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Abstract: Data-driven remaining useful life (RUL) prediction plays a vital role in modern industries.
However, unpredictable corruption may occur in the collected sensor data due to various disturbances
in the real industrial conditions. To achieve better RUL prediction performance under this situation,
we propose a novel multi-task method for RUL prediction, which is named multi-task deep long
short-term memory (MTD-LSTM). In MTD-LSTM, convolutional neural network (CNN) and long
short-term memory (LSTM) are first employed for feature extraction and fusion. Then, the extracted
features are fed into the multi-task learning module, which contains missing value imputation and
RUL prediction module. The missing values imputation task and RUL prediction task are performed
simultaneously. The purpose of the missing value imputation is to obtain integral degradation
information by recovering the complete data; thus, the RUL prediction task performs better under
corrupted sensor data. In addition, a novel loss term is proposed to smooth the RUL prediction
results without any manual post-processing. The effectiveness of the proposed method is verified on
the simulated dataset based on the C-MAPSS dataset.

Keywords: multi-task learning; remaining useful life; RUL prediction; LSTM; corrupted sensor data

1. Introduction

With the rapid development of technology, the modern industrial system has become
more and more integrated and sophisticated. The increasing complexity and uncertainty of
the system has led to a higher need for accurate and efficient prognostics and maintenance.
To deal with this problem, prognostics and health management (PHM) is proposed. PHM
plays a crucial role in modern industry because it aims at reducing maintenance costs,
improving reliability, and enhancing performance [1]. A PHM system can effectively
detect the early faults of components of machinery, monitor and predict the degradation
process, and help in developing or automatically triggering maintenance schedules and
management decisions [2]. Remaining useful life (RUL) prediction is a vital approach for
prognostics and a crucial part of the PHM system. The RUL of a system is defined as “ the
time from the current time to the end of the useful life” [3]. Accurate RUL prediction result
is the basis for efficient and reliable health management and maintenance. For example, for
aero engines, if its RUL can be predicted accurately, we can develop a maintenance schedule
in advance and replace components with potential failure risks. Thus, the operating life is
extended and maintenance costs are reduced. Additionally, possible casualties are avoided.

RUL prediction approaches can be roughly divided into model-based approaches,
data-driven approaches, and hybrid approaches. Model-based approaches describe the
degradation processes of machinery through building mathematical models on the basis of
the failure mechanisms or the first principle of damage [4]. For example, a Paris–Erdogan
(PE) model-based RUL prediction method under the framework of Bayesian estimation is
proposed in [5], and the system state transition is described with the PE model. However,
model-based approaches require a large amount of prior expertise, which is often hard to
obtain, and it is increasingly difficult to build accurate physical models due to the increasing
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complexity of industrial systems. With the gradual improvement of signal processing and
feature extraction technology, condition monitoring (CM) using dedicated sensors can
provide a large amount of real-time health information for the system. These informative
data provide the possibility to construct more effective RUL prediction methods. Data-
driven approaches try to utilize machine learning techniques to learn the degradation
patterns from monitoring data, so the RUL of systems can be accurately predicted.

A large number of data-driven approaches have been proposed, such as a sup-
port vector regression (SVR)-based method [6,7], a hidden Markov model (HMM)-based
method [8,9], an artificial neural network (ANN)-based method [10], etc. reference [6], an
SVR-based method was proposed for RUL prediction of lithium-ion batteries (LIBs), where
the artificial bee colony (ABC) algorithm was utilized for optimization of kernel parameters.
HMM-based methods are another important class of RUL prediction methods. For example,
Liu et al. [8] proposed a novel switching hidden semi-Markov model (SHSMM) to represent
the degradation process of equipment, and it has a more generalized form and a more
powerful ability to describe the degradation process with time-varying working mode
compared to traditional HMM-based methods. The ANN-based methods have actually
developed into the most popular methods currently in use, i.e., the deep learning method.
Deep learning is a popular branch of machine learning technology. It can extract deep
features and degradation information from original monitoring data without any manual
operation, so it can effectively model the degradation process of the monitored system.
Therefore, the RUL prediction methods based on deep learning have also been widely
studied. In reference [11], a method using a multi-scale deep convolutional neural network
(CNN) with an attention mechanism is proposed to effectively fuse multi-sensor data and
learn representations from different temporal scales.

Recurrent neural network (RNN) is a classic method that can model the temporal
correlation, and long short-term memory (LSTM) [12] is an upgraded version of RNN.
Its purpose is to overcome the gradient vanishing and exploding problem. Due to its
outstanding performance on temporal sequences modeling, it has been widely used in
speech recognition [13], natural language processing [14], and other fields. In industrial big
data analysis, the benefit is from its suitability for processing time-series vibration signals
that widely exist and are collected in industrial systems. RUL prediction methods based
on RNNs and LSTMs have also been widely studied [15–22]. Ren et al. [16] proposed
a novel architecture that combined deep CNN and LSTM ,which is called Auto-CNN-
LSTM. The method overcame the problem of insufficient data in RUL prediction due to
the ability of mining deeper information from finite data. In [22] researchers proposed
a convolution-based long short-term memory (CLSTM) network by cleverly embedding
CNN into LSTM, which not only preserves the advantages of LSTM but also incorporates
time-frequency features. These data-driven methods can avoid the problem of building
physical models, which is usually hard in real applications. Since acquiring a large amount
of monitoring data and powerful computing resources required by the data-driven method
has become a reality, and due to the characteristic of model-free and expertise-free, data-
driven methods had attracted increased attention and have became the most promising
direction in RUL prediction.

In practice, there is a large number of disturbances in industrial sites such as vibrations,
shock, electromagnetic interference, chemical corrosion, etc., which lead to unpredictable
corrupted sensor data. Ordinary data-driven methods will fail with corruption in the input
data because these models are often trained from complete data; therefore, what these
models modeled is the distribution of the complete data. However, the corruption in the
input data in real applications is not present in the training data, which means it deviates
from the distribution of the training data, and the model cannot generalize well. Therefore,
it is necessary to introduce corruption data in the training process. A naive way is to
directly train the model with the corrupted data, but the learning ability of the model will
be challenged, since the unpredictability of the corruption values leads it to be close to
random noises, which is hard for machine learning to deal with. Another method is to
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complement the corrupted values and perform the RUL prediction with the complementary
data, including a mean value imputation, matrix completion, deep learning-based methods,
etc. However, these operations will introduce imputation errors and human interference,
resulting in limited RUL prediction performance.

To cope with the problem mentioned above, a novel RUL prediction method which
can perform well under corrupted sensor data is proposed in this work. The architecture of
the proposed model is a multi-task framework combining deep LSTM, a missing values
imputation task, and an RUL prediction task—the latter two are deployed in parallel
following the deep LSTM. With the recovery of missing values, the deep LSTM can fuse
the features containing integral degradation information. The hidden representation which
greatly benefits RUL prediction in the missing values imputation module is simultaneously
used for RUL prediction. Additionally, to further improve the performance of the proposed
method, a novel loss term is designed to smooth the predicted RUL. The proposed method
is evaluated on the C-MAPSS dataset [23], which is a classical dataset created by NASA and
extensively utilized in many RUL prediction studies [21,24–27]. The high-quality full life
degradation data of multiple engines in C-MAPSS greatly helps for comprehensively and
objectively evaluating the performance of the proposed method. The main contributions of
this work are as follows:

1. A novel multi-task method is proposed for RUL prediction under corrupted sensor
data. With the assistance of the missing values imputation module, the proposed
method can perform well in RUL prediction under corrupted sensor data.

2. A novel loss term is introduced for improving the RUL prediction performance, which
can smooth the predicted RUL without any manual post-processing.

3. Extensive comparative experiments and ablation studies verified the effectiveness of
the proposed method.

The rest of this article is organized as follows: Section 2 describes the details of the
proposed method, the effectiveness of the proposed method is verified in Section 3, and,
finally, Section 4 concludes this work.

2. Methodology
2.1. Problem Statement

In industrial systems, the collected data from the sensor network is usually time-series
signals, such as vibration signals, acoustic signals, temperature, voltage, etc. In the RUL
prediction task, vibration signals are the most commonly used. The proposed method
utilizes a deep model to extract degradation information from the vibration signals for
RUL prediction. The common multi-sensor RUL prediction task based on the vibration
signals can be expressed as: construct a regression model f (·), given multi-sensor time-
series signals

XT = [x(1)T , x(2)T , . . . , x(s)T ] ∈ RT×s (1)

collected until time T, where s denote the number of sensors. Then the RUL at time T can
be predicted with

RULT = f (XT). (2)

However, in real industrial applications, many disturbances can lead to unpredictable
corruption in the collected sensor data. It can be assumed that the corrupted data is
detected, and thus the value is set equal to zero, which represents a missing value. Thus,
the collected signal X̂T with missing values is:

X̂T =


0 0 · · · 0

x(1)2 x(2)2 · · · 0
...

...
. . .

...
x(1)T 0 · · · x(s)T

 ∈ RT×s. (3)
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Therefore, the existing methods based on complete data will fail when encountering
missing values. To deal with this problem, a novel RUL prediction method that can process
the above-mentioned data with severe random missing values is proposed in this work.

2.2. Overview

The process of the proposed method is as follows: First, the corrupted data is simulated
manually based on the complete data; this is a critical part of the proposed method.
This is because the mapping from corrupted data to complete data needs to be modeled,
which is the missing values imputation task mentioned later, so both complete data and
corresponding corrupted data are necessary. The specific simulation process is described
in Section 3.3 considering it is a part of data processing. Second, the proposed multi-task
deep LSTM (MTD-LSTM) will be trained using the simulated corrupted data and tested
using testing samples with corrupted values under different missing rates. Note that the
corresponding complete values are not required in the testing process, which is consistent
with real applications. Third, the well-trained model will be deployed in real industrial
applications. It should be noted that the basic assumption is that the corrupted values of
the input data have been detected and replaced by 0 values, and the detection method is
not considered in this work. The flowchart of the proposed method is shown in the left
part of Figure 1.

The core of the proposed MTD-LSTM is a multi-task learning framework with a deep
LSTM. The architecture of MTD-LSTM is shown in the right part of Figure 1. There are
two main parts in MTD-LSTM, first, a degradation feature extraction and fusion module
consisting of a CNN and a deep LSTM and second, a multi-task learning module consisting
of missing value imputation module and RUL prediction module.

LSTM
Cell 𝑛

Conv2d
16@9×1

𝑿n

Conv1d
16@9×1

Fully
Connected

CNN layers

Flatten

Deep LSTM

Feature Extraction and Fusion Module

Multi-task Learning Module

…
…

෩𝑿n
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1@1×1
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Connected

ො𝑦𝑛
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× 3
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time steps
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Monitoring Data
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RUL Prediction

Feature Selection & 
Normalization

Sliding Windows
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Normalization

Sliding Windows
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Figure 1. The left part shows the flowchart of the proposed method, and the right part shows the
detailed structure of MTD-LSTM model.

Firstly, the signals with missing values are fed into the degradation feature extraction
and fusion module to extract and fuse the degradation information, where the CNN and
deep LSTM are employed sequentially. CNN is commonly used for feature extraction and
the deep LSTM can effectively fuse the extracted features along with time steps. The fused
features are next fed into the multi-task learning module for missing value imputation and
RUL prediction.

For the RUL prediction task, it is difficult to achieve an accurate prediction if there are
missing values in the input data. The reason lies in that the missing values lead to the loss
of degradation information. To deal with this, multi-task learning is utilized. Specifically,
the missing values imputation module is implemented to recover the complete data. That
being the case, the hidden representation in the missing values imputation module contains
the integral degradation information. Based on the idea of multi-task learning, the hidden
representation containing integral degradation information is used for RUL prediction
simultaneously, thus a better RUL prediction performance can be achieved. Moreover, the
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proposed monotone and linearly decreasing loss (MoLD Loss) is imposed on the predicted
RUL for smoother results.

2.3. Feature Extraction and Fusion Module

In the feature extraction and fusion module, the CNN and deep LSTM are utilized
to extract and fuse the features from the input data with missing values. CNN was
originally used in computer vision; however, some studies show it also performs well in
processing time-series signals [28]. Here, we utilized CNN for local feature extraction on
the input data with missing values. The original multi-sensor signals are firstly processed
into samples by the sliding window technique. The input sample n can be expressed as
Xn = [x(1)n , x(2)n , . . . , x(s)n ] ∈ Rw×s where w and s denote window size and the number of
sensors. We implemented a 4-layer CNN model with tanh activation function to extract
local features from the input samples. The details of the CNN model are shown in Figure 1.
Note that the output feature map is reshaped into a vector to adapt the input dimension of
deep LSTM. Only using the CNN model to extract the local feature is not enough for RUL
prediction under corrupted sensor data because the severe missing values may occur in
sample Xn, which will lead to severe degradation information loss. Therefore, the historical
information in the previous samples must be considered and temporal correlations must
be modeled to fully explore the available information under corrupted sensor data.

Here, the deep LSTM is employed following CNN to model the temporal correlations,
and features extracted from past time steps are fused. An LSTM consists of a series of
units; the structure of the unit is shown in Figure 2. The input at time t includes current
data xt ∈ Rd×1, the hidden state ht−1 ∈ Rm×1, and the memory cell state ct−1 ∈ Rm×1

from time t− 1. After calculation, ct and ht passed the long-term memory and short-term
memory along with new information from xt on to next unit. This mechanism is achieved
by controlling the data flow through control gates, namely, the input gate, forget gate, and
output gate, which are shown in Figure 2. In deep LSTM, the hidden state of the previous
layer is used as the input data for the next layer.

𝝈

𝝈

𝝈

𝒄

𝒕 𝒕𝒄𝒕

𝑤𝑔, 𝑏𝑔

𝒉𝒕−𝟏

𝒙𝒕

𝑤𝑖 , 𝑏𝑖
𝑤𝑓, 𝑏𝑓

𝑤𝑜, 𝑏𝑜

𝒉𝒕

Fo
rg
et

O
u

Element-wise sum

Element-wise product

Tanh activation𝒕

Sigmoid activation𝝈

Concatenation𝒄

Figure 2. Structure of LSTM unit.

In LSTM, since the memory cell state and hidden state contain long-term and short-
term memory, respectively, they contain abundant historical degradation information in
different stages. This provides the possibility of recovering the complete data X̂n in the
following missing values imputation task, even if Xn is highly incomplete. By iteratively
inputting the samples before sample n into the model, the deep LSTM can model the
temporal correlations of the time series signals, and the output hidden representation hn
of sample n integrated the historical degradation information. Moreover, the deep LSTM
can fully explore the correlation between different sensors to make full use of the available
information in Xn for recovering the missing values. So, the extracted hn fully integrated
the available information and leads to effective missing values imputation followed by a
better RUL prediction performance, even if the input data Xn is highly incomplete.
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2.4. Multi-Task Learning

After extracting and fusing the degradation features from the input data with missing
values, the hidden representation hn will be fed into the multi-task learning module for
missing value imputation and RUL prediction tasks.

In the missing values imputation module, hn output by the deep LSTM at time step
n is used for recovering the complete data X̂n corresponding to the incomplete input Xn.
To map hn from hidden representation space to high-dimensional observation space, a
3-layer fully connected network (FCN) is implemented in this module. The output vector
of this module is reshaped to a matrix X̃n ∈ Rw×s to adapt the samples’ dimension. Due
to the strong fitting ability of FCN, it can fit the detailed information in the complete data
X̂n to recover the missing values from hn. In this module, the rectified linear unit (ReLU)
activation function is used for nonlinear transformation. The target of the missing values
imputation task is to let the output of the module be as similar as possible to the complete
data. Mean squared error (MSE) is used as the loss function to measure the error between
the output and the complete data. Assuming that X̃n and X̂n denote the output and the
complete data of sample n, the imputation loss is

Limp =
1

wsN

N

∑
n=1
||X̂n − X̃n||2F, (4)

where N, w, and s denote the number of total samples, window size, and the number of
sensors, respectively.

Missing values imputation is not the final goal, but an auxiliary means for RUL
prediction under corrupted sensor data. For prediction, an RUL prediction module is
employed that shares the first two layers of FCN with the missing values imputation
module. Following the shared layers, a 4-layer 1D CNN is utilized to extract the degradation
features from the hidden representation. Note that the hidden representation is shared for
the missing values imputation task, which means the shared representation contains the
integral degradation information, and this greatly benefits RUL prediction. The details of
the 1D CNN model are shown in Figure 1. Following the 1D CNN, a 2-layer FCN with
512 neurons in the hidden layer is employed to fit the target RUL from the extracted features.
The commonly used MSE loss in regression tasks is utilized to calculate the prediction error.
Assuming that ŷn and yn denote the predicted value and the target RUL of sample n, the
prediction loss is

Lpred =
1
N

N

∑
t=1

(ŷn − yn)
2, (5)

where N denotes the number of total samples. In order to let the missing values imputation
task assist RUL prediction, the overall loss function is

L = Lpred + α · Limp, (6)

where α denotes the weight of Limp.

2.5. Monotone and Linearly Decreasing Loss

For the purpose of improving the smoothness of RUL prediction, a monotone and
linearly decreasing (MoLD) loss term is applied to the prediction results. This term is
inspired by the nature of RUL: monotone and linear decline. Specifically, we assume that ŷn
and ŷn−∆ denote the predicted RUL of sample n and the sample ∆ time steps earlier than
n, respectively, and ∆ŷn = ŷn−∆ − ŷn denotes the difference between ŷn−∆ and ŷn. Ideally,
∆ŷn should be equal to ∆ according to the nature of RUL mentioned above. However,
in practice, due to the effect of the limited performance of the model, the noise in the
collected signal, and the missing value in the data, ∆ŷn is usually not equal to ∆, which
means the fluctuation of prediction results. A common approach is to apply smoothing
post-processing to the prediction results, but it is cumbersome and human interference
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is introduced to the output of the model. To let the model output the smoothed RUL
directly, we propose to add the MoLD loss term LMoLD to Equation (6) to constrain the
RUL prediction result, which leads the model to directly output a smooth RUL prediction:

L = Lpred + α · Limp + β · LMoLD, (7)

where β denotes the weight of LMoLD and

LMoLD =
1

T − ∆

T

∑
t=1+∆

|ŷt−∆ − ŷt − ∆|, (8)

where ∆ is a hyper-parameter to control the intensity of smoothness. Intuitively, if
ŷn−∆ − ŷn = ∆, there is no penalty on the result. However, whether the predicted value is
greater or less than the ideal value, a penalty will be imposed on the result. In other words,
the RUL prediction result will be locally smoothed without any manual post-processing.

3. Experimental Study
3.1. Dataset Description

In this study, a simulated turbofan engine degradation dataset [23] is used to evaluate
the effectiveness of the proposed method. This dataset is created by NASA and is called
C-MAPSS. They developed a model-based aircraft engine degradation simulation pro-
gram to simulate the engine degradation process in different fault modes and operating
conditions, then multi-sensor degradation signals are collected from it. There are four
subsets named FD001, FD002, FD003, and FD004 in C-MAPSS, and a training set and
testing set are provided in each subset. In each training set, there are multiple run-to-failure
degradation trajectories of engines with different degrees of initial damage and have been
running to complete failure. However, in each testing set, the collected signals stop at a
time point before the engine totally failed. The details of the C-MAPSS dataset are provided
in reference [23]. The collected degradation data are multi-sensor signals with 21 sensors,
which reflect the degradation process from different views. In this work, since the collected
signals from sensor T2, P2, P15, epr, farB, Nf-dmd, and PCNfR-dmd are approximately
constants, the degradation information cannot be provided. The performance of the model
may not be improved and even be harmed by the useless features if we keep them in the
training set. Thus, the useless features are removed and only 14 sensors are retained, which
is also a common operation in previous studies [24,25]. The real RUL is provided in all
training and testing samples, and we applied piece-wise RUL as the target RUL according
to [29]. The details of C-MAPSS dataset are shown in Table 1.

Table 1. The details of C-MAPSS dataset [25].

Subsets FD001 FD002 FD003 FD004

Training engines 100 260 100 249
Testing engines 100 259 100 248

Fault modes 1 1 2 2
Operation conditions 1 6 1 6

3.2. Evaluation Metrics

To evaluate the performance of the proposed approach, three metrics are utilized in
this study. Firstly, the accuracy of RUL prediction is evaluated using root mean square
error (RMSE) and the score function [23]. RMSE is widely used in RUL prediction since it
is a common evaluation metric in regression tasks. RMSE is calculated with:

RMSE =

√√√√ 1
N

N

∑
n=1

(ŷn − yn)2, (9)
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where N denotes the number of samples; ŷn and yn stand for the predicted value and the
target RUL of sample n, respectively. To some extent it can be seen as the mean error of the
prediction and the target.

RMSE imposes the same penalty on early and late prediction. However, earlier and
later prediction of RUL will lead to different harms in real applications, namely later
prediction may cause more severe accidents since it cannot predict the failure of equipment
in time. To deal with this, the scoring function is proposed in reference [23] and widely used
in RUL prediction and is also employed in this study. The scoring function is defined as

SCORE =


E

∑
e=1

(e−
ŷe−ye

13 − 1), when ŷe < ye

E

∑
e=1

(e
ŷe−ye

10 − 1), when ŷe ≥ ye

, (10)

where E denotes the total number of testing engines; ŷe and ye denote the predicted RUL
and the target RUL of the last sample of engine e, respectively. The scoring function
penalizes more severe on late prediction. RMSE and the scoring function are visualized in
Figure 3.

Figure 3. Comparison between RMSE and the scoring function.

Moreover, to quantitatively evaluate the improvement of the smoothness of the pre-
dicted RUL by the proposed MoLD loss, we introduce a fluctuation index (FI) which was
originally used to assess the degree of fluctuation of time series data. In this work, we
utilize the FI to quantitatively evaluate the smoothness of the predicted RUL. The FI is
defined as follows:

FI =
1

N − 1

N

∑
n=2
|ŷn − ŷn−1|, (11)

where N denotes the number of total predicted RULs. FI evaluates the stability of the
predicted RUL by calculating the difference between two RULs at adjacent time steps. A
larger FI means less smoothness of the prediction.

3.3. Data Preprocessing
3.3.1. Normalization

As mentioned in Section 3.1, we use the data in C-MAPSS collected from selected
14 sensors where the scale of the collected data from different sensors varies widely. The
model will pay too much attention to features on a larger scale and ignore the smaller ones
if using these data directly, which also leads to training difficulties and prediction failures.
To balance the influence of features with different scales, we use max-min normalization to
scale the data into [0, 1]:

x(i,j)norm =
x(i,j) − x(i)min

x(i)max − x(i)min

∀i, j, (12)
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where i and j denotes the number of sensors and data points, x(i,j) and x(i,j)norm stand for
raw data and normalized data, and x(i)max and x(i)min are the maximum and minimum values
of sensor i, respectively. What should be noted is that the data in the testing set should
be normalized using the maximum and minimum values of the corresponding engine in
the training set, since the collected data in the testing set does not last until the end of the
engine life. This will keep the distribution of testing data the same with training data.

3.3.2. Corrupted Sensor Data Simulation

In this study, we aim at accurate RUL prediction under corrupted sensor data. In the
proposed method, the training procedure requires both incomplete data with missing values
and its corresponding complete data, which do not exist in common datasets. Therefore,
we need to manually mask some values in the complete data to simulate the required
corrupted data.

We masked some values in the training and testing sets in the C-MAPSS dataset
according to a preset missing rate p. According to a previous study [30], the importance
of different sensors for RUL prediction is different. The corruption of key sensor data
will cause serious loss of degradation information, which leads to a failed RUL prediction.
Therefore, to improve the robustness of the model under severely corrupted sensor data,
we set larger missing rates for key sensors, while ensuring the total missing rate is equal
to p. The data of each sensor is randomly masked according to the constructed missing
rate, and the masked values are set to 0. Both training and testing sets are processed in the
same pattern.

To show the statistical characteristics, we conducted statistics on the dataset under
multiple miss rates, including mean value and standard deviation, and showed them
in Table 2.

Table 2. The mean and STD of dataset under different missing rates (MR).

MR FD001 FD002 FD003 FD004

Mean STD Mean STD Mean STD Mean STD

0 0.42 0.18 0.47 0.34 0.43 0.2 0.47 0.33
0.1 0.38 0.21 0.42 0.35 0.39 0.23 0.42 0.35
0.2 0.34 0.23 0.38 0.35 0.34 0.25 0.38 0.35
0.3 0.29 0.24 0.33 0.35 0.3 0.26 0.33 0.35
0.4 0.25 0.25 0.28 0.35 0.26 0.26 0.28 0.35
0.5 0.21 0.25 0.24 0.33 0.22 0.26 0.24 0.33
0.6 0.17 0.23 0.19 0.31 0.17 0.25 0.19 0.31
0.7 0.13 0.22 0.14 0.28 0.13 0.23 0.14 0.28
0.8 0.08 0.19 0.09 0.24 0.09 0.19 0.09 0.24

3.3.3. Sliding Window Processing and Label Construction

Sliding window processing is a widely used technique in time-series data processing
and RUL prediction [24,25,31]. In this work, the sliding window processing is applied
to the time-series signal for data preparation. On the one hand, it helps in extracting
the local degradation features in the data. On the other hand, it also plays the role of
data augmentation.

Assuming that the length of original time series signal is T, the feature dimension, that
is, the number of sensors is s, and a time window with length w slides on the series signal

with step size k, then the original signal is processed as a sample sequence {Xn}
b T−w

k c+1
n=1 ,

where Xn ∈ Rw×s. In our experiments, the sliding window length and step size were the
same as these in reference [25]. The RUL of sample Xn is T−w− (n− 1)× k. As mentioned
in Section 3.1, we use the piece-wise RUL in reference [29] as the label, so the final RUL
label is:

RUL = min(RULearly, T − w− (n− 1)× k), (13)
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where RULearly = 125 in this study.

3.4. Experimental Settings and Results
3.4.1. Experimental Settings

To verify the effectiveness of the proposed method for RUL prediction under cor-
rupted sensor data, we have performed extensive comparative experimental studies on the
simulated datasets.

The selected comparison methods include widely used and validated benchmark
methods in RUL prediction, including SVR, MLP, DLSTM [15], and two recent state-of-the-
art methods in common RUL prediction tasks: namely DCNN [28] and AGCNN [25]. For
a better understanding of DCNN and AGCNN, some relevant studies are given in refer-
ence [32–34]. Note that since the problem of RUL prediction under corrupted sensor data is
a relatively novel and frontier problem in the field of industrial big data, no researchers
have proposed a widely recognized and accepted method for this problem. Therefore,
the comparison methods selected in our experimental studies are all classical methods for
RUL prediction.

There are several hyperparameters to be selected in the proposed method. We per-
formed numerous experiments and used the grid searching method to select the proper
value. Specifically, the number of layers of the deep LSTM is two, and the hidden size in
the LSTM unit is 512. In the objective function, there are three key hyper-parameters α, β,
and ∆, which are set to be 0.35, 2.0× 10−3, and 2, respectively; α and β denote the weight
of Limp and LMoLD, respectively; and ∆ is a hyper-parameter controlling the intensity of
smoothness. Actually, the prediction accuracy is not very sensitive to the value of α and β;
the values given here are recommended values and not strictly optimal. When the values
of α and β are in [0.25, 0.55] and [1.0× 10−3, 4.0× 10−3], respectively, there is no significant
difference between the results with the recommended values. For the parameter ∆, it is
more critical to select the appropriate value. An excessively large value of ∆ can lead to
meaningless prediction. During the training process, the Adam optimizer is applied with a
learning rate of 0.001 and batch size of 128, and the training is performed for 300 epochs.
The weights of the model are initialized with the Xavier uniform initializer [35]. In the
selected comparison methods, the SVR and MLP are called from the classic machine learn-
ing library sklearn, and the training parameters take the default values. For the DLSTM,
we built the model according to the paper and adjusted the parameters to adapt our data
dimension. For the AGCNN and DCNN, we built models based on the parameters given
in the paper and tuned them until we reproduce the reported results, then applied them
to our simulated datasets. All experiments are conducted on a server with 64-bit Ubuntu
18.04, which has a GeForce RTX 2080 Ti GPU with 12 GB memory.

3.4.2. Effectiveness of the Proposed Method

The RUL prediction experiments are performed on FD001 and FD003 with a missing
rate of 0∼0.8 to verify the effectiveness of the proposed method. We firstly train the model
on the training set of different missing rates and test it on the corresponding testing set.
The training time and testing time are listed in Table 3.

Table 3. The training and testing time (in seconds) of the proposed model.

Stage FD001 FD002 FD003 FD004

training 1945.8 4883.22 1879.57 5018.38
testing 0.53 0.92 0.44 0.97

Good performance of the imputation task is the premise of high performance of RUL
prediction under corrupted data. The imputation results of the test engine 76 in FD001
under 0.3 missing rate were selected for visualization and are shown in Figure 4. Since
there is an overlap in the imputation results between adjacent data points, we average the
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imputation value of the same data point. It shows that the model can effectively impute the
corrupted values. We selected some prediction typical prediction results of testing samples
and visualized them in Figure 5. The horizontal and vertical axis represents the time and
the RUL, respectively. The red dashed line in each subfigure represents the piece-wise RUL
label, and the rest of the lines represent the RUL predicted value under different missing
rates, as shown in the legend.

Figure 4. The visualization of complete data, corrupted data, and imputation data of engine 76 in
FD001 testing set under 0.3 missing rate.

Figure 5. Some typical RUL prediction results of engines in testing set FD001 and FD003 under
different missing rates (MR).

It can be seen from the figure that the proposed method achieved remarkable RUL
prediction performance under various missing rates, especially when the missing rate is low.
The prediction results almost coincide with those when the missing rate is 0. This is because
the proposed method has the ability to sufficiently extract and fuse the degradation features
from data with only a few missing values. As the missing rate increases, the predicted RUL
gradually deviates from the target value, which is inevitable. Although the large missing
rate leads to the deviation of the predicted values, it is still relatively efficient to predict the
RUL of the system under the data with a large amount of information missing due to data
corruption. This is because the proposed method sufficiently extracts the information from
the available data, and the degradation features are recovered with the auxiliary of missing
values imputation task; therefore, the RUL can be effectively predicted.
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3.4.3. Ablation Study

Furthermore, to verify the role of missing values imputation module and MoLD loss in
the proposed method, we conducted ablation studies. Specifically, three versions of MTD-
LSTM are used for experiments: only using RUL prediction loss, namely MTD-LSTM †;
using RUL prediction loss and imputation loss, namely MTD-LSTM ∗; and the standard
version with all three terms in the objective function, namely MTD-LSTM. The experimental
results are shown in Figure 6 and Table 4.

Figure 6. Comparison of prediction results of MTD-LSTM ∗ and MTD-LSTM on FD001 and FD003
under missing rate 0.

Table 4. The FI comparison on FD003 under different missing rates.

Missing Rate 0.0 0.1 0.2 0.3 0.4 0.5 0.6

MTD-LSTM ∗ 0.86 0.79 0.81 0.88 0.88 0.92 1.03
MTD-LSTM 0.51 0.53 0.63 0.53 0.56 0.65 0.62

IMP(%) 40.69 32.43 22.57 40.18 35.91 29.60 40.46
1. * denotes the MTD-LSTM without MoLD loss term.

Firstly, we conducted comparison experiments using MTD-LSTM † and MTD-LSTM ∗

under different missing rates on the FD001 and FD003 subsets to verify the effectiveness
of multi-task learning in the RUL prediction under corrupted sensor data. The result is
shown in Figure 7. In each subfigure, the horizontal and vertical axis represents different
values of missing rates and the RMSE value of prediction, respectively. The blue and
red lines denote the prediction results of MTD-LSTM ∗ and MTD-LSTM †, respectively.
It shows that the performance of MTD-LSTM † which only uses RUL prediction loss is
close to that of the common deep learning method under corrupted data. This is because
MTD-LSTM † cannot sufficiently extract and fuse the degradation information under lots of
missing values. However, after adding the imputation loss to the objective function, which
means multi-task learning, MTD-LSTM ∗ shows significant improvement compared with
MTD-LSTM † under corrupted data. The reason lies in that the missing value imputation
module effectively extracts integral degradation information from the incomplete data
by recovering the missing values; therefore, the RUL prediction module performs its role
better with the auxiliary of multi-task learning.

Furthermore, the improvement (IMP) is also calculated and shown in the figure. It
shows that the improvement of the multi-task learning method is not quite significant
when the missing rate is too high or too low; the reason is as follows. For the previous
case, although the multi-task method can deal with a certain degree of missing values, it
cannot perform well when encountering too many missing values. This is because most of
degradation information has been lost, and accurate RUL prediction is not possible. For the
latter case, the common deep learning method is sufficient when the loss of degradation
information is not serious, and the multi-task method cannot fully exert its advantages.
In the range of missing rates from 0.1 to 0.5, the multi-task learning method shows its
powerful advantages, which can greatly improve the RUL prediction performance under
corrupted sensor data.
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Figure 7. The prediction accuracy comparison of MTD-LSTM † and MTD-LSTM ∗ on FD001 and FD003.

Next, we use the standard version MTD-LSTM for verifying the effectiveness of the
MoLD loss term. The purpose of this term is to directly improve the smoothness of the
predicted RUL. To verify this, we calculated the FI of the predicted RUL output by MTD-
LSTM ∗ and MTD-LSTM. The results on FD003 under different missing rates are shown
in Table 4. The improvements are also calculated and shown in the table. It shows that
the FI of the standard version is significantly lower than the version without the MoLD
loss term, which means the MoLD loss term can effectively smooth the predicted RUL.
We select some representative RUL prediction results for visualization in Figure 6. The
red dashed line represents the RUL label, and the blue and orange lines represent the
RUL prediction results of MTD-LSTM ∗ and MTD-LSTM, respectively. Obviously, the
prediction results of MTD-LSTM are smoother. This is because the short-term fluctuation is
strongly suppressed by the constraint on the two adjacent output values by the MoLD loss
term. Therefore, clearer equipment health conditions can be obtained, and more effective
equipment maintenance and management decisions can be made.

3.4.4. Comparisons with Other Methods

To further evaluate the superiority of the proposed method, we compared several
classical methods with two versions of the proposed method, namely the standard MTD-
LSTM and MTD-LSTM ∗ without MoLD loss term. The comparison methods include SVR,
MLP, LSTM, DCNN, AGCNN, etc. We use these methods to conduct experiments on FD001
and FD003 subsets under different missing rates. The experimental results evaluated by
RMSE and SCORE are shown in Tables 5 and 6, respectively.

Table 5. RMSE and scores of compared methods on C-MAPSS under different missing rates (MR).

Metrics Subset MR SVR MLP DLSTM DCNN AGCNN MTD-LSTM ∗ MTD-LSTM

RMSE

FD001

0 15.58 20.62 13.48 13.71 13.09 11.20 11.33
0.1 19.03 21.07 17.61 13.75 13.94 11.75 12.23
0.2 19.60 21.82 21.20 13.38 14.13 12.66 12.25
0.3 20.87 24.40 22.21 15.09 15.25 13.07 13.15
0.4 21.85 26.16 22.80 16.85 16.87 13.62 14.01
0.5 22.96 28.67 23.27 19.94 19.76 16.15 17.40
0.6 24.15 29.87 25.02 21.39 19.85 17.86 18.30
0.7 24.01 36.43 24.83 20.31 20.73 19.84 20.58
0.8 24.14 46.13 24.36 22.32 21.14 20.63 21.54

FD003

0 15.49 17.66 11.31 11.66 12.08 9.62 9.62
0.1 17.36 18.68 13.69 11.66 13.07 10.27 10.58
0.2 17.84 19.55 14.54 12.32 13.76 10.69 10.64
0.3 18.84 21.72 17.96 13.62 13.82 11.06 10.85
0.4 20.15 24.86 18.69 15.27 14.53 12.24 12.22
0.5 21.67 26.04 20.21 17.64 17.81 15.22 16.14
0.6 22.41 28.61 22.79 16.39 17.87 16.38 16.50
0.7 23.00 31.32 20.74 17.62 19.43 18.00 18.25
0.8 23.60 35.79 21.38 19.63 19.43 19.17 18.39

1. * denotes the MTD-LSTM without MoLD loss term. 2. The best results in each row are bold.
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Table 6. RMSE and scores of compared methods on C-MAPSS under different missing rates (MR).

Metrics Subset MR SVR MLP DLSTM DCNN AGCNN MTD-LSTM ∗ MTD-LSTM

SCORE

FD001

0 475.17 1723.54 319.89 282.85 233.34 241.94 265.97
0.1 1186.65 1384.44 752.17 416.98 528.26 259.73 272.35
0.2 1243.58 1425.77 2023.09 472.05 411.62 347.84 301.84
0.3 1916.70 1869.10 3719.53 799.67 497.74 454.64 428.82
0.4 2222.08 10610.61 4085.67 848.41 509.87 399.05 357.24
0.5 6985.87 8626.61 3590.35 1772.34 795.78 1344.16 730.97
0.6 3032.66 1955.51 8044.69 1350.10 1268.10 824.33 1075.88
0.7 2428.92 4272.51 10798.33 2655.43 1479.28 2499.86 2198.13
0.8 5246.20 22689.29 15817.78 5116.64 2292.33 4623.64 3322.14

FD003

0 1257.49 2236.46 732.43 282.23 240.08 232.73 226.36
0.1 2007.97 2171.79 820.59 430.03 327.57 379.23 341.32
0.2 1997.12 2194.71 2416.02 598.96 360.95 294.41 359.82
0.3 2181.85 3280.49 3889.62 563.09 530.96 491.51 462.50
0.4 2715.29 2761.14 5809.09 1194.57 857.15 766.38 699.04
0.5 3115.46 5423.23 8890.98 3215.52 3135.02 1952.03 1595.07
0.6 4508.54 33535.98 6881.44 2533.28 4944.36 2312.08 2762.80
0.7 3240.60 12069.38 7501.80 3217.82 4538.29 2917.86 3325.78
0.8 4927.10 42927.81 17348.62 4373.71 3879.53 4350.80 4880.05

1. * denotes the MTD-LSTM without MoLD loss term. 2. The best results in each row are bold.

It shows that the proposed method obtains outstanding performance compared with
other methods. MTD-LSTM comprehensively outperforms the compared prediction meth-
ods under different missing rates, both in RMSE and SCORE. This means that MTD-LSTM
can effectively predict the RUL under different degrees of missing values, which tradi-
tional RUL prediction methods cannot do. For traditional methods, when encountering a
large number of missing values, they cannot extract degradation information from these
incomplete data. This is because these methods do not have effective information fusion
and extraction mechanisms designed for incomplete input data. For the proposed MTD-
LSTM—based on the idea of multi-task learning—the RUL prediction task is performed
with auxiliary by missing value imputation task; therefore, the degradation information
can be effectively extracted from the incomplete data, which is not achieved by traditional
methods. Moreover, the combination of multi-layer LSTM and CNN greatly helps in fully
exploring the spatiotemporal correlations in the data, which provides a guarantee for the
effectiveness of the missing values imputation task, and then the RUL prediction task is
performed more efficiently.

4. Conclusions

In this work, we proposed an LSTM-based multi-task model (i.e., MTD-LSTM) for
RUL prediction under corrupted sensor data. The corrupted data is first fed into the feature
extraction and fusion module, and the extracted features are next simultaneously sent to the
missing values imputation and RUL prediction module. The purpose of the missing values
imputation task is to extract integral degradation information from the incomplete data;
therefore, the RUL module can perform better under corrupted sensor data. In addition, to
automatically smooth the predicted RUL, the proposed MoLD loss is applied to the output
value. Experiments conducted on the simulated dataset verified the effectiveness of the
proposed method.

There are still some drawbacks in the proposed method. For example, in this method
the missing values must be simulated using complete data, and the distribution of this
artificial simulation missing values is usually different from real scenarios. In addition, in
real applications there are often a variety of problems including missing values in the data,
such as sensor drifting; precision reduction; and so on. The proposed method does not deal
with these problems well.

In future work, we will further explore robust and generalized RUL prediction meth-
ods under sensor faults to adapt to various harsh industrial conditions, since data corrup-
tions may occur in the data under sensor faults. Multiple types of abnormal values should
be handled, such as outliers, data drifting, and so on. To this end, more powerful methods
may be utilized, such as transformer [36] and others.
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