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Abstract: Improving the power quality and reactive injection capability of grid-PV systems represent
the most demanding and crucial tasks in power systems. In the conventional works, many types
of converters and regulating approaches have been designed for this goal. The multi-level inverter
(MLI) is the best solution for grid-PV systems since it helps to improve power quality while reducing
losses. However, the existing works face the key problems of the complex system model, increased
components utilization, computational burden, presence of harmonics, and high switching frequency.
Therefore, the proposed work aims to develop novel and advanced controlling techniques for
improving the reactive power compensation ability and power quality of grid-PV systems. The
original contribution of this paper is to implement an advanced soft-computing methodologies
for developing the controlling mechanisms. At first, an ATOM search optimization (AOS) based
MPPT controlling technique is used to extract the maximum electrical energy from the PV panels
under changing climatic situations. Then, the output voltage of PV is effectively regulated with
the help of a non-isolated high voltage gain DC-DC converter, which also supports the reduction
of the switching loss and frequencies. In order to generate the switching pulses for operating the
converter, a novel coyote optimized converter control (COCC) mechanism is developed in this work.
Moreover, a residual attention echo state reactive controller (RaERC) is implemented for generating
the controlling signals to actuate the switching components of the nine-level inverter. This kind of
controlling mechanism could highly improve the power quality of grid system with less processing
time. For assessment, the simulation and comparison results of the proposed controlling mechanisms
are validated and tested using various parameters.

Keywords: Maximum Power Point Tracking (MPPT); solar photovoltaic (PV) systems; ATOM search
optimization; coyote optimized converter control (COCC); residual attention echo state reactive
controller (RaERC); power quality; reactive power compensation

1. Introduction

In recent times, the renewable energy sources (RES) [1,2] have been widely used in
many applications owing to their benefits eco-logical nature, reduced cost, zero emissions,
etc. Among other sources, solar photovoltaic (PV) [3–5] systems are mainly used in most
of the power system applications, since it effectively satisfying the energy demands with
minimal cost consumption. However, extracting the maximum solar energy [6–8] from the
PV panels remains one of the challenging tasks due to varying changing climatic conditions.
Due to their inherent ability to handle high voltages, multi-level inverters (MLIs) [6,9,10]

Machines 2023, 11, 384. https://doi.org/10.3390/machines11030384 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11030384
https://doi.org/10.3390/machines11030384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-3849-6051
https://doi.org/10.3390/machines11030384
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11030384?type=check_update&version=1


Machines 2023, 11, 384 2 of 32

have been extensively used in a variety of modern applications. MLIs can give multiple
levels of output with the least amount of composition when switching out appliances.
Unlike the traditional single level inverter, the multilevel inverter [11–14] serves as the
score seeding for multi switching. MLI has the ability to generate typical output voltage
levels by switching inverter groups. In the case of MLI [15–19], the output provided by the
converter will also have a considerably decreased output waveform as the level of voltage
rises. In addition, the key benefits of using MLI in grid-PV systems [20–23] are as follows:

• Increased power quality
• Minimal switching loss
• Reduced harmonics
• Better compatibility

However, the reactive power compensation and power quality improvement in grid-
PV systems [24–27] using multilevel inverter are the major and very challenging processes.
In the existing works [28–30], the different types of controlling techniques, converter and
inverter topologies used for power quality improvement and reactive power compensa-
tion. Stonier et al. [31] deployed a cascaded multilevel inverter topology for improving
the quality of power in the solar PV systems. This work mainly objects to regulate the
output voltage by properly maintaining the inverter output voltage and frequency. Here,
three different types of inverter controlling technique, i.e., PI, FLC, and ANN, have been
implemented to efficiently resolve the power quality problems. However, this required
to reduce the level of harmonics in order to ensure better system performance. Prasad
et al. [32] deployed a dynamic voltage restorer (DVR) incorporated with 23-level inverter
topology for enhancing the power quality of grid-connected systems. Here, the purpose of
using this inverter topology was to minimize the cost, count, and size of components used
in the circuit design. In addition, the incremental conductance based MPPT [33] controlling
technique has been deployed to obtain the maximum power from the PV panels. The key
benefits of this work were reduced voltage sag, swell, and enhanced power quality. Yet, it
could be very difficult to understand the system model, which degrades the performance
of entire model. Dhineshkumar et al. [34] utilized a nine-level inverter for resolving the
power quality problems in the solar PV systems. Here, the boost DC-DC converter was
utilized to increase the voltage gain output with reduced loss.

In order to pinpoint the problems with producing more levels at the output, research
is [35] conducted on various multilevel inverter types, including symmetric, asymmetric,
hybrid, and modularized multilevel inverters. In order to build a novel multilevel inverter
topology in the future, a summary of the significant challenges in multilevel inverters
with reduced switch counts is offered. Different symmetrical, asymmetrical, and hybrid
MLI topologies [36] were created using different numbers of switches, capacitors, and
diodes in the inverter circuit. Additionally, all setups’ total standing voltages and THD
generation are analyzed. Using a novel switched source, MLI [37] can function in symmetric
and asymmetric modes is suggested. Six power switches and two voltage sources are
included in the design of the proposed inverter. In order to increase system stability
by lowering system harmonics, a 25-level CHB MLI is introduced. So that the proper
sinusoidal waveform [38] of the grid is maintained, an MLI provides a low distorted
output waveform and restricted voltage stress on the switching devices. The fault-tolerant
method can directly control the on–off process of the inverter reconfiguration unit through
the driving signal of the insulated gate bipolar translator (IGBT) [39], which is simple
and stable.

The fault-tolerant method does not require the switching operation between the
primary power switching device and the spare power switching device of the inverter.
Integrating a modified capacitor-assisted extended boost (MCAEB) quasi-Z Source 7 level
18 switch inverter with the grid is presented using a sliding mode control (SMC) based
on a new reaching law [40]. In order to control the current flow between the inverter and
the grid, an SMC-based controller was put into place. The proposed single T-type and
double H-bridge multilevel inverter (STDH-MLI) [41] uses three dc voltage sources in its
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basic unit to generate 15 levels at the output. The proposed architecture can be expanded
by connecting more dc voltage sources in the T-type section. The cost of the system is
reduced by using the fewest possible switches [6]. This design employs a square wave
switch instead of pulse width modulation to avoid switching losses. Thus, the pulsating
AC output voltage waveform’s harmonics and total harmonic distortion (THD) have been
decreased. This paper [42] introduces a new structure for a multi-level inverter based on
reduced switch basic modules. The proposed basic module requires fewer switches and
auxiliary devices.

In addition, a lesser number of on-state switches for the synthesis of each voltage
level results in less conduction losses, which enhances the converter efficiency. Since active
power filters (APF) are frequently employed in industry for harmonic compensation, quick
and efficient APF control is crucial. A multi-objective, multi-level converter [43] control
can be implemented using the multi-objective, single-factor, multistep finite control set
model predictive control (FCS-MPC) of an APF presented in this study. Chakravarthi,
et al. [44] developed a double boost multilevel inverter topology for resolving an optimal
power penetration problem of the solar-PV systems. The purpose of this work was to
deploy an optimal controlling strategy for achieving the maximum power output from
the solar PV systems. Moreover, an adaptive hysteresis current controlling scheme has
been utilized to provide the optimal power support to the grid systems. The primary
advantages of this work were reduced switching frequency, cost, and harmonics. Jahan,
et al. [45] utilized an advanced controlling technique for enhancing the power quality of
a grid-tied system. Here, the 15-level neutral point champed (NPC) inverter has been
used to obtain an increased power quality outputs. Moreover, it motivates to improve
the capability of fault handling, reference tracking, and reduce the level of harmonics
by using a robust PIR+HC+LC controlling mechanism. It incorporates the functions of
standard PIR controller, lead compensator (LC), and harmonic compensator (HC). The
advantages of this work included improved controlling performance, stability, robustness,
and high processing speed. Mukundhan et al. [46] deployed a H-Bridge multilevel inverter
topology for enhancing the power quality of grid-PV systems. However, the existing
works remain limited by the major problems of increased switching frequency, power
loss, reduced voltage profile, and complex system design. Therefore, the proposed work
aims to implement to optimization based controlling technique for improving the power
quality and reactive power injection capability in grid-PV systems. The major research
contributions of this paper are as follows:

• To extract the maximum possible energy yield from the PV panels, an advanced ATOM
search optimization (ASO) based MPPT controlling technique is developed.

• To efficiently regulate the output PV voltage with reduced switching frequency and
losses, a non-isolated high voltage gain DC-DC converter topology has been utilized.

• To generate the controlling signals for operating the converter, a novel coyote opti-
mized converter control (COCC) mechanism is implemented.

• To improve the power quality with better reactive power injection capability, a nine-
level inverter topology is used, which is properly operated by using the residual
attention echo state reactive controller (RaERC).

• To validate and test simulation results of the proposed COCC-RaERC controlling
scheme, an extensive analysis has been performed.

The other portions of this paper are as follows: Section 2 provides a clear explanation
for the proposed CCOC-ReERP controlling techniques used in grid-PV systems with their
appropriate schematic representation and algorithms. Section 3 validates the simulation
results of the proposed work by using various evaluation indicators. Finally, the overall
paper is summarized with the future work in Section 4.

2. Proposed Methodology

This section provides the clear explanation for the proposed controlling techniques
used for improving the capability of reactive power compensation in grid-PV systems. The
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original contribution of this work is to develop an optimization based controlling algorithms
for increasing the power quality of grid systems with better reactive power compensation
capability. Here, an atom search optimization (ASO) based MPPT controlling technique
is implemented to extract the maximum power field from the PV panels under different
climatic conditions. After that, a non-isolated high voltage gain DC-DC converter is used to
regulate the output PV voltage, since the PV voltage is random and unregulated that affects
the overall system performance. To increase the voltage gain of DC-DC converter, a novel
controlling algorithm, named coyote optimized converter control (COCC) is developed in
this work. Moreover, the overall power quality of the grid-PV system is highly improved
with reactive power injection ability by using a Residual Attention echo state reactive
controller (RaERC). It helps to improve the inverter controlling operations of the overall
system. The working flow and schematic representation of the proposed COCC-RaERC
controlling system are shown in Figures 1 and 2, respectively. The different types of
methodologies and algorithms implemented in the proposed framework are as follows:

• An ATOM search optimization (ASO)-based MPPT controlling algorithm
• Coyote optimized converter control (COCC)
• Residual attention echo state reactive control (RaERC)
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2.1. ASO Based MPPT Controlling

In this work, the maximum solar power is obtained from the PV panels by using
an advanced ASO based MPPT controlling technique. In the existing works, different
types of MPPT controllers have been used to obtain the maximum energy yield from the
PV source under different climatic conditions. Among other controlling techniques, the
optimization based MPPT models are widely used in the grid-PV applications, since they
highly satisfy the energy demand according to the requirements of load. Moreover, the
optimal solution provided by the optimization is used to identify the MPP for gaining
the maximum energy. When compared to the existing optimization techniques, an ATOM
search is one of the newest and most intelligent optimization algorithms, which efficiently
solves the multi-objective problems with improved convergence rate. Moreover, it identifies
the best optimal solution with reduced number of iterations. Typically, the AOS is a meta-
heuristic optimization technique, which is developed based on the molecular dynamics.
Figure 3 represents the work flow model of the ASO algorithm used for MPPT controlling.
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In this technique, the duty cycle, PV cell temperature, and solar irradiance are initial-
ized as the inputs, and the best optimal solution is produced as the output that helps to
identify the MPP for power tracking. Initially, the total interaction force on jth atom at mth
dimension is estimated by using the following equation:

Ij,m
F (t) = ∑k ∈Satom

randkIk,m
F (t) (1)

where randk is the random number in the range of 0 to 1, and Satom represents the subset
of atom population. In order to increase the exploitation ability of optimization, each atom
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is required to interact with few atoms with best fitness vale of its
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√
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where Natom is the total number of atoms in the atomic system, t is the current iteration, and
It represents the maximum number of iterations. Here, the interaction force is considered as
the gradient of Lennard-Jones (L-J) potential, and its revised version with positive attraction
and negative repulsion forces are estimated by using the following equation:

Ijh,m
F (t) = −ϑ(t)
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2×

(
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)−13
−
(

dj,h(t)
)−7

]
×
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where ϑ(t) represents the depth function used for adjusting the repulsion or the attractive

regions, dj,h(t) is the dynamic parameter pj,h

α(t) , pj,h is the position distance vector = ỹj − ỹh,
→

pj,h denotes the position vector between jth atom and any random atom, and α(t) is the
length scale. Then, the parameter ỹj =

(
yj1, yj2, yj3

)
is the position vector of jth atom, and

ỹh =
(
yh1, yh2, yh3

)
is the position vector of mth atom. Moreover, pj,h is formulated by

using the following model:

pj,h =
∣∣∣∣∣∣ỹj − ỹh

∣∣∣∣∣∣= √(yj1 − yh1

)2
+
(

yj2 − yh2

)2
+
(

yj3 − yh3

)2
(4)

Consequently, the depth function is computed by using the following equation:

ϑ(t) = ρ

(
1− t− 1

T

)
e−

20t
T (5)

where ρ represents the depth weight is equal to 50. Moreover, the scaled distance is
computed between two atoms by using the following model:

dj,h(t) =


DC if

→
pj,h < pj,h/α(t)

DC − (Rd × ∆D) if 0 <
→

pj,h < pj,h/α(t)

DC + (Rd × ∆D) if
→

pj,h > pj,h/α(t)

(6)

Then, the relation between the PV voltage and duty cycle is estimated as shown below:

PVV =
(

1− dj,h
)
×V (7)

After that, the collision diameter is estimated according to the length scale α(t) as
shown in below:

α(t) = || yjh(t),
∑k ∈Satom ykh(t)
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Consequently, the depth function is computed by using the following equation: 

(t)
|| (8)

The resultant geometric constraint force is computed based on the weighted position
difference between each atom and best atom by using the following model:

Ğ
m
j (t) =
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where fj(t) is the fitness function value of jth atom at iteration t, fb(t) and fw (t)are the 
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(9)

where ym
best(t) indicates the position of the best atom in mth dimension,
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eration of jth atom with dimension m at iteration t is computed by using the following
equation:

Am
j (t) =

Ij,m
F (t)

mj,m
s (t)

+
Ğ

m
j (t)

mj,m
s (t)

(10)

ρ
(

1− t−1
T

)
e−

20t
T × ∑

k ∈Satom

rk

[
2×(dk,h(t))

−13−(dk,h(t))
−7]

mk
s (t)

×
(

ym
k (t)−ym

j (t)
)

∣∣∣∣∣∣ỹj−ỹk

∣∣∣∣∣∣
2

+
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where mj,m
s (t) indicates the mass of atom j in the mth dimension at iteration t, and is

estimated by using the following model:
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e
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fj(t)−fb(t)

fw(t)−fb(t)

∑Natom
r=1 e

− fr(t)−fb(t)
fw(t)−fb(t)

(12)

where fj(t) is the fitness function value of jth atom at iteration t, fb(t) and fw (t) are the
fitness values of the best and worst atoms at iteration t, respectively. Finally, the relation
between the PV voltage and current is estimated as shown below:

IPV =
SG

SNatom
G

×
(

INatom
1 +

(
PVT − PVNatom

T

))
(13)

IR = I2× exp
(
Am

j (t) (V+I3)

dflcPVT
−1)

(14)

ID =
V− I3

R1
(15)

IS = IPV − IR − ID (16)

where Am
j (t) is electron charge, INatom

1 short circuit current at standard test conditions,

GNatom
solar solar irradiance at standard test conditions, I2 saturation current, I3 current at the

series resistance, df ideal factor, and lc the Boltzmann constant.
R1 denotes parallel resistance, IPV photo current, IR parallel resistance current, and ID

diode current. Then, the PV power is obtained based on the optimal solution of voltage
and current, as shown below:

PVP = PVV×IS (17)

The following Algorithm 1 illustrates the steps involved in the ASO-MPPT controlling
model.

2.2. Non-Isolated High Voltage Gain DC-DC Converter

In this work, a non-isolated high voltage gain DC-DC converter has been used to
properly regulate the output voltage of PV, because the PV output is naturally unregulated.
It may disrupt the overall performance and efficiency of the grid system. Hence, it must
be properly regulated and boosted for obtaining the maximum output voltage. Thus, the
proposed work aims to utilize an advanced non-isolated high voltage gain DC-DC converter
for voltage regulation and boosting. This type of converter is more suitable for large-scale
applications since it highly improves the voltage with minimal loss factor. Moreover, it
can operate with the reasonable duty cycle, and it incorporates the switched inductor
structure with the dual boost topology. When compared to the other DC-DC converters,
it has the key benefits of reduced switching stress, switching loss, high voltage gain, and
efficiency. To improve the performance of converter, a novel COCC is implemented in this
work, which generates the controlling pulses for operating the switching components of
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the converter. The circuit representation of the non-isolated high gain DC-DC converter
is shown in Figure 4, and its modes of operation are represented in Figure 5a–d. During
mode 1, the switch SW 1 is in on state, SW 2 is in off state, the diodes D1, D2, D6, and D8
are forward biased, and D3, D4, D5, and D7 are reverse biased. In mode 2, the switches
are in the same state, but the diodes D1 and D2 are forward biased, and D3–D8 are reverse
biased. During mode 3, both switches are in off state, diodes D1, D2, D4, and D5 are reverse
biased, and D3, D6, D7, and D8 are forward biased. Finally, the switches SW 1 is in off state,
and SW 2 is in on state during mode 4; diodes D4 and D5 are forward biased, while D1, D2,
D3, D6, D7, and D8 are reverse biased.

Algorithm 1: ASO based MPPT Controlling.

Input: Initialize Duty cycle DC, cell temperature PVT, solar irradiance SG;
Output: Optimal solution;
Procedure:
Step 1: The total interaction forces acting Ij,m

F (t) on the jth atom in mth dimension as shown in
Equation (1);
Step 2: To make algorithm more exploitation at final iteration, each atom needs to interact as few
atoms with better fitness values as computed in Equation (2)
Step 3: The interaction force is the gradient of Lennard-Jones (L-J) potential, the revised version of
this model with positive attraction and negative repulsion forces as represented in Equation (3)
Step 4: The depth function is computed by using Equation (5);
Step 5: The scaled distance is estimated between two atoms as shown in Equation (6);
Step 6: The relation between the solar panel voltage and duty cycle is estimated by using
Equation (7);
Step 5: The length scale α(t) is estimated using Equation (8);
Step 6: The resulting geometric constraint force is computed using Equation (9);
Step 7: The acceleration of the jth atom in mth dimension at iteration t is calculated as represented
in Equation (10);
Step 8: The relation between the PV current and voltage is estimated as shown in Equation (12);
Step 9: Finally, the optimal solution of voltage and current is estimated to obtain the power as
represented in Equation (17);
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Figure 4. Equivalent circuit model of isolated high voltage gain DC−DC converter.

2.3. Coyote Optimized Converter Control (COCC)

The main purpose of implementing this controlling algorithm is to obtain an increased
output voltage with reduced switching losses and frequency. The proposed COCC is
developed based on the coyote optimization technique, which returns the best solution for
the optimal selection of parameters
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pulses for operating the switching components of the DC-DC converter. In this controlling
algorithm, the PV output voltage, error signal, and sampling time are taken as the inputs,
and the optimal selection of parameters is produced as the output. Figure 6 shows the
working flow of the CO algorithm.

The coyote optimization algorithm is a population-based algorithm that simulates the
path that coyotes take in their adaption to their surroundings and social activities. In the
course of its operation, it combines swarm intelligence with natural heuristics. Moreover, it
provides a balance between exploration and creation for optimization procedures. Specif-
ically, this optimization technique has the major benefits of high convergence rate, high
processing speed, and low computational complexity. In this technique, finding the optimal
solution in the searching space consumes low time with minimal iterations. Therefore, the
computational burden of the COCC is effectively reduced, and it is more reliable in nature.
Hence, the proposed COCC performs better than the conventional algorithms. Initially, the
set of decision variables of coyote are initialized based on the following model:

St
C
(
yc, pk

)
= ẑ =

(
z1, z2, . . . , zTsp

)
(18)

where SC is the social condition of the yth
c coyote, and pth

k is the pack at time of instant
t. Then, the random values are assigned inside the searching space for the coyote with
dimension k, and is estimated as follows:

St
C
(
yc, pk

)
(k) = Vk

n + rand(0, 1)×
(

Vk
n −Vk

o

)
k = 0, 1, 2, . . . , n

(19)

where Vn indicates the maximum voltage, Vo is the initial voltage, and kth indicates the
decision variable. The coyotes’ adaptation in the respective current social conditions are
evaluated by using the following models:

fitt(yc, pk
)
= fun

(
St

C
(
yc, pk

))
(20)

where fitt(yc, pk
)

indicates the fitness value of the yth
c coyote of the pth

k pack at instant of
time t, and fun(.) is the objective function. Here, the minimization problem is considered,
in which the alpha value of yth

c coyote of the pth
k pack at tth instant time is computed by

using the following model:

αt((yc, pk
))

= {S t
C
(
yc, pk

)
| argmin yc={1,2,..., Ny}fun

(
St

C
(
yc, pk

))
} (21)

where Ny indicates the number of coyote population. Then, the cultural tendency of the
pack is computed using the following model:

Ct((yc, pk
))
(k) =


Rt

(Ny+1)
2 , k

((
yc, pk

))
, Ny = odd[

Rt
(Ny)

2 , k
+Rt

(Ny+1)
2 , k

]
((yc,pk))

2 , Otherwise

(22)

where Rt((yc, pk
))

represents the ranked social conditions of all coyotes of the pth
k pack at

time t for every k in the range [1, Tsp]. Consequently, the birth of new coyotes is updated
based on the combination of the social conditions with two parents, as shown below:

ψt((yc, pk
))
(k) =


St

C
(
yc, pk

)
(r1, k) esig < Spr

St
C
(
yc, pk

)
(r2, k) esig ≥ Spr

randk else
+ Apr (23)

where r1 and r2 are the random coyotes from the r1 pack, Spr is the scatter probability, Apr is
the association probability, randk is a random number inside the decision variable bound of
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the kth dimension and esig is a error signal. Moreover, the new social condition is updated
by using the alpha value with the following condition:

NewSt
C
(
yc, pk

)
= St

C
(
yc, pk

)
+ r1×ϕ1 + r2×ϕ2 (24)

where NewSt
C
(
yc, pk

)
indicates the coyote’s new social condition, ϕ1 is the alpha influence,

and ϕ2 is the pack influence, which are estimated as follows:

ϕ1= αt((yc, pk
))
− St

C
(
yc, pk

)
(25)

ϕ2= Ct(yc, pk
)
− St

C
(
yc, pk

)
(26)

The coyote’s cognitive capacity is determined. If the new social condition is better
than the older one, then it kept, as illustrated using the following equation:

St+1
C
(
yc, pk

)
=

{
NewSt

C
(
yc, pk

)
Nfitt(yc, pk

)
< fitt(yc, pk

)
St

C
(
yc, pk

)
otherwise

(27)

where Nfitt(yc, pk
)
= fun

(
NewSt

C
(
yc, pk

))
indicates the fitness value for a new population.

Based on this process, the best controlling parameters are selected by using the following
equations:
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th pack 

at time t for every k in the range [1,  Tsp]. Consequently, the birth of new coyotes is up-

dated based on the combination of the social conditions with two parents, as shown be-

low: 

ψt((yc, pk))(k) = {

SC
t (yc, pk)(r1, k) esig < Spr

SC
t (yc, pk)(r2, k) esig ≥ Spr

randk else

+ Apr   (23) 

where r1 and r2 are the random coyotes from the r1 pack, Spr is the scatter probability, 

Apr is the association probability, randk is a random number inside the decision variable 

bound of the kth dimension and esig is a error signal. Moreover, the new social condition 

is updated by using the alpha value with the following condition: 

NewSC
t (yc, pk) = SC

t (yc, pk) + r1 ∗ φ1 + r2 ∗ φ2  (24) 

where NewSC
t (yc, pk) indicates the coyote’s new social condition, φ1 is the alpha influ-

ence, and φ2 is the pack influence, which are estimated as follows: 

φ1 = αt((yc, pk)) − SC
t (yc, pk)  (25) 

φ2 = ℂt(yc, pk) − SC
t (yc, pk)   (26) 

The coyote’s cognitive capacity is determined. If the new social condition is better 

than the older one, then it kept, as illustrated using the following equation: 

SC
t+1(yc, pk) = {

NewSC
t (yc, pk) Nfit

t(yc, pk) < fit
t(yc, pk)

SC
t (yc, pk) otherwise

 (27) 

where Nfitt(yc, pk) = fun(NewSC
t (yc, pk)) indicates the fitness value for a new population. 

Based on this process, the best controlling parameters are selected by using the following 

equations: 

𝓀p =
Nfitt(yc, pk)

L
 (28) 

𝓀i = 𝓀p ∗ 2 ∗ L (29) 

𝓀d = 𝓀p ∗ Nfit
t(yc, pk)  (30) 

By using these controlling parameters, the controlling pulses are generated to operate 

the switching devices, which helps to highly improve the output voltage of PV. Algorithm 

2 illustrates the steps involved in the COCC model.  

Algorithm 2 Coyote Optimized Converter Control (COCC). 

Input: Output Voltage PV_V , error signal E_s and sampling time T_sp; 

p×Nfitt(yc, pk
)

(30)

By using these controlling parameters, the controlling pulses are generated to operate
the switching devices, which helps to highly improve the output voltage of PV. Algorithm
2 illustrates the steps involved in the COCC model.
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Algorithm 2: Coyote Optimized Converter Control (COCC).

Input: Output Voltage PVV, error signal Es and sampling time Tsp;
Output: Optimal selection of parameters;
Step 1: The social condition SC (set of decision variables) of the yth

c coyote of the pth
k pack in the t

th instant of time is computed by using Equation (18);
Sampling Time is estimated by Ts = 1/Fs//Fs − switching frequency
Step 2: The random value is assigned inside the searching space for the yth

c coyote of the pth
k pack

in kth dimension by using Equation (19);
Step 3: After that, the coyotes’ adaptation in the respective current social conditions are evaluated
by using Equation (20);
Step 4: The minimization problem is considered in this model, where the alpha of the yth

c coyote
of the pth

k pack in the tth instant of time is estimated by using Equation (21);
Step 5: The cultural tendency of the pack is computed based on Equation (22);
Step 6: The birth of a new coyotes is updated based on the combination of the social conditions of
two parents (randomly chosen) as shown in Equation (23);
Step 7: The coyote’s new social condition is updated with the alpha pack influence through
Equations (24)–(26);
Step 8: The coyote’s cognitive capacity decide if the new social condition is better than the older
one to keep it, which is represented in Equation (27);
Step 9: Finally, the best controlling parameters kp, ki, kd are selected based on the
Equations (28)–(30);

2.4. Nine-Level Inverter

In this work, the nine-level inverter topology has been utilized to improve the power
quality of the grid-PV systems with the reactive power injection capability. Here, a new
structure of multilevel inverter has been utilized that efficiently reduces the presence of
harmonics for increasing the quality of output power. One of the primary advantages of
using this inverter is that it requires only a single gate driver circuitry, where the collector
and emitter are bi-directionally configured. The proposed MLI structure demonstrated in
this work can generate nine levels using just one DC supply and seven power electronic
components (six unidirectional and one bidirectional). One insulated gate bipolar transistor
(IGBT), four diodes, and one chip make up the bidirectional device used in this layout. This
device has one major advantage over conventional bidirectional devices: it only needs one
gate driver circuitry, as opposed to the two drivers required by bidirectional devices based
on the common collector and common emitter arrangement. Additionally, the physical
dimensions of the bidirectional device with a single chip packed are practically identical to
those of the unidirectional device with the same ratings. As a result, a single chip packed
bidirectional device requires less room to implement and is smaller than an inverter.

The equivalent circuit model of the proposed nine-level inverter topology is shown in
Figure 7, and its modes of operation are illustrated in Figure 8a–d. Moreover, the switching
states with charging C, discharging DC, and no effect NE models are illustrated in Table 1.
As shown in this model, the switches Sb1 and Sb2 are complementary to the switches
Sa1 and Sa2 in all states of switching. In most of the states, the switches Sc1 and Sc2 are
complementary to each other, excluding the states of S2, S5, S8, and S11. So, consider the
switches Sai, Sbi, Sci (i.e., i = 1, 2), and their switching functions AS1 are computed by using
the following equations:

Sai =

{
1 if Sai is on
0 if Sai is off

, i, 1, 2 (31)

Sbi =

{
1 if Sbi is on
0 if Sbi is off

, i, 1, 2 (32)

Sci =

{
1 if Sci is on
0 if Sci is off

, i, 1, 2 (33)
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AS1 =

{
1 if AS1 is on
0 if AS1 is off

, i, 1, 2 (34)

Machines 2023, 11, x FOR PEER REVIEW 15 of 33 
 

 

Sci = {
1 if Sci is on
0 if Sci is off

, i, 1,2  (33) 

AS1 = {
1 if AS1 is on
0 if AS1 is off

, i, 1,2  (34) 

Consequently, the output inverter voltage is computed by using the following model: 

Vab = Vad + Vdc + Vce + Veb  (35) 

Vdc = (1 − Sa2)V1  (36) 

Vce = −VC2  (37) 

Veb = (1 − AS1)[Sc2VC2 − Sc1VC1]  (38) 

Vab = (Sb2 − Sa2)V1 − (Sb2 + Sc1 − 1)VC1 − (Sb2 − Sc2)VC2  (39) 

Table 1. Switching states of inverter. 

State Sa1 Sa2 Sb1 Sb2 Sc1 Sc2 AS1 
Charging 

C1 C2 

S1 1 0 0 1 0 1 0 NE NE 

S2 1 0 0 1 0 0 1 NE C 

S3 1 0 1 0 0 1 0 DC DC 

S4 1 0 0 0 1 0 0 C C 

S5 1 0 1 0 0 0 1 DC NE 

S6 1 0 1 0 1 0 0 NE NE 

S7 0 1 0 1 0 1 0 NE NE 

S8 0 1 0 1 0 0 1 NE DC 

S9 0 1 0 1 1 0 0 DC DC 

S10 0 1 1 0 0 1 0 C C 

S11 0 1 1 0 0 0 1 C NE 

S12 0 1 1 0 1 0 0 NE NE 

 

Figure 7. Equivalent circuit model of nine-level inverter. Figure 7. Equivalent circuit model of nine-level inverter.

Table 1. Switching states of inverter.

State Sa1 Sa2 Sb1 Sb2 Sc1 Sc2 AS1
Charging

C1 C2

S1 1 0 0 1 0 1 0 NE NE

S2 1 0 0 1 0 0 1 NE C

S3 1 0 1 0 0 1 0 DC DC

S4 1 0 0 0 1 0 0 C C

S5 1 0 1 0 0 0 1 DC NE

S6 1 0 1 0 1 0 0 NE NE

S7 0 1 0 1 0 1 0 NE NE

S8 0 1 0 1 0 0 1 NE DC

S9 0 1 0 1 1 0 0 DC DC

S10 0 1 1 0 0 1 0 C C

S11 0 1 1 0 0 0 1 C NE

S12 0 1 1 0 1 0 0 NE NE

Consequently, the output inverter voltage is computed by using the following model:

Vab = Vad + Vdc + Vce + Veb (35)

Vdc = (1− Sa2)V1 (36)

Vce = −VC2 (37)

Veb = (1−AS1)[Sc2VC2 − Sc1VC1] (38)

Vab = (Sb2 − Sa2)V1 − (Sb2 + Sc1 − 1)VC1 − (Sb2 − Sc2)VC2 (39)
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2.5. Hybrid Residual Attention Echo State Reactive Controller (RaERC)

The hybrid RaERC controlling technique is mainly developed for improving the per-
formance of inverter by reducing the harmonics with better reactive power compensation
capability. The main contribution of the proposed work is to develop a computationally
efficient reactive power compensation system for grid-PV systems. For this purpose, a
nine-level inverter topology has been utilized in this work, which improves the capability
of reactive power injection with increased power quality. The controlling signals allowed
to operate the switching components of the nine-level inverter has been generated by
using the proposed RaERC. This technique helps to reduce the harmonic contents with
increased power quality outputs, and further supports to improve the capability of reactive
power support. This technique considers the input of output PV voltage, current, reference
voltage and current, and produces the control signal as the output. Initially, the hidden
layer process is initialized by using the following models:

Fx =
{

VDC, IPV , VRe f , IRe f

}
(40)

Fx(r + 1) = ft

(
wtjsi(r) + wteFx(r)

)
(41)

where Fx(r + 1) & Fx(r) are the feature matrix of voltage and current and rth and r + 1th

rounds, wtj represents the reservoir matrix with weight values from feature matrix, wtr

indicates the reservoir matrix with internal states, si(r + 1) is the state matrix harvested
internally, and ft(.) denotes reservoir activation function. After that, the connectivity of
reservoir weight is updated according to the weight matrix, as shown below:

wt(t + 1) =
(

1 + Gj(r)
)
× Fj

x(r) (42)

where j indicates the feature matrix indices, Gj(r) denotes the feature gradient matrix at
rth round, and wtj(r + 1) represents the updated weight matrix at the rth round. Then, the
output of reservoir is calculated as follows:

YR(r + 1) = ht

(
wtoFj

x(r + 1)
)

(43)

where wto represents the weight matrix from output neuron, and ht(.) indicates the eval-
uated reservoir decision making function. Moreover, the dropout factor is estimated by
using the following model:

TD(r) =
1
2

(
n−∑n

r=1 δ× wtj× YR(r)
)

(44)

where δ indicates the dropout factor, w′r represents the weight value of the rth target vector,
TD(t) is the train data with D dimension, and n is the number of neurons. After that, the
output feedback scaling factor is updated with the forward pass by using the following
equation:

ct = TD(t)� at + h′t( fcurrent(t)) (45)

where ct indicates the feedback signal, at represents the combination of feedback and
feature map, and h′t is the activation function for feedback mechanism. Moreover, the
activation function of the hidden layer is defined based on the following model:

h′t(r) = 1/
(

1 + exp(−Bn(r))
)

(46)

where n is the number of neurons and Bn indicates the bias value = weighting sum total at
the nth neuron, calculated as follows:

Bn = ∏n
r=1 w′rYR(r) (47)
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Then, the sum of output is estimated according to the error signal, as shown below:

φ =
1
2 ∑N

d=1(Pd − Td) (48)

Pr= ct(TeD) (49)

TeD= testdata
{

VDC, IPV , VRe f , IRe f

}
(50)

where Pr is the output actual value and N is the total number of neurons. Based on
the output value, the controlling parameter that helps to generate the switching pulses
for operating switching devices of the inverter is generated. This efficiently reduces the
harmonic distortions with increased output power fed to the grid system. Figure 9 shows
the work flow model of RaERC algorithm used for reactive controlling. Algorithm 3
illustrates the steps involved in the RaERC model.

Machines 2023, 11, x FOR PEER REVIEW 21 of 33 
 

 

𝑃𝑟=𝑐
𝑡(𝑇𝑒𝐷)   (49) 

𝑇𝑒𝐷 = 𝑡𝑒𝑠𝑡𝑑𝑎𝑡𝑎{𝑉𝐷𝐶 , 𝐼𝑃𝑉 , 𝑉𝑅𝑒𝑓, 𝐼𝑅𝑒𝑓}  (50) 

where 𝑃𝑟 is the output actual value and 𝑁 is the total number of neurons. Based on the 

output value, the controlling parameter that helps to generate the switching pulses for 

operating switching devices of the inverter is generated. This efficiently reduces the har-

monic distortions with increased output power fed to the grid system. Figure 9 shows the 

work flow model of RaERC algorithm used for reactive controlling. Algorithm 3 illustrates 

the steps involved in the RaERC model.  

 

Figure 9. Flow of RaERC. 

Algorithm 3 Residual Attention Echo State Reactive Controller (RaERC) 

Input: DC voltage V_Dc, PV current I_PV, reference voltage V_Ref  and reference cur-

rent I_Ref; 

Output: Control signal; 

Procedure: 

Step 1: The dynamic echo state hidden network process is performed by using Equations 

(40) and (41); 

Step 2: Then, the connectivity of reservoir weight is formulated with respect to weight 

matrix as shown in Equation (42); 

Step 3: The output of reservoir is estimated by using Equation (43): 

Step 4: Estimate the dropout factor by randomly selecting the neurons for training by us-

ing Equation (44); 

Step 5: Output feedback scaling is updated with forward pass as shown in Equation (45); 

Step 6: Define the activation function for the hidden layer by using Equation (46); 

Step 7: The squares’ sum of output is called as the error signal, which is estimated by us-

ing Equation (47); 

Step 8: Return the control signal parameter as the output P_d; 

3. Results and Discussion 

This section presents the simulation and comparative analysis of the proposed con-

trolling techniques used for improving the power quality and reactive compensation ca-

pability of the grid-PV systems. To examine the results of MPPT controlling, converter, 

Figure 9. Flow of RaERC.

Algorithm 3: Residual Attention Echo State Reactive Controller (RaERC).

Input: DC voltage VDC, PV current IPV, reference voltage VRef and reference current IRef;
Output: Control signal;
Procedure:
Step 1: The dynamic echo state hidden network process is performed by using
Equations (40) and (41);
Step 2: Then, the connectivity of reservoir weight is formulated with respect to weight matrix as
shown in Equation (42);
Step 3: The output of reservoir is estimated by using Equation (43):
Step 4: Estimate the dropout factor by randomly selecting the neurons for training by using
Equation (44);
Step 5: Output feedback scaling is updated with forward pass as shown in Equation (45);
Step 6: Define the activation function for the hidden layer by using Equation (46);
Step 7: The squares’ sum of output is called as the error signal, which is estimated by using
Equation (47);
Step 8: Return the control signal parameter as the output Pd;
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3. Results and Discussion

This section presents the simulation and comparative analysis of the proposed control-
ling techniques used for improving the power quality and reactive compensation capability
of the grid-PV systems. To examine the results of MPPT controlling, converter, and inverter
topologies, the MATLAB/SIMULNK tool was used in this work. The novel contribution of
this work is to implement advanced controlling mechanisms for resolving the power quality
problems in the grid-PV systems. Here, the ASO based MPPT controlling mechanism is
used to obtain the maximum energy yield from the PV panels. Figure 10a,b validates the
IV and PV characteristics of the proposed ASO-MPPT mechanism with respect to varying
temperature and irradiation conditions. Typically, the IV and PV characteristics are mainly
estimated to analyze the power tracking efficiency of the MPPT controller. According to
the results, it is analyzed that the proposed ASO-MPPT controller obtains the maximum
possible energy yield from the PV panels by accurately identifying the MPP. Then, Figure 11
estimates the output power of PV with and without MPPT controlling techniques, where
the results are estimated with respect to varying time instances. The estimated results indi-
cate that the output power with MPPT is highly improved, when compared to the output
without MPPT. Due to the proper tracking of MPP using an ASO algorithm, increased
output power is obtained from the PV panels.
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Figure 11. Output power with and without MPPT.

Figure 12 shows the output DC voltage of converter with respect to varying time
instant in terms of seconds. The, the output power fed to the grid system is shown in
Figure 13. By using a non-isolated high voltage gain DC-DC converter, the output of PV is
highly improved and boosted with reduced switching frequency. This also helps to feed
increased output power to the grid systems.
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Figure 13. Output power to the grid.

The obtained switching signals of the nine-level inverter topology used in this work is
shown in Figure 14. The results depict that the switches Sa1 and Sa2 are operated under the
fundamental frequency of the reference wave. Consequently, the switches Sb1, Sb2, Sc1, Sc2,
and AS1 are operated at the frequency of the carrier wave. Moreover, the switching losses
are efficiently reduced by using this inverter design, because the high voltage switching
components are operated at the fundamental frequency and the low voltage switching
devices are operated at higher frequency.
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Figure 14. Switching pulses given to the inverter switches.

Similarly, Figure 15 shows the grid voltage waveform of the inverter with its associated
harmonics spectrum. Moreover, the grid current and its harmonics spectrum are shown
in Figure 16, where the dynamics of the inverter is validated with respect to varying step
variations in the input voltage and load.
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Figure 17 depicts the output grid voltage and current with respect to varying time
in terms of seconds. Using the combination of CCOC-RaERC controlling techniques, the
output voltage and current of grid systems are highly improved with reduced loss factor.
Similarly, the reference and actual grid current of the proposed framework are validated
and depicted in Figure 18.

Machines 2023, 11, x FOR PEER REVIEW 26 of 33 
 

 

Figure 17 depicts the output grid voltage and current with respect to varying time in 

terms of seconds. Using the combination of CCOC-RaERC controlling techniques, the out-

put voltage and current of grid systems are highly improved with reduced loss factor. 

Similarly, the reference and actual grid current of the proposed framework are validated 

and depicted in Figure 18. 

 

Figure 17. Grid voltage and current. 

 

Figure 18. Reference grid current and actual grid current. 

Figure 19 presents the waveform analysis of the nine-level inverter with respect to 

grid voltage and current with the fall and change of values. Based on the results, it is 

observed that the current injected into the grid is in phase with the voltage. Similarly, the 

dynamic performance of the nine-level inverter topology is validated, as shown in Figure 

20. In this analysis, the dynamic voltage, load current, and capacitor voltage have been 

computed for analyzing the dynamic variations. According to the results, it is observed 

that the proposed COCC-RaERC controlling model highly improves the performance of 

entire grid-PV system with increased power quality and reactive power compensation 

capability. 

Figure 17. Grid voltage and current.

Machines 2023, 11, x FOR PEER REVIEW 26 of 33 
 

 

Figure 17 depicts the output grid voltage and current with respect to varying time in 

terms of seconds. Using the combination of CCOC-RaERC controlling techniques, the out-

put voltage and current of grid systems are highly improved with reduced loss factor. 

Similarly, the reference and actual grid current of the proposed framework are validated 

and depicted in Figure 18. 

 

Figure 17. Grid voltage and current. 

 

Figure 18. Reference grid current and actual grid current. 

Figure 19 presents the waveform analysis of the nine-level inverter with respect to 

grid voltage and current with the fall and change of values. Based on the results, it is 

observed that the current injected into the grid is in phase with the voltage. Similarly, the 

dynamic performance of the nine-level inverter topology is validated, as shown in Figure 

20. In this analysis, the dynamic voltage, load current, and capacitor voltage have been 

computed for analyzing the dynamic variations. According to the results, it is observed 

that the proposed COCC-RaERC controlling model highly improves the performance of 

entire grid-PV system with increased power quality and reactive power compensation 

capability. 

Figure 18. Reference grid current and actual grid current.

Figure 19 presents the waveform analysis of the nine-level inverter with respect to grid
voltage and current with the fall and change of values. Based on the results, it is observed
that the current injected into the grid is in phase with the voltage. Similarly, the dynamic
performance of the nine-level inverter topology is validated, as shown in Figure 20. In this
analysis, the dynamic voltage, load current, and capacitor voltage have been computed
for analyzing the dynamic variations. According to the results, it is observed that the
proposed COCC-RaERC controlling model highly improves the performance of entire
grid-PV system with increased power quality and reactive power compensation capability.

Figures 21 and 22 compare the standard and proposed MPPT controlling techniques
based on the parameters of overshoot, settling time, rise time, tracking time, and efficiency.
Typically, the rise time, settling time, and overshoot must be reduced for ensuring improved
MPPT tracking efficiency. Due to the improved convergence rate and speed of processing,
the performance of the proposed ASO-MPPT technique is highly improved when compared
to the other models. Consequently, qualitative comparative analysis among the standard
and proposed MPPT models is presented in Table 2. This analysis also indicates that the
proposed ASO-MPPT model outperforms the other controlling techniques with improved
efficiency and accuracy.
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Table 2. Qualitative comparative analysis.

Methods Tracking
Speed Complexity Tracking

Efficiency Reliability MPP Os-
cillations

Tracking
Accuracy

P&O Slow Less Less Low High Medium

FLC Moderate Less Medium Moderate Medium Medium

ACO-FLC Moderate Moderate Medium Low Moderate Medium

Fuzzy PSO Moderate Moderate Medium High High Medium

GWO-FLC Fast Less High High Less High

Proposed Fast Very Less Very High Very High Very Less Very High

Figures 23 and 24 compare the THD, steady state oscillations and rise time of the
conventional [47,48] and proposed optimization based controlling techniques used in the
grid-PV systems. The estimated results state that the value of THD is effectively reduced
in the proposed system when compared to the other controlling techniques. Similarly, the
steady state oscillations and rise time are also effectively reduced in the proposed system.
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4. Conclusions

This paper presents new controlling techniques for improving the capability of reactive
power compensation with reduced harmonics in grid-PV systems. Here, the ASO based
MPPT controlling technique is mainly used to obtain the maximum solar energy from the
PV panels under varying climatic conditions. The purpose of using the ASO technique is
identify the MPP based on the best optimal solution. Then, a non-isolated high voltage
gain DC-DC converter is used to regulate the output PV voltage. For improving the
performance of converter, a novel COCC mechanism is developed in this work, which
provides the optimal selection of best controlling parameters to generate the switching
pulses. Moreover, the nine-level inverter is used in this work to improve the power quality.
In addition, the RaERC algorithm is developed to generate the controlling signals for
operating the switching components of the nine-level inverter. This technique helps to
reduce the harmonic contents with increased power quality outputs, and further supports
an improvement in the capability of reactive power support. During analysis, the simulation
results of the proposed controlling mechanisms are tested and validated based on different
parameters. Among the other optimization based MPPT controlling techniques, e.g.,
bee colony, Firefly, jelly fish, horse herd, fruit fly, etc., the ASO-MPPT has demonstrated
increased tracking efficiency with increased energy yield. Moreover, the output voltage of
converter is highly boosted in the proposed framework when compared to the standard
converters, such as bi-directional, boost, and flyback. Finally, the obtained results indicate
that the proposed COCC-RaERC mechanism provides improved performance in terms of
high voltage profile, reduced harmonics, and improved power quality.
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Nomenclature

Symbol Description
Ij,m
F Total interaction force

randk Random number [0 to 1]
Satom Subset of atom population
Natom Total number of atoms in the atomic system
t Current iteration
It Maximum number of iterations
ϑ(t) Depth function
dj,h(t) Dynamic parameter
pj,h Position distance
j Atom
α(t) Length scale
ρ Depth weight
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ym
best(t) Position of best atom
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where ms
j,m(t) indicates the mass of atom j in the mth dimension at iteration t, and is es-

timated by using the following model: 

ms
j (t) =

e
−
fj(t)−fb(t)

fw(t)−fb(t)

∑ e
−
fr(t)−fb(t)

fw(t)−fb(t)
Natom
r=1

  (12) 

where fj(t) is the fitness function value of jth atom at iteration t, fb(t) and fw (t)are the 

fitness values of the best and worst atoms at iteration t, respectively. Finally, the relation 

between the PV voltage and current is estimated as shown below: 

IPV =
SG

SG
Natom

∗ (I1
Natom + (PVT − PVT

Natom))  (13) 

IR = I2 ∗ exp
(
𝔸j
m(t) (V+I3)
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(t) Lagrangian multiplier
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Multiplier weight

mj,m
s (t ) Mass of atom

t Iteration
Am

j (t) Electron charge

INatom
1 Short circuit current

GNatom
solar Solar irradiance at standard test conditions

I2 Saturation current
I3 Diode current
df Ideal factor
lc Boltzmann constant
R1 Parallel resistance
ID Diode current
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