# Research on Multifractal Characteristics of Vehicle Driving Cycles

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Research Background

- -
- check the compliance of vehicle pollutant emissions with respect to the applicable emissions limits;
- -
- establish the reference vehicle fuel consumption and CO
_{2}performance; - -
- reduce the gap between type approval values and real world emissions.

#### 1.2. Introduction of the MF-DFA Method

#### 1.3. Statement of the Design Approach

## 2. Description of Different Driving Cycles

## 3. Description of the MF-DFA Method

#### 3.1. Calculation Steps of the MF-DFA Method

- (1)
- Constructing a new series $y(i)$

- (2)
- Dividing segments at equal intervals

- (3)
- Detrending

- (1)
- Determining the ${q}^{th}$ order fluctuation function for the full series:

- (2)
- Calculating the ${q}^{th}$ order generalized Hurst exponent and the multifractal singularity spectrum

#### 3.2. Extraction of Multifractal Characteristic Parameters

- (1)
- The generalized Hurst exponent parameters

- (2)
- The mass exponent spectrum ($\tau (q)~q$) parameter

- (3)
- The multifractal singularity spectrum ($f\left(\alpha \right)~\alpha $) parameter

## 4. Calculation of Multifractal Parameters for the Driving Cycles and Analysis of Results

#### 4.1. Calculation Modeling

#### 4.2. Calculation Results and Analysis

## 5. Conclusions

- (1)
- From Figure 6, the fluctuation functions of the four driving cycles satisfy a power-law relationship with scale s, which indicate that they are scale-free within the specified scale variation, have fractal characteristics. Meanwhile, it can be seen from Figure 6a–d that overall, the log-log curves of URRDC have the best linear relationship and the log-log curves of WLTC have the largest fluctuation.
- (2)
- From Figure 7, the generalized Hurst exponents of the four driving cycles decrease with the increase of $q$, which indicate the existence of irregular multifractal characteristics of each series. And by calculating the generalized Hurst exponent parameters, it is concluded that these exponents are all between 0 and 0.5, which indicate that the driving cycles have long-range anticorrelations. By comparing the values of $\Delta h(q)$, $\overline{h(q)}$ and ${S}_{h(q)}$, the multifractal strength in order from weak to strong is URRDC, NEDC, CLTC-P, and WLTC.
- (3)
- From Figure 8, the mass exponent spectrum curves of the four driving cycles are upwardly convex, further indicating that these cycles have multifractal characteristics. As mentioned above, a larger value of $\left|{K}_{\tau (q)}\right|$ indicates a more inhomogeneous distribution of the probability measures over the entire fractal structure of the time series, and a greater degree of nonlinearity. By comparing the magnitude of the $\left|{K}_{\tau (q)}\right|$, the inhomogeneity in the distribution of the driving cycles is concluded to be URRDC, NEDC, CLTC-P, and WLTC from lowest to highest, and this conclusion is the same as that of the generalized Hurst exponent curves.
- (4)
- From Figure 9, the multifractal singularity spectra of the four driving cycles are downward opening parabolas, also verifying that these cycles have multifractal characteristics. The width of the opening of each multifractal singular spectrum differs, indicating that the multifractal strength varies. By comparing the values of the width $\Delta \alpha $ of the multifractal singularity spectrum, it is concluded that the inhomogeneity of the probability measure distribution from the lowest to the highest is URRDC, NEDC, CLTC-P, and WLTC, which is the same conclusion as for the mass exponent spectrum parameters and the generalized Hurst exponent parameters.

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

EMS | Energy Management Strategies |

MF-DFA | Multifractal Detrended Fluctuation Analysis |

NEDC | New European Driving Cycle |

WLTC | World-wide harmonized Light duty Test Cycle |

CLTC-P | China Light-duty Vehicle Test Cycle for Passenger Car |

URRDC | Urban Road Real Driving Cycle |

DFA UDC | Detrended Fluctuation Analysis Urban Driving Cycles |

EUDC | Extra Urban Driving Cycle |

EUE | Economic Commission of Europe |

CATC | China Automotive Test Cycle |

CLTC | China Light-duty Vehicle Test Cycle |

CLTC-C | China Light-duty Vehicle Test Cycle for Commercial Car |

## References

- Mock, P.; Kühlwein, J.; Tietge, U.; Franco, V.; Bandivadekar, A.; German, J. The WLTP: How a New Test Procedure for Cars Will Affect Fuel Consumption Values in the EU. Int. Counc. Clean Transp.
**2014**, 9. [Google Scholar] - Tutuianu, M.; Bonnel, P.; Ciuffo, B.; Haniu, T.; Ichikawa, N.; Marotta, A.; Pavlovic, J.; Steven, H. Development of the World-Wide Harmonized Light Duty Test Cycle (WLTC) and a Possible Pathway for Its Introduction in the European Legislation. Transp. Res. Part D Transp. Environ.
**2015**, 40, 61–75. [Google Scholar] [CrossRef] - Marotta, A.; Pavlovic, J.; Ciuffo, B.; Serra, S.; Fontaras, G. Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure. Environ. Sci. Technol.
**2015**, 49, 8315–8322. [Google Scholar] [CrossRef] - Xing, J.; Liu, D.; Jiang, S.; Yu, H.; Liu, Y. Research on Energy Consumption Test Methods of Light-Duty Pure Electric Vehicles Based on China Automobile Test Driving Cycle. IOP Conf. Ser. Earth Environ. Sci.
**2021**, 835, 012016. [Google Scholar] [CrossRef] - Wang, Y.; Hao, C.; Ge, Y.; Hao, L.; Tan, J.; Wang, X.; Zhang, P.; Wang, Y.; Tian, W.; Lin, Z.; et al. Fuel Consumption and Emission Performance from Light-Duty Conventional/Hybrid-Electric Vehicles over Different Cycles and Real Driving Tests. Fuel
**2020**, 278, 118340. [Google Scholar] [CrossRef] - Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic Organization of DNA Nucleotides. Phys. Rev. E
**1994**, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series. Phys. A Stat. Mech. Its Appl.
**2002**, 316, 87–114. [Google Scholar] [CrossRef][Green Version] - Yuan, X.H.; Wang, Y.Y.; Xie, J.; Qi, X.W.; Yuan, Y.B.; Zhang, X.P. Detrended fluctuation analysis of electricity price for long-range correlation characteristics in electricity market. East China Electr. Power
**2009**, 37, 982–984. [Google Scholar] - Jiang, Z.Q.; Xie, W.J.; Zhou, W.X.; Sornette, D. Multifractal Analysis of Financial Markets: A Review. Rep. Prog. Phys.
**2019**, 82, 125901. [Google Scholar] [CrossRef][Green Version] - Kantelhardt, J.W. Fractal and Multifractal Time Series. arXiv
**2008**, arXiv:0804.0747. [Google Scholar] - Shang, P.; Lu, Y.; Kamae, S. Detecting Long-Range Correlations of Traffic Time Series with Multifractal Detrended Fluctuation Analysis. Chaos Solitons Fractals
**2008**, 36, 82–90. [Google Scholar] [CrossRef] - Zhao, X.; Shang, P.; Lin, A.; Chen, G. Multifractal Fourier Detrended Cross-Correlation Analysis of Traffic Signals. Phys. A Stat. Mech. Its Appl.
**2011**, 390, 3670–3678. [Google Scholar] [CrossRef] - Rizvi, S.A.R.; Dewandaru, G.; Bacha, O.I.; Masih, M. An Analysis of Stock Market Efficiency: Developed vs Islamic Stock Markets Using MF-DFA. Phys. A Stat. Mech. Its Appl.
**2014**, 407, 86–99. [Google Scholar] [CrossRef] - Du, W.; Kang, M.; Pecht, M. Fault Diagnosis Using Adaptive Multifractal Detrended Fluctuation Analysis. IEEE Trans. Ind. Electron.
**2020**, 67, 2272–2282. [Google Scholar] [CrossRef] - Wu, Z.; Zhang, L.; Yue, M. Low-Rate DoS Attacks Detection Based on Network Multifractal. IEEE Trans. Dependable Secur. Comput.
**2016**, 13, 559–567. [Google Scholar] [CrossRef] - Shang, P.; Wan, M.; Kama, S. Fractal Nature of Highway Traffic Data. Comput. Math. Appl.
**2007**, 54, 107–116. [Google Scholar] [CrossRef][Green Version] - Peng, J.S.; Jin, S.S. Multi-Fractal Analysis of Highway Traffic Data. Chin. Phys.
**2007**, 16, 365. [Google Scholar] [CrossRef] - Zhuo, W.; Tianran, W.; Mingzhe, Y.; Hong, W. Research on Working Condition Recognition in Cement Rotary Kiln Using Multifractal Method. Chin. J. Sci. Instrum.
**2009**, 30, 711–716. [Google Scholar] - Zhang, M.L. The Status Recognition Method of High Speed Train Based on Fractal and Singular Spectrum Analysis. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2014. [Google Scholar]
- Wang, Y.G.; Fu, J.T.; Li, P.F.; Kang, J.X. Comparative Analysis of WLTC and CLTC. China Auto
**2020**, 14–21. [Google Scholar] - GB 19578-2021; Fuel Consumption Limits for Passenger Cars. Nation Public Service Platform for Standards Information (China): Beijing, China, 2021. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=BBE32B661B818FC8E05397BE0A0AB906 (accessed on 11 January 2023).
- Wu, R.Y.; Luo, W.G.; Tan, Y.X.; Lan, H.L.; Pang, N. Research on intelligent hybrid search algorithm for urban road driving cycle characteristic parameters of electric vehicles. J. Chongqing Univ. Technol.
**2022**, 36, 36–44. [Google Scholar] - Sun, B.; Yao, H.T. Multi-Fractal Detrended Fluctuation Analysis of Wind Speed Time Series in Wind Farm. Trans. China Electrotech. Soc.
**2014**, 29, 204–210. [Google Scholar] - Lu, X.; Tian, J.; Zhou, Y.; Li, Z. Multifractal Detrended Fluctuation Analysis of the Chinese Stock Index Futures Market. Phys. A Stat. Mech. Its Appl.
**2013**, 392, 1452–1458. [Google Scholar] [CrossRef] - Li, Z.F. Study on Vibration Signal Based Fractal Feature Extraction Methods for Fault Diagnosis. Master’s Thesis, Chongqing University, Chongqing, China, 2013. [Google Scholar]
- Yang, X.; He, A.; Zhou, Y.; Ning, X. Multifractal Mass Exponent Spectrum of Complex Physiological Time Series. Chin. Sci. Bull.
**2010**, 55, 1996–2003. [Google Scholar] [CrossRef] - Lin, J.; Chen, Q. Fault Diagnosis of Rolling Bearings Based on Multifractal Detrended Fluctuation Analysis and Mahalanobis Distance Criterion. Mech. Syst. Signal Process.
**2013**, 38, 515–533. [Google Scholar] [CrossRef]

**Figure 3.**The speed trace for the CLTC test cycles. (

**a**) The speed trace for the CLTC-P test cycle; (

**b**) The speed trace for the CLTC-C test cycle.

**Figure 6.**Log-log curves of fluctuation function ${F}_{q}(s)$ versus scale s for each driving cycle. (

**a**) NEDC; (

**b**) WLTC; (

**c**) CLTC-P; (

**d**) URRDC.

$\mathit{h}(2)$ | ${\mathit{h}(\mathit{q})}_{\mathit{m}\mathit{i}\mathit{n}}$ | ${\mathit{h}(\mathit{q})}_{\mathit{m}\mathit{a}\mathit{x}}$ | $\mathbf{\Delta}\mathit{h}(\mathit{q})$ | $\overline{\mathit{h}(\mathit{q})}$ | ${\mathit{S}}_{\mathit{h}(\mathit{q})}$ | |
---|---|---|---|---|---|---|

NEDC | 0.042 | −0.039 | 1.911 | 1.951 | 0.814 | 0.860 |

WLTC | 0.036 | −0.015 | 2.182 | 2.197 | 0.950 | 0.993 |

CLTC-P | 0.036 | −0.015 | 2.068 | 2.083 | 0.891 | 0.935 |

URRDC | 0.024 | −0.015 | 1.843 | 1.858 | 0.782 | 0.831 |

NEDC | WLTC | CLTC-P | URRDC | |
---|---|---|---|---|

${K}_{\tau (q)}$ | 0.918 | 1.064 | 1.006 | 0.893 |

${\mathit{\alpha}}_{0}$ | ${\mathit{\alpha}}_{\mathit{m}\mathit{i}\mathit{n}}$ | ${\mathit{\alpha}}_{\mathit{m}\mathit{a}\mathit{x}}$ | $\mathbf{\Delta}\mathit{\alpha}$ | $\mathit{f}({\mathit{\alpha}}_{\mathit{m}\mathit{i}\mathit{n}})$ | $\mathit{f}({\mathit{\alpha}}_{\mathit{m}\mathit{a}\mathit{x}})$ | $\mathbf{\Delta}\mathit{f}$ | $\mathit{Z}$ | |
---|---|---|---|---|---|---|---|---|

NEDC | 0.087 | −0.091 | 2.024 | 2.115 | 0.488 | −0.127 | 0.615 | 0.188 |

WLTC | 0.048 | −0.049 | 2.289 | 2.338 | 0.653 | −0.070 | 0.723 | 0.043 |

CLTC-P | 0.047 | −0.049 | 2.179 | 2.229 | 0.652 | −0.110 | 0.763 | 0.045 |

URRDC | 0.030 | −0.044 | 1.950 | 1.994 | 0.714 | −0.070 | 0.785 | 0.038 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yuan, M.; Luo, W.; Lan, H.; Qin, Y.
Research on Multifractal Characteristics of Vehicle Driving Cycles. *Machines* **2023**, *11*, 423.
https://doi.org/10.3390/machines11040423

**AMA Style**

Yuan M, Luo W, Lan H, Qin Y.
Research on Multifractal Characteristics of Vehicle Driving Cycles. *Machines*. 2023; 11(4):423.
https://doi.org/10.3390/machines11040423

**Chicago/Turabian Style**

Yuan, Mengting, Wenguang Luo, Hongli Lan, and Yongxin Qin.
2023. "Research on Multifractal Characteristics of Vehicle Driving Cycles" *Machines* 11, no. 4: 423.
https://doi.org/10.3390/machines11040423