e.g., 10, 12,
or even more bits).
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4. Conclusions

The genetic algorithm on how a solar tracker robot can follow the Sun and evolve, was
presented. With evolution, the solar tracker robot can be more precise in tracking the Sun.
The software implementation of the calculation method was tested on a real robotic system.

Both the method and the fundamental concept of the algorithms used were presented.
The original model was contrasted with studies in the specialized literature and the advan-
tages and differences of the presented method were highlighted.

The formulas used in the solar tracker robot program were highlighted in this paper.
Further enhancements can be made by implementing the genetic algorithm on other

platforms, such as FPGA boards with the Zynq-7000 SoC (e.g., the Zybo). A Raspberry Pi
can also be used to implement the system. The actual system was implemented in the C
programming language, but the system can be implemented in Python or Java. The best
enhancement could be to port the system to a full-sized solar tracker robot.

The calculation method and the movement control algorithms are original:

1. The algorithm was used by the solar tracker robot to track the Sun with more precision.
2. The algorithm was put in an implementable form for the computer source code.
3. The idea of how to glue the two motors in order for the solar tracker to be able to

make horizontal and vertical movements is original.
4. The genesis of all formulas was demonstrated and validated through controlled

robotic movement.
5. The robot was built, the circuit was made, and the software was written by the authors.
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Notations
The following symbols and abbreviations are used in this manuscript:

CdTe Cadmium tellurium
CIGS Copper indium gallium selenide
PDW Passive dynamic walking
DoF Degrees of freedom
3D Three-dimensional
AC Alternating current
DSP Digital signal processing
(0x, 0y) Coordinates
MEMS Microelectromechanical systems
ASCII American Standard Code for Information Interchange
f Fitness function
gi Gene (character)
ti Target gene (character)
Cp Crossover parameter
Gn Generation number
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GT Total generation number
MIN, MAX Minimum, maximum
Pm Random middle point
Mp Mutation rate or parameter
N Number of joints (N = 2)
K Total kinetic energy
P Potential energy
θi Joint variable for the ith joint
θ̇i First time derivative for θi
τi Generalized force (torque) at the ith joint
θ Generalized joint coordinates
M(θ) Mass matrix or kinetic energy matrix
C(θ, θ̇) Centrifugal and Coriolis forces
G(θ) Gravity force
Φ(θ, θ̇, θ̈) Generalized forces
mkk(θ) Inertia at joint k when joint k accelerates (mkk > 0)
mkj(θ) Inertia observed at joint k when joint j accelerates
ckii(θ) Coefficient of the centrifugal force at joint k when joint i is moving (ciii = 0, ∀i)
ckij(θ) Coriolis force at joint k when both joints i and j are moving
m1, m2 Masses
M Mass matrix, all the mass
θ̈ Linear acceleration terms
θ̇ Quadratic velocity terms
θ Nonlinear configuration terms
g Gravity acceleration vector
rci Location of the center of mass for link i
rcm Place of the center point of the mass
r Place of reference
dm Differential component of the mass at point r
mi Mass of particle i
ri Distance to particle i
DNAs Deoxyribonucleic acids
x0y Cartesian coordinate system
FPGA Field-programmable gate arrays
SoC System on a chip
GA Genetic algorithm
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