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Abstract: This paper deals with the stabilization problem of a nonlinear system described by a
Takagi–Sugeno fuzzy (TSF) model with unmeasurable premise variables via a robust controller.
Applying the sector nonlinearity techniques, the nonlinear system is represented by a decoupled
fuzzy model. Then, we design a robust observer-based controller for the obtained fuzzy system by
utilizing the differential mean value approach. The observer and controller gains are obtained by the
separation principle, in which the problem is solved in the sum of linear matrix inequalities (LMIs).
The paper presents two main contributions: A state feedback controller is designed using differential
mean value (DMVT) which ensures robust stabilization of the nonlinear system. Additionally, the
Luenberger observer is extended to the Takagi–Sugeno fuzzy models. The second contribution is to
reduce conservatism in the obtained conditions, a non-quadratic Lyapunov function (known as the
line integral Lyapunov fuzzy candidate (LILF)) is employed. Two examples are provided to further
illustrate the efficiency and robustness of the proposed approach; specifically, the Takagi–Sugeno
fuzzy descriptor of an induction motor is derived and a robust observer-based controller applied to
the original nonlinear system.

Keywords: Takagi–Sugeno fuzzy systems; linear matrix inequalities; stabilization; integral Lyapunov
fuzzy function; mean value theorem; Luenberger observer

1. Introduction

Induction motors, also known as asynchronous motors, are widely used in industrial
applications because of their numerous advantages. They are simple in design, robust in
operation and relatively inexpensive to purchase and maintain. Additionally, they can be
found in a wide range of sizes and power ratings, making them suitable for a variety of
industrial applications [1]. Unfortunately, these machines are nonlinear systems that can be
difficult to control due to variations in parameters and the inaccessibility of the rotor flux.
This makes controlling the speed and torque of an induction motor challenging compared
to other types of motors.

Physical systems are often represented by nonlinear models because they are better
able to accurately describe the complex behavior of the system. Nonlinear models can
capture the full range of possible behaviors, which can lead to better reliability and per-
formance when simulating or predicting the behavior of the system. However, as this
model becomes more detailed and accurate, it often becomes more complex and harder to
analyze [2,3].

The Takagi–Sugeno fuzzy system is a powerful mathematical model used to represent
nonlinear systems. It is based on fuzzy logic and has been shown to accurately represent
nonlinear systems without losing any information. This makes it a popular choice for
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various applications, including the application of theorems originally developed for linear
systems [4]. In this approach, the original nonlinear system is decomposed into a set of
linear sub-systems and each sub-system is associated with a nonlinear membership function
(MF) that describes the degree to which it belongs to a particular set. The membership
functions are typically defined as fuzzy sets and are used to partition the state space of the
system into a finite number of regions. Each region is associated with a linear sub-system
and the output of the overall system is a weighted combination of the outputs of each
sub-system. This approach allows for more accurate and flexible control of the system
as it can account for variations and uncertainties in the system’s behavior. The use of
fuzzy logic and membership functions provides a natural way to handle uncertainties and
nonlinearities in the system. Takagi–Sugeno models are often achieved by using the sector
nonlinearity transformation, which transforms the nonlinear system into a set of linear
sub-systems with nonlinear inputs [5].

Quadratic Lyapunov functions can be used to determine the stability analysis and
design an observer or controller for the fuzzy system whose constraints are written as linear
matrix inequalities, these conditions can be effectively solved by convex programming
techniques [6,7]. Finding a common positive definite matrix that satisfies all constraints
derived by the quadratic Lyapunov function can be a difficult task and may lead to a
conservative solution. Additionally, finding such a matrix may require a significant amount
of computation, which can further add to the complexity of the problem [8]. Conservatism
in T-S fuzzy systems can be attributed to several factors, including the approach and type
of T-S fuzzy system used [9], the method used to obtain linear matrix inequality constraints
from the membership functions [10] and the choice of the Lyapunov function used in the
stability analysis [11]. Each of these factors can introduce additional conservatism into the
system, potentially leading to a less robust or less accurate control system. Polyquadratic
fuzzy Lyapunov functions (PFLFs) [12,13], line integral functions (LIFs) [14,15] and piece-
wise Lyapunov functions (PWLFs) [16,17] are two techniques that have been developed to
reduce this conservatism. These approaches can help to relax the constraints and improve
the performance of the controller. Unfortunately, due to the overlap of the membership
functions, the piecewise Lyapunov functions are inadequate for Takagi–Sugeno fuzzy
models derived from sector nonlinearity techniques [18]. Moreover, the constraints derived
from the controller synthesis using these functions are expressed in the form of bilinear
matrix inequalities, which can pose challenges for solving optimization problems. In such
cases, it may be necessary to explore alternative methods, such as using multiple Lyapunov
functions. This approach entails determining matrices for each sub-system of the fuzzy
system and creating a candidate function by using the obtained matrices [19]. However,
the use of derivatives of membership functions in controller design can make the problem
more complex because it requires the evaluation of upper bounds on the derivatives. The
line integral Lyapunov function is defined as the integral of a scalar function along a
trajectory of the system, which must be positive definite along this trajectory [16,20]. It can
be noted that the function studied in this paper can be regarded as a particular form of
the conventional quadratic function, where the stability conditions associated with these
functions are less stringent than those of the quadratic Lyapunov function.

Motivated by [20,21], a new method for stabilizing a nonlinear system represented
by a Takagi–Sugeno fuzzy system with external perturbation and unmeasurable premise
variables is given based on the H∞ control and mean value theorem.

The manuscript presents several key contributions: Firstly, the use of a line integral
Lyapunov function offers a less strict condition for control design, particularly when the
time derivative of membership functions is not available. This allows for greater flexibility
in control system design and can lead to improved performance and stability. Secondly, the
proposed control system utilizes the mean value theorem method to obtain observer and
controller gains through linear matrix inequalities. This approach offers a systematic and
efficient method for controller design. Finally, the manuscript presents a novel observer-
based robust state feedback control system for a three-phase induction motor represented
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with a Takagi–Sugeno fuzzy system. This control system offers improved performance and
robustness over existing control systems.

The other parts of this work are organized as follows: The problem statement and
backgrounds are presented in Section 2. In Section 3, we use the mean value theorem and
a non-quadratic function to design a state feedback controller for the T-S fuzzy systems.
Section 4 presents the validation of the suggested approach via a numerical example.
Additionally, in order to demonstrate the efficiency of the controller, an application to an
induction motor is discussed. Finally, some conclusions are given.

2. Problem Statement and Backgrounds

Consider a nonlinear dynamical system, which is given by:{
ẋ(t) = f (x(t) + g(x(t), u(t))
y(t) = Cx(t)

(1)

where f and g are smooth nonlinear matrices functions and x(t) ∈ <n are the states;
u(t) ∈ <nu is the control input vector; y ∈ <ny is the measurement vector; all variables are
assumed to be bounded on a compact set Cxyu.

The Takagi–Sugeno fuzzy system uses a set of fuzzy if–then rules to make predictions
or control decisions based on input data and the linear model component allows for precise
modeling of complex systems.

Consider the following T-S fuzzy system structure:
Rule i

IF z1(t) is Mi1, . . . and zp(t) is Mip
THEN

ẋ(t) = Aix(t) + Biu(t) i = 1, 2, . . . , l (2)

where Mij are fuzzy sets; x(t) ∈ <n is the state; l denotes the number of fuzzy rules and p
denotes the number of premise variables.

z(t) = [z1(t) . . . zp(t)]′ ∈ <np is the vector of premise variables
Ai and Bi are real constant matrices of adequate dimensions.
The Takagi–Sugeno fuzzy model of system (1) will be written as:

ẋ(t) =
r

∑
i=1

hi((z(t))(Aix(t) + Biu(t)) (3)

where

hi( z(t)) =
hi( z(t))

r

∑
i=1

hi( z(t))
> 0 , hi( z(t)) = 1 (4)

r is the local sub-model number.

2.1. Differential Mean Value Theorem

The controller gains will be derived using the mean value theorem approach, which
will be presented in this subsection.

Theorem 1 ([22]). Let f (x):<n → <n be a function continuous in [a b] ∈ <n and differentiable
in the convex hull of the set (a, b). For s1, s2 ∈ [a b], there exist δmax

ij and δmin
ij for i, j = 1 : n,

such that:
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f (s2)− f (s1) =


δmax

11 hmax
11 δmax

12 hmax
12 . . . δmax

1n hmax
1n

δmax
21 hmax

21 δmax
22 hmax

22 . . . δmax
2n hmax

2n
. . . . . . . . . . . .

δmax
21 hmax

21 δmax
22 hmax

22 . . . δmax
2n hmax

2n

× [(s2)− (s1)]

+


δmin

11 hmin
11 δmin

12 hmin
12 . . . δmin

1n hmin
1n

δmin
21 hmin

21 δmin
22 hmin

22 . . . δmin
2n hmin

2n
. . . . . . . . . . . .

δmin
21 hmin

21 δmin
22 hmin

22 . . . δmin
2n hmin

2n

× [(s2)− (s1)]

(5)

2.2. Non-Quadratic Lyapunov Function Candidate

In this subsection, we consider the so-called line integral fuzzy Lyapunov function.
Rhee et al. [21] developed the following function:

V(x(t)) = 2
∫

Γ(0,x)
g(φ)dφ (6)

where the term Γ(0, x) represents the path in the domain that starts at the origin (zero)
and ends at x. v ∈ Rn represents a dummy vector for the integral and an infinitesimal
displacement vector, respectively. However, f (x) can be represented by a force vector at
x; the suggested Lyapunov function candidate V(x) in (6) can be considered as the work
officiated in f (x) from the origin zero to x. The V(x) candidate must meet the following
requirements: (1) V(x) is a continuously differentiable function, (2) positive definite and (3)
radially unbounded . However, the condition (2) and (3) cannot be satisfied if the function
V(x) is dependent on (0, x) the V(x) is independent of the path if

∂ fp(x)
∂xq

=
∂ fq(x)

∂xp
f or(p, q) ∈ {1, 2, . . . , n}2and p 6= q (7)

and

g(x) =

(
E +

r

∑
i=1

hi(x)Di

)
x (8)

where

E = ET
=


0 e12 e13 . . . e1n
∗ 0 e23 . . . e2n
...

...
. . .

...
∗ ∗ ∗ . . . 0

 , Di =


d11 d12 . . . d1n

d21 d22
. . . d2n

...
. . . . . .

...
dn1 dn2 . . . dnn

× In×n

3. Main Results
3.1. Stability Analysis
3.1.1. Analysis Based on Quadratic Function

Typically, the Lyapunov direct approach is employed to achieve stability analysis
and stabilization for Takagi–Sugeno fuzzy models derived from linear or bilinear matrix
inequality conditions. In this section, we present simple criteria for verifying the stability
of a Takagi–Sugeno fuzzy model employing a quadratic Lyapunov function.

Consider the Takagi–Sugeno fuzzy system defined as follows:

ẋ(t) =
r

∑
i=1

hi((z(t))Aix (9)
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Theorem 2 ([4]). System (9) is globally asymptotically stable if there exists P = PT > 0 such that
the next linear matrix inequalities hold

AT
i P + PAi + 2αP < 0 (10)

3.1.2. Analysis Based on Non-Quadratic Function

The following theorem gives the conditions sufficient to assure the asymptotic stability
of an autonomous fuzzy model applying LIFF.

Theorem 3. If the linear matrix inequalities (11) and (13) hold for all E, Di and Q ≥ 0, then
system (9) is asymptotically stable.

Pi = E + Di > 0 (11)

EAi + AT
i E + Di Ai + AT

i Di + (n− 1)Q < 0 (12)

EAj + AT
j E + Di Aj + AT

j Di + EAi + YAT
i E + Dj Ai + AT

i Dj − 2Q ≤ 0 (13)

Proof of Theorem 3 in Appendix A.

3.1.3. With Non Quadratic Functions

The controller is designed using the classical state feedback

u(t) = −K(x(t)− xc(t)) (14)

Theorem 4. If the linear matrix inequalities (15)–(17) hold for all H, Ei,Ni and Q ≥ 0, then the
system (3) with the state feedback controller (14) is asymptotically stable.

Hi = H + Ei > 0 i, j = 1, . . . , r (15)

HiAi +AT
i Hi − BiNi −N T

i BT
i + (n− 1)Q < 0 (16)

HiAj +AT
j Hi +HjAi +AT

i Hj − BjNi −N T
i BT

j − BiNj −N T
j BT

i −Q ≤ 0 i < j (17)

where Ni = FHi and H, Ei are defined by (15).

By utilizing the H∞ performance extension (Appendix B), the 29 linear matrix inequal-
ities are transformed to the following:AiR, +RiAT

i − BN −N T B Dw Ri
DT

w −γ2 I 0
Ri 0 −I

 ≺ 0 (18)

whereRi = P−1
i

3.2. Observer-Based State Feedback Controller

This section describes the design of a robust observer-based controller for the global
T-S fuzzy system where external disturbances are added. Consider the following: T-S fuzzy
model with external disturbances and for the case without uncertainties.
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 ẋ(t) =
r

∑
i=1

hi((z(t))(Aix(t) + Biu(t)) + F(t)

y(t) = Cix(t)
(19)

where F(t) denotes the unknown input vector.
Thus, the description of the corresponding state fuzzy observer is as follows: ˙̂x(t) =

r

∑
i=1

hi((ẑ(t))[(Ai x̂(t) + Biu(t)) + L(y(t)− ŷ(t)]

ŷ(t) = Ci x̂(t)

(20)

where x̂ ∈ Rn is the estimated system state; ẑ(t) = [ẑ1(x̂(t)) . . . ẑq(x̂(t))] is the estimated
premise vector which depends on the estimated state variables; L is the observer gain matrix.
Using the estimated state, the following control law is used to design an observer-based
states classical feedback controller for robust stabilization of system (24):

u(t) = −Kx̂(t)

where K is the fuzzy controller gain with appropriate dimensions.

4. Numerical Examples

In this section, the effectiveness of the proposed strategy is demonstrated through two
numerical examples.

Example 1. Let us consider the following nonlinear model.

[
ẋ1(t)
ẋ2(t)

]
=

[
x1(t)− 5 −4

0.2(x1(t) ∗ b− x2(t)) + x2(t) ∗ a −x2(t)

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t) (21)

y(t) =
[

1 0
0 1

][
x1(t)
x2(t)

]
The T-S fuzzy model is given as the following form:

ẋ(t) =
2

∑
i=1

hi(x)(Aix(t) + Biu(t)) (22)

where the Ai matrices are given as follows:

A1 =

[
−12 −4
0.2(7b− 6) + 6a −6

]
, A2 =

[
−12 −4
0.2(7b− 1) + a −1

]

A3 =

[
−6 −4
0.2(b− 6) + 6a −6

]
A4 =

[
−6 −4
0.2(b− 1) + a −1

]
B1 = B2 =

[
0
1

]

h1(t) =
x1(t)− 1

6
, h2(t) =

7− x1(t)
6

, h3(t) =
x2(t)− 1

5
and h4(t) =

6− x2(t)
5

The range of values (a ∈ [0, 50] and b ∈ [0, 80]) is used to compare the feasible regions
of the LMI-based problems discussed in Theorems 2 and 3.

Figure 1 illustrates the comparison between the stability region derived from the linear
matrix inequalities of the classical Lyapunov function in Theorem 1 and the non-quadratic
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conditions outlined in Theorem 2. As expected, it is clear that the proposed non-quadratic
functions produce less restrictive results compared to the traditional quadratic functions.
This demonstrates the enhancement in the level of conservativeness for the stabilization
problem using non-quadratic functions that is presented in this work.

Figure 1. Comparison of the feasibility fields on parameter space a× b obtained via Theorems 2 “∗”
and 3 “�”.

Remark 1. If the values of the parameters a and b are set to −14 and 10, respectively, the stabiliza-
tion criteria given by Theorem 2 cannot be satisfied. This implies that it is not possible to obtain a
stable controller using these methods. However, by utilizing Theorem 3, the stabilization conditions
can be resolved within linear matrix inequality regions.

For the specific point where a = 4 and b = 17, only one solution was obtained
using Theorem 3. This solution is represented by the state-feedback control law given
in Equation (14) and the gain matrices are determined under linear matrix inequality
constraints. By applying Theorem 1 to this model, a feasible solution is obtained with the
following robust extended controller and observer gains.

With quadratic case:

K = 103[3.2589 1.5397 − 0.1083 − 0.0079
]

and L = 103
[

0.0713 1.0274
1.0274 1.4965

]
the positive definite matrices can be obtained as:

P =


23.5335 0.6163 −0.7932 0.0013
0.6163 23.6012 0.1117 −0.8830
−0.7932 0.1117 8.7902 −0.0072
0.0013 −0.8830 −0.0072 8.8382

 and M =

[
31.3017 2.4314
2.4314 17.7240

]

With non-quadratic function:

K = 103 ×
[
2.6867 2.5498 − 0.1038 − 0.0102

]
and L = 103 ×

[
0.2640 1.0290
1.0290 0.6233

]
the positive definite matrices can be obtained as:
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P1 =


18.6812 2.2774 −0.7275 −0.0433
2.2774 0.0607 5.5804 −0.0316
−0.7275 0.1117 8.7902 −0.0072
−0.0433 −0.9543 −0.0316 5.7508

, M1 =

[
2.0202 −0.8754
−0.8754 16.0498

]

P2 =


18.9715 2.4146 −0.7551 −0.0005
2.4146 18.9477 0.1040 −1.2022
−0.7551 0.1040 6.0071 −0.0342
−0.0005 −1.2022 −0.0342 6.1856

, M2 =

[
2.9969 0.2666
0.2666 14.9469

]

P3 =


19.2962 2.5961 −0.7865 0.0555
2.5961 19.9882 0.1590 −1.5249
−0.7865 0.1590 6.8049 −0.0340
0.0555 −1.5249 −0.0340 6.9725

, M3 =

[
9.0470 −2.7052
−2.7052 7.6974

]

P4 =


19.6662 2.8699 −0.8223 0.1201
2.8699 21.3315 0.2323 −1.9727
−0.8223 0.2323 8.0775 −0.0439
0.1201 −1.9727 −0.0439 8.2810

, M4 =

[
9.2564 −1.9016
−1.9016 10.3718

]

P4 =


19.6662 2.8699 −0.8223 0.1201
2.8699 21.3315 0.2323 −1.9727
−0.8223 0.2323 8.0775 −0.0439
0.1201 −1.9727 −0.0439 8.2810

, M4 =

[
9.2564 −1.9016
−1.9016 10.3718

]

QK =


68.33627 158.1956 −2.5958 −0.0530
158.1956 615.17998 −5.9586 1.3181
−2.5958 −5.9586 0.9657 −0.0009
−0.0530 1.3181 −0.0009 0.8914

Ql =

[
301.6970 202.5728
202.5728 228.5824

]

We note that the initial conditions are x0(t) = [0 0] and x̂0(t) = [0 1]. The simulation
results of the closed-loop state trajectories can be seen in Figure 2. Moreover, we considered
the perturbation dynamics given in (20) with D = [0 1].

Figure 3 indicates that it is possible to achieve system stability by setting higher values
for the observer and controller gains. Furthermore, the method presented in this study
offers a practical solution for determining the optimal H-attenuation level.

Figure 2. State evolution of T-S fuzzy model under control law obtained via Theorem 4.
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Figure 3. Control law evolution with gains obtained via Theorem 4.

Example 2. Induction Motor.

Electrical Dynamic Model of IM

In this subsection, we will describe the behavior of the induction machine. To make the
presentation more manageable, we will use certain simplifying assumptions. By applying
Park’s transformation to the system of equations, we can derive a two-phase model in the
d-q frame. This model is based on the idea of transforming the three-phase quantities into
a two-dimensional, orthogonal frame of reference. In this frame, the two axes represent the
direct and quadrature components of the three-phase quantities, respectively. The resulting
two-phase model is widely used in the analysis and control of such machines.

The state space model of the induction motor is represented in the d-q reference frame
using several variables. These variables include the stator current components (isd, isq),
the rotor flux components (Ψrd, Ψrq), the electrical speed of the stator (ω) and the stator
voltage components (usd, usq). In this model, the state variables are the stator current
components and the rotor flux components. The input variables are the stator voltage
components and the disturbance variables are the electrical speed of the stator or any other
external disturbances. In the d-q frame, the equations can be simplified and written in
matrix form, where the state variables and input variables are represented as matrices. The
resulting state space model provides a useful representation of the dynamic behavior of the
induction motor, which can be analyzed and controlled using several techniques.

The mathematical representation of the induction motor in the synchronous d-q
reference frame is presented as follows [23].{

ẋ(t) = Aix(t) + Biu(t) + F(t)
y(t) = Cix(t)

(23)

where

A =


−γisd + wsisq +

ks
τr

Ψrd + ksnpwrΨrq

−wsisd − γisq − ksnpwrΨrd +
ks
τr

Ψrq
M
τr

isd − 1
τr

Ψrd + (ws − npwr)Ψrq
M
τr

isq + (ws − npwr)Ψrd − 1
τr

Ψrq
np M
JLr

(Ψrdisq −Ψrqisd)−
np
J wr

 , B =


0 σLs
σLs 0

0 0
0 0
0 0

and C =

[
1 0 0 0 0
0 1 0 0 0

]
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x(t) =


isd
isq
Ψrd
Ψrq
wr

, u(t) =
[

uds
uqs

]
andF(t) =


0
0
0
0
−1

J


where w(t) = TL, γ =

(
1

στs
+ 1−σ

στr

)
, Ks =

M
σLs Lr

, τr =
Lr
Rr

, τs =
Ls
Rs

, σ = 1− M2

Ls Lr
; x(t), u(t)

and y(t) are the state, control and output vectors, respectively.
The characteristics of the motor can be described using several parameters, including

the stator resistance (Rs), stator inductance (Ls), rotor resistance (Rr), rotor inductance
(Lr), moment of inertia, mutual inductance (M), friction coefficient (f ) and the number
of pole pairs (p). These parameters play a crucial role in determining the performance
of the motor and are used to derive the mathematical equations that govern the motor’s
dynamic behavior.

The reference signal xc(t) is produced by applying the Field-Oriented Control theorem.
As a result, the control inputs uc(t) = [usdc usqc]T are provided as follows:{

usdc = σLs(
d
dt isdc + γisdc − wscisqc − Ks

τr
Ψrdc)

usqc = σLs(
d
dt isqc + γisqc − wscisdc + KsnpwrΨrdc)

with 
isdc =

Ψrc
M + τr

M
d
dt Ψrc

isqc =
JLr

np MΨrc
(Cr

J + f
J wrc +

d
dt wrc)

wsc = npwrc +
M

τrΨrdc
isqc

The decision variables are selected as follows:
z1(t) = isd(t)
z2(t) = isq(t)
z3(t) = wr(t)

Thus the nonlinear terms can be converted into the following form:

zj(t) = F1j(t).zj max + F2j(t).zj min ; j = 1, 2, 3

where  F1j(t) =
zj(t)−zj min

zj max−zj min

F2j(t) =
zj max−zj(t)
zj max−zj min

So the global TS fuzzy system of the induction motors model is established as follows: ẋ(t) =
8

∑
i=1

hi((z(t))(Aix(t) + Biu(t)) + F(t)

y(t) = Cix(t)
(24)

Figure 4 displays the schematic diagram of an observer-based state feedback control
system that was derived using a non-quadratic function and the mean value theorem. The
machine studies is a (7.5 kW) induction motor whose parameters are presented in Table A1
(see Appendix C)
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Figure 4. Observer-based state feedback control structure.

By applying Theorem 4 and using the linear matrix inequality technique, the controller
and observer gain matrices of the fuzzy control law (14) can be calculated. The result
obtained is as follows:

K =

[
363.179 − 228.491 − 239.965 408.687 − 521.671
594.146 − 246.091 237.312 606.384 − 650.133

]

K′ =
[

1.584 − 0.594 − 0.764 1.829 0.027
−0.028 − 0.005 0.005 3.873 − 4.155

]

L =


1746.8873 − 329.0564

288.4284 1723.1157
−6.8253 − 17.1862
17.7386 − 4.8631
50.4323 49.7381


5. Simulation Results

To emphasize the effectiveness of the proposed approach, a comparative analysis was
conducted. Figures 5–7 illustrate the motor speed, direct and quadrature axis stator current
of an induction motor controlled using two different methods under load torque charging.
It can be observed that the rotor speed transient responses with an IP controller display
higher peaks compared to the proposed approach when load torque is applied.

Figure 5. Rotor speed responses under two controllers.
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Figure 6. d-axis current waveform under two controllers.

Figure 7. q-axis current waveform under two controllers.

Table 1 displays a comparison between the rotor speed response indices controlled using
the classical approach (IP controller) and the observer-based robust state feedback. It is evident
that the proposed technique offers superior performance in comparison to the IP controller.
This makes the robust controller a more advantageous option for industrial applications.

Table 1. Controllers Indexes.

Rotor Speed Index IP MVT Controller

Maximum error (no charge) 0.45% 0.011%
Maximum error (with load torque) 0.9 % 0.025%
Overshoot 2.1% 0.01%
Settling time 2.65s 0.34s

Figures 8 and 9 depict the simulated regulation for the rotor speed and the three phase
stator currents, respectively, considering parametric uncertainties in rotor resistance with
Rr = 2 Rrn and load torque charging of 20 Nm at t = 1 s. Similarly, Figures 10 and 11
display the results for the motor response under the uncertainties of the moment of inertia
(J = 1.5 Jn). These results demonstrate that the proposed control method, utilizing the mean
value theorem and the line integral Lyapunov function, is robust and insensitive against
variations in Rr and J.



Machines 2023, 11, 374 13 of 20

Figure 8. Rotor speed under variation 100% of Rr.

Figure 9. Stator currents under variation 100% of Rr.

Figure 10. Rotor speed under variation 50% of J.
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Figure 11. Stator currents under variation 50% of J.

6. Experimental Results

An experimental evaluation using Real-Time Hardware-in-the-Loop (RT-HIL) sim-
ulation of the control method discussed in this paper was conducted and a series of
measurements were taken. The experimental setup was developed in the Energy Systems
Modeling Laboratory. The hardware structure of the control system was composed of
two interconnected dSPACE 1104. The first module reads the feedback currents and the
rotor speed and generates the necessary switching signals to operate the induction motor.
However, the motor is emulated by the second dSPACE as shown in Figure 12.

Figure 12. Test bench.

Figures 13–16, respectively, depict the motor speed response, q-axis stator current
and d-q axis rotor flux after a step change in speed reference from 200 to 300 rad/s and
changing the torque reference from 0 to 20 N.m at t = 7.83 s. Figure 13 clearly shows that the
rotor speed closely tracks its reference with a fast-settling time and without any noticeable
overshoot, during both the increase and decrease stages. Except for the rotor fluxes depicted
in Figure 16, the proposed controller demonstrates a negligible tracking error. Figure 15
reveals that the quadrature component of the stator current is directly proportional to
variations in load torque. These results indicate and confirm the effectiveness of the
proposed control law.
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Figure 13. Rotor speed.

Figure 14. d-axis stator current.

Figure 15. q-axis stator current.



Machines 2023, 11, 374 16 of 20

Figure 16. d-q axis rotor flux.

7. Conclusions

In this paper, an observer-based state feedback controller for a continuous TS fuzzy
system with unmeasurable premise variables is proposed. The use of a modified mean
value theorem in conjunction with a non-quadratic Lyapunov function can provide new
and more general conditions for the stability and stabilization of the TS fuzzy system. The
results of the comparison show that the derived stability conditions for the non-quadratic
function are more extensive and less conservative than those for the quadratic Lyapunov
function. This means that the non-quadratic function is able to provide a wider range of
stable solutions and is less restrictive in its conditions for stability compared to the classical,
commonly used method. Finally, a numerical example was given to show the effectiveness
of the proposed approach. In addition, the results of the real-time implementation have
demonstrated that the control system is capable of achieving good tracking and disturbance
rejection performance.

In future works, there are several areas that should be considered for further de-
velopment and improvement of the proposed control system. Firstly, other forms of
non-quadratic Lyapunov functions, such as the poly-quadratic function, should be in-
vestigated. These alternative Lyapunov functions may offer improved performance or
stability properties over the existing quadratic Lyapunov function used in the several
control system. Secondly, a fault-tolerant control system should be designed for nonlinear
systems described with a Takagi–Sugeno fuzzy model. Finally, a fault detection procedure
based on the residuals technique generated from the mean value theorem observer should
be developed.
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Appendix A. Proof of Theorem 3

Proof. The time derivative of V(x) will be as follows:

V̇(t) = xT{
r

∑
i=1

r

∑
j=1

hi(t)hj(t)(Pi Aj + AT
j Pi)}x

V̇(t) = xT{
r

∑
i=1

h2
i (t)(Pi Ai + AT

i Pi)+

r

∑
i=1

∑
j>i

hi(t)hj(t)(Pi Aj + AT
j Pi + Pj Ai + AT

i Pj)}x

According to the corollary (4) in [24] and the previous two inequalities (12) and (13)

r

∑
i=1

h2
i (t) ≥

1
(s− 1)

r

∑
j>i

2hi(t)hj(t) (A1)

if 1 < s ≤ r , then

V̇(t) ≤ xT{2
r

∑
i=1

r

∑
j>i

hi(t)hj(t)Q

+
r

∑
i=1

h2
i (t)(Pi Ai + AT

i Pi)}x

V̇(t) ≤ xT{
r

∑
i=1

h2
i (t)(AT

i Pi + Pi Ai + (n− 1)Q)}x

V̇(t) < 0

Appendix B. Extension for H∞ Performance

The existence of the disturbances v(t) will have a effect on control performance. In
order to minimize the effects of the disturbance v(t), the H∞ performances associated
with the state feedback control error have been considered in [23]∫ ∞

0
eT(t)e(t)dt 4 γ2

∫ ∞

0
vT(t)v(t)dt (A2)

where γ is the specified disturbance attenuation level.
In order to accomplish linear matrix inequalities constraints,we denotes the error

dynamics can be described as
e0(t) = x(t)− x̂(t) (A3)

In most situations, Lyapunov’s direct approach is used to obtain the results of stability
analysis and stabilization for Takagi–Sugeno fuzzy models which have been derived from
linear matrix inequalities or Bilinear matrix inequalities conditions.

V(e(t)) = eT(t)Pe(t) (A4)

where P = PT > 0
Therefore, in order to develop the asymptotic stability of (A2) and the state control

error’s H∞ performance, we define that:

V̇(e(t)) + eT(t)e(t)− γ2vT(t)v(t)dt < 0 (A5)

then
ėT(t)Pe(t) + eT(t)Pė(t) + e(t)eT(t)− γ2vT(t)v(t)dt < 0 (A6)



Machines 2023, 11, 374 18 of 20

If we consider that R,
−1 = P we obtain the final linear matrix inequalities to solving:AiR, + R, AT

i − BN, −N,
T B Dw R,

DT
w −γ2 I 0

R, 0 −I

 ≺ 0 (A7)

The controller gain is K = N, P

Appendix C. Induction Motor Parameters

Table A1 presents the implemented induction motor’s parameters.

Table A1. Induction motor parameters.

Mutual Inductance M = 0.22 H
Moment of inertia J = 0.01 Kg.m2

Stator resistance Rs = 0.68 Ω
Rotor resistance Rr = 0.39 Ω
Stator inductance Ls = 0.2225 H
Rotor inductance Lr = 0.2268 H
Friction coefficient f = 0.001 Nms

The decision variables are bounded as:
−170 rd/s 4 w(t) 4 170 rd/s
−10 A 4 isd 4 10 A
−10 A 4 isq 4 10 A

The sets of matrices Ai can be obtained as follows:

A1 = 104 ×


−0.0115 0.0314 0.0183 3.1992 0
−0.0314 −0.0115 −3.1992 0.0183 0
0.0000 0 −0.0002 0.0014 0

0 0.0000 −0.0014 −0.0002 0
0 0 1.4550 −1.4550 −0.0000



A2 = 104 ×


−0.0115 0.0314 0.0183 3.1992 0
−0.0314 −0.0115 3.1992 0.0183 0
0.0000 0 −0.0002 0.0614 0

0 0.0000 −0.0614 −0.0002 0
0 0 1.4550 −1.4550 −0.0000



A3 = 104 ×


−0.0115 0.0314 0.0183 3.1992 0
−0.0314 −0.0115 −3.1992 0.0183 0
0.0000 0 −0.0002 0.0014 0

0 0.0000 −0.0014 −0.0002 0
0 0 −1.4550 −1.4550 −0.0000



A4 = 104 ×


−0.0115 0.0314 0.0183 −3.1992 0
−0.0314 −0.0115 3.1992 0.0183 0
0.0000 0 −0.0002 0.0614 0

0 0.0000 −0.0614 −0.0002 0
0 0 −1.4550 −1.4550 −0.0000
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A5 = 104 ×


−0.0115 0.0314 0.0183 3.1992 0
−0.0314 −0.0115 −3.1992 0.0183 0
0.0000 0 −0.0002 0.0014 0

0 0.0000 −0.0014 −0.0002 0
0 0 1.4550 1.4550 −0.0000



A6 = 104 ×


−0.0115 0.0314 0.0183 −3.1992 0
−0.0314 −0.0115 3.1992 0.0183 0
0.0000 0 −0.0002 0.0614 0

0 0.0000 −0.0614 −0.0002 0
0 0 1.4550 1.4550 −0.0000



A7 = 104 ×


−0.0115 0.0314 0.0183 3.1992 0
−0.0314 −0.0115 −3.1992 0.0183 0
0.0000 0 −0.0002 0.0014 0

0 0.0000 −0.0014 −0.0002 0
0 0 −1.4550 1.4550 −0.0000



A8 = 104 ×


−0.0115 0.0314 0.0183 −3.1992 0
−0.0314 −0.0115 3.1992 0.0183 0
0.0000 0 −0.0002 0.0614 0

0 0.0000 −0.0614 −0.0002 0
0 0 −1.4550 1.4550 −0.0000


and

B =


0 109.9370

109.9370 0
0 0
0 0
0 0
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