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Abstract: The finite element method (FEM) is widely used in many engineering applications. The
popularity of FEM led to the development of several variants of formulations, and hexahedral meshes
surged as one of the most computationally effective. After briefly reviewing the reasons and advan-
tages behind the formulation of increasing order elements, including the serendipity variants and the
associated reduced integration schemes, a systematic comparison of the most common hexahedral
formulations is presented. A numerical benchmark was used to assess convergency rates and compu-
tational efficiencies when solving the eigenvalue problem for linear dynamic analysis. The obtained
results confirmed the superior performances of the higher-order brick element formulations. In terms
of computational efficiency, defined as the ratio between achievable accuracy and computational
execution time, quadratic or cubic formulations exhibited the best results for the stages of FE model
assembly and solution computation, respectively.
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1. Introduction

In many fields of science and engineering, the application of the fundamental princi-
ples of physics often leads to the formulation of the system model in the form of partial
differential equations (PDEs). Therefore, obtaining an accurate numerical solution for PDEs
in a timely manner is crucial. The finite element method (FEM) has been affirmed over
the last decades as one of the most widely used methodologies. Based on the Galerkin
formulation, FEM allows dealing effectively with the weak form of the PDEs [1].

Because FEM is numerical, thus an approximated methodology, several criteria need to
be met in order to obtain stability, convergence, and accuracy of the results [2–4]. Accuracy
ensures the limitation of the deviations of the approximated solution from the exact behavior
within prescribed levels of tolerance. Stability criteria are used to ensure that desired
levels of accuracy are met robustly, thus within tolerance over the whole domain, and
irrespective of subtle variations of the FE solution parameters. Unstable solutions may
arise as the result of multiple reasons, such as a poor choice of the approximating functions,
a “bad” domain discretization, or an incorrect representation of the boundary conditions.
Convergence criteria define the relationships between the mesh size and the achieved
accuracy, thus focusing on measuring how the discretization error diminishes with the
decreasing characteristic mesh size, hence with an increasing number of degrees of freedom.
The results of the convergence studies can be used to derive guidelines for setting the
optimal element size for a given finite element type, allowing for the saving a considerable
amount of computational effort, as shown in [5] for the simulation of Lamb waves.

The error estimation approaches for studying the accuracy of numerical methods
can be classified into two categories [6]. On the one hand, a-priori estimates rely on the
knowledge of the asymptotic law representing the specific order of convergence [7]. On the
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other hand, a-posteriori estimation techniques focus more on pollution error, which arises
due to the accumulation of the effects of the dispersion errors distributed over the whole
domain [8].

Mitigation of dispersion errors is notably achieved by using a finer mesh but also by
adopting higher-order finite elements [9]. The hp-version adaptive finite element algorithm
represents adaptive mesh refinement with increasing polynomial order. An hp-algorithm
was proposed in [10] to determine the eigen solutions of moderately thick cylindrical shells,
involving the issues of variable geometrical factors, such as the thickness, circumferential
wave number, radius, and length.

When using linear meshes to capture events of increasing frequency, the number
of elements needed to mitigate interpolation, especially pollution errors, increases more
than linearly, posing significant limitations on the use of such elements for modeling
highly dynamic applications [11]. Therefore, among the above-mentioned alternatives,
higher-order elements inherently possess a faster convergence, although at the expense of
an increased computational cost [11–13]. One way to overcome problems related to the
computational burden was proposed in [14] through a matrix-free approach applied to
higher-polynomial shape functions used for fracture problems.

Several studies in the literature investigated the matter [15–21], but usually limiting
the comparative analysis to spare groups of elements, such as the linear and quadratic
hexa type only [15–17,21], or instead to just the serendipity elements [18–20]. Only a few
works have investigated cubic elements, in most cases considering the cubic serendipity
elements [22].

This paper proposes an extensive comparative analysis of the various brick element
formulations, extended from the linear to the cubic order, also considering the serendipity
variants. Moreover, the investigation is complemented by also considering Gauss–Legendre
integration schemes with increasing order, as it affects both the accuracy and the computa-
tional efficiency of each FE formulation. A representative eigenproblem example containing
different-order hexahedral elements with various numbers of integration points, was in-
vestigated to evaluate the accuracy and performance of FE formulations. High predictive
accuracy of eigenvalues and eigenfunctions is crucial for reliable analyses in structural
dynamics [23,24].

The remainder of the paper is outlined as follows: Section 2 summarizes the funda-
mental steps necessary to formulate a structural dynamic problem using FEM; Section 3
deals with the major challenges and numerical issues related to the art of obtaining a
good-quality FE mesh. Section 4 focuses on the formulation of several types of hexahedral
elements, also considering the serendipity variants. Comparative results of different orders
and types of hexahedral elements are presented and discussed in Section 5. Concluding
remarks are drawn in Section 6.

2. FE Formulation for Structural Dynamics Problems

FEM consists basically of the following steps: (1) formulating the variational integral
form of the different contributions of the virtual work principle; (2) discretizing the domain
by splitting it into a finite set of elements; (3) integrating the contributions of each element.

2.1. Variational Integral Form of the Virtual Work Principle

The equation of motion for an elastic body based on the standard variational statement
of Hamilton’s principle is as follows [19]:

t2∫
t1

[
δW f + δT − δΠ

]
dt = 0, (1)

where W f is the work performed by the external forces, T is the kinetic energy, and Π is the
elastic strain energy.
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The kinetic energy of the entire problem domain is defined in the following integral form:

T =
1
2

∫
Ω

ρ
.
uT .

udΩ, (2)

where Ω represents the whole domain of the solid and
.
u is the time-derivative of the

displacement field.
The strain energy of an elastic solid can be expressed as follows:

Π =
1
2

∫
Ω

εTσdΩ, (3)

where ε and σ are the strain and the stress fields, respectively.
The work performed by the external forces is the sum of the contributions of surface

forces fs and body forces fb:

W f =
∫
S f

uTfsdS f +
∫
Ω

uTfbdΩ, (4)

where S f represents the boundary surface of the body.

2.2. Spatial Discretization

The complexity of evaluating the integrals of Equations (2)–(4) is alleviated by split-
ting the domain of integration into finite elements. Within each element, the unknown
displacement field, u, is approximated as the linear combination of a set of n interpolation
functions, Ni(ξ, η, ς), also known as shapes functions [20]:

u =


ux
uy
uz

 = ∑
i

Ni
Ni

Ni


qi

x
qi

y
qi

z

 =

N1 Nn
N1 . . . Nn

N1 Nn





q1
x

q1
y

q1
z
...

qn
x

qn
y

qn
z


= Nq (5)

where N is the matrix of the shape functions, q is the vector of nodal displacements,
and n is also the number of nodes defining the element.

Under the assumption of linear elasticity, the strain-stress relationship is governed by
the following:

σ = Dε, (6)

where the material characteristic matrix, D, is obtained as a function of the Poisson ratio, ν,
and of the Young’s modulus, E, as follows:

D =
E

(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 (1 − 2ν)/2 0 0
0 0 0 0 (1 − 2ν)/2 0
0 0 0 0 0 (1 − 2ν)/2

. (7)
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For the purpose of formulating the FE problem, the differential operator, ∂, is adopted
in order to derive the strain field, ε, as a function of the nodal displacements vector, q:

ε =



εx
εy
εz

γxy
γyz
γxz


=



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂

∂y
∂

∂x 0
0 ∂

∂z
∂

∂y
∂
∂z 0 ∂

∂x




ux
uy
uz

 = ∂u = ∂Nq = Bq (8)

As a result of Equation (8), and by using the material elasticity properties, both strain
and stress fields can be formulated as functions of the nodal displacement q as follows:

ε = Bq
σ = DBq

(9)

where B is the strain displacement matrix, obtained by applying the differential operator to
the shape function matrix.

The evaluation of integrals expressed in Equations (2)–(4) is reduced to a summation
of the integral contributions of all the elements. Thanks to the expressions derived in
Equations (5) and (9), for each element, the strain energy, Πe; the kinetic energy, Te, and
the work performed by external forces, W f

e, can be evaluated more easily, according to the
following [19,21]:

Πe = 1
2

∫
Ωe

εTσ dΩ = 1
2 qT

(∫
Ωe

BTDB dΩ

)
q = 1

2 qT Ke q, Ke =
∫

Ωe
BTDB dΩ (10)

Te = 1
2

∫
Ωe

ρ
.
uT .

u dΩ = 1
2

.
qT
(∫

Ωe
ρNTN dΩ

)
.
q = 1

2
.
qTMe .

q, Me =
∫

Ωe
ρ NT N dΩ (11)

W f
e =

∫
Se

uTfs dS +
∫

Ωe
uTfb dΩ = qT

(∫
Se

NTfs dS

)
+ qT

(∫
Ωe

NTfb dΩ

)
= qTFs + qTFb = qTFe, (12)

Fe =
∫
Se

NTfS dS +
∫

Ωe

NTfb dΩ

where the evaluation of the integrals leads directly to the formulation of the stiffness matrix,
Ke, and the mass matrix, Me, of the element. The surface integration is performed only for
elements on the boundary of the problem domain. Fe is the generalized force vector . . .

2.3. Numerial Integration Using Gauss–Legendre Quadrature

The computation of the stiffness and mass matrices, as well as of the load vector, re-
quires the evaluation of a few definite volume integrals. Performing a good approximation
by means of an adequate numerical quadrature procedure is crucial to the overall accuracy.
A variety of approaches have been proposed in the field of numerical integration tech-
niques [25]. The most common method of quadrature used within FE relies on the Gauss
quadrature rules as follows: depending on the chosen integration order, the rule dictates
the amount and location of a finite set of sampling points, as well as their corresponding
weight. Exploiting the numerical integration scheme, the evaluation of the integrals in
Equations (10)–(12) is approximated as the following weighted sums:

Ke ∼= ∑
g

wg Bg
TDBgdet(J) (13)
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Me ∼= ∑
g

wg ρ Ng
TNgdet(J) (14)

Fe ∼= ∑
g

wg Ng
Tfbdet(J) + ∑

g
wg Ng

Tfsdet(J) (15)

where wg is the weight associated with the gth sampling point; J is the Jacobian matrix
used to perform transformation from the local coordinate system (ξ, η, ς) of each element
to the global cartesian system; ρ is the material density.

Finally, the global mass and stiffness matrices, as well as the global force vector, are
obtained by assembling the contributions of all the elements according to their connectiv-
ity [19,20].

2.4. Equations of Motion and Eigenvalue Problem

Exploiting the well-known Hamilton principle, Equations (1)–(15) pose the fundamen-
tals to transform the weak form of the structural dynamic problem of Equation (1) into the
following discretized second-order differential equation system [26]:

M
..
q + Kq = F (16)

The accuracy of the solution to the considered dynamic problem is affected by the
accuracy and correctness of the obtained matrices [27]. However, the correctness of transient
analyses may also be influenced by the accuracy of the chosen time-integration scheme.
For this reason, it is more robust to accomplish convergence studies of FE models by
studying the associated eigenvalue problem for modal analysis. The free vibration problem
is formulated as follows:

M
..
q + Kq = 0, (17)

which can be notably solved by posing the following generalized discrete eigenvalue
problem:

K φ = ω2M φ. (18)

Solving Equation (18) results in obtaining m eigenvalue-eigenvector pairs (λk, φk ), k = 1,
. . . , m. Each eigenvector, also known as eigenmode, represents one mode shape of the freely
vibrating system, while the square root of the corresponding eigenvalue is the associated
vibration frequency, also known as eigenfrequency or natural frequency.

The effects of the arbitrary scaling of the eigenvectors obtained by solving Equation (18)
by means of iterative procedures can be alleviated by assuming a normalization strategy. In
this work, the mass-normalized convention for the mode shape was adopted, from which
the following expressions of the orthogonality properties of the eigenmodes with respect to
the mass and to the stiffness matrices derive:

φk
TMφj = δkj, (19)

φk
TKφj = δkjω

2
k . (20)

2.5. Estimating the FE Accuracy for Dynamic Applications

To assess the quality of the FE solution, proper performance metrics must be defined
and able to effectively capture the difference between a theoretically exact solution and
the one provided by means of FEM [21]. As discussed in previous sections, the following
two sources of approximation are introduced by FEM: the first source is the finite order of
interpolation of the chosen shape functions, and the other one may arise from the use of
Gauss–Legendre integration for the computation of the system matrices [20].

Modal parameters, such as the natural frequencies and mode shapes, characterize the
linear dynamic properties of a vibrating structure and can be used to evaluate indirectly
the accuracy of the stiffness and mass matrices obtained through FEM. In fact, studying the
convergence behavior requests the evaluation of both eigenvalues and eigenvectors [17]. In
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another study, a different a priori criterion was proposed based on the evaluation of the
maximum eigenvalue of the stiffness matrix [28].

Error estimation and mitigation techniques have been extensively researched in the
literature [29,30]. In particular, studying the convergence rate aims to improve the mesh
quality and obtain an optimal balance between accuracy and computational cost. The
estimation of the convergence rate is oriented to find out an asymptotic behavior, upon
which design choices can be empirically made for achieving results in viable terms, allowing
obtaining an adequate accuracy level in a timely acceptable window [31]. As already stated
in the introduction, the estimation of the error convergence rates relies on either a-priori or
a-posteriori approaches [6].

Given a certain law of the convergence rate, one could a-priori perform a small set
of preliminary FE analyses in order to capture its asymptotic behavior. For example, one
option is to consider the convergence rate of the displacement error norm, Eu, which is
known to follow the following linear trend:

Eu ∼= Ch. (21)

In this case, the asymptotic behavior can be estimated through linear regression, which
results in obtaining the value of the constant C, as a function of the characteristic mesh size,
h. The knowledge of C can be finally used to tune the mesh density according to the desired
level of accuracy. As documented in [32], the convergence rate of the relative eigenvalue
errors, Eλ, is governed by the following exponential trend:

Eλk =
λh

k − λk

λk
≤ c (h λk)

p, (22)

where λh
k and λk represent the reference and approximated k-th eigenvalues, p is the degree

of the shape functions, and h is the characteristic mesh size.
In a simpler scenario, the a-posteriori error metric is defined and quantified in order

to make an estimation of the actual accuracy of the obtained FE model [33]. Babuska
and Rheinboldt [34] were among the first authors to propose a class of a-posteriori error
estimations based on the inter-element discontinuity for the C0-continuous approximation
of the solution field. Later, Zienkiewicz and Zhu [35] proposed a different error estimation
focusing on stress field deviations. Other studies were dedicated to obtaining adaptive
algorithms, which allow the generation of successive convergent solutions, for which the
performance of the error indicators depends on both grid splitting and the choice of an
order [36,37].

Several error metrics were proposed in order to assess objectively the accuracy caused
by both the discretization and the integration approximations. Each metric is targeted to a
particular need as follows: depending on the FE application, a different error norm may be
used to minimize the deviations in terms of displacements, elastic energy, or stress [38–40].
Recently, Reali and Hughes [32] presented a comprehensive approach for estimating the error
of FE approximations, demonstrating the existence of an intimate relationship between the
relative errors in the eigenvalues, eigenmodes error norm, and energy norm, which applies
to each eigenmode separately.

In the present work, starting from Equation (22), the mean relative eigenvalue error
has been adopted as an accuracy metric.

3. Key Factors for a Good FE Formulation

As discussed in Section 2.2, the discretization stage consists in splitting the domain of
the partial differential boundary problem, by means of a finite set of elements. Within each
element, continuous field quantities are mapped to discrete nodal quantities by means of
the dedicated interpolation functions, Ni.

Notably, shape functions are derived to guarantee the following two properties: com-
patibility and completeness. Compatibility ensures the maintenance of a certain degree
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of continuity across the inter-element boundaries, whereas completeness refers to the
capability of capturing rigid body motions as well as constant strain states [41].

Discretization errors arise from the difference between the true field quantities and the
corresponding ones captured through the liner combination of the shape functions [29,42].
For example, errors in displacements arise by comparing the true displacement field, uh,
with the approximated one, u = Nq. Therefore, FE accuracy is strongly related to the shape
functions and to their capability of fully representing the underlying physical phenomena.

More in general, particular care must be taken during the discretization phase to
guarantee the accuracy and stability of the solution and avoid undesirable phenomena.
The shear-locking behavior is among the most problematic challenges to cope with, as it
can exhibit unphysically stiff responses [43]. Such behavior may happen when using too
few linear elements along the thickness of a plate. As a result, locking phenomena will
cause an underestimation of deflections and stresses, with a high risk of overwhelming
safety margins during the design phase [44].

For these reasons, reduced integration schemes (RI) were introduced so that these
“locking” phenomena disappear [45]. But the major drawback of these RI schemes is
a mesh instability often known as “hourglassing” [46]. It often manifests, giving rise
to unphysical zero-energy modes that are caused when the number of calculated zero
eigenvalues exceeds the rigid body modes. It can lead to numerical instabilities and
erroneous solutions due to the rank deficiency of the equations of motion [47–49]. Several
techniques have been proposed to mitigate hourglassing effects. The first technique was
developed by Belytschko, who proposed to enrich the model descriptions using ‘artificial
damping’ and ‘artificial stiffness’ [50]. The B-bar method described in [51] can be applied
to avoid spurious modes for the anisotropic and non-linear media. It relies on using
a stabilization matrix, which does not contribute to any deformation modes except for
the hourglass ones, thus ensuring the element passes the patch test [52]. To treat the
spurious instability, special solution methods and various element formulations have
been developed [53,54]. A new formulation, based on the 3D-MITC8 element, has been
proposed to prevent both hourglassing and locking in [55].

Higher-order elements rely on a high-order polynomial expansion within each element.
As a result, quadratic elements can capture bending and curvilinear shapes, providing
an intrinsically superior robustness against hourglassing and incompatible modes [56,57].
Higher-than-second-order elements, such as cubic, quartic, and so on, may present even
better performances in preventing shear locking. However, especially in combination with
explicit solution methods, where the time increment size is related to nodal spacing, the
usage of higher-order elements may demand unnecessary small-time integration steps [57].

As briefly discussed in the previous section, a-priori criteria can be used to guide the
designer in performing a refinement of the mesh such that the accuracy of a FE model
can be optimized. Mesh refinement is usually based on two different, but complementary
strategies adopted to increase the accuracy [10]. On the one hand, h-refinement relies on
the progressive reduction of the element size. The effects of element size on the accuracy of
FE models were investigated through static, impact, and modal analyses in [58]. In [59],
fully automatic hp-adaptivity is implemented for a 3D problem. H-adaptivity is also an
effective tool to introduce local mesh refinement in the FEM-based numerical simulation
of crack propagation and could be beneficial for the numerical simulation of fatigue or
accidental load scenarios [60]. On the other hand, the p-refinement strategy relies on using
a progressively increased order of the elements, thus increasing the polynomial order of
their shape functions [61,62]. A complimentary approach to pure p-refinement strategy
for an eight-node Hermitian hexahedral element was presented in [63], where authors
considered six DOFs per node, three DOFs for the canonical displacements, and three extra
DOFs to explicitly capture the local rotations. It is worth noting that higher-order elements
possess the intrinsic capability of capturing rotational effects but without demanding for
extra efforts required by an explicit representation of the rotational DOFs. The origin of the
hp-adaptive approach, which is a combination of the former two methods, dates back to the
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works of Babuška et al. [64,65], who originally suggested that FEM converges exponentially
when the mesh is refined by a suitable combination of both strategies.

4. Different Formulations of the Hexahedral (Brick) Element

Considering the importance of defining the shape functions correctly, a large num-
ber of studies have been dedicated for the investigation of defining several types of
elements [19–22,66–68]. Among all types of solid elements, hexahedral (brick) modeling
strikes a balance of meshing ease, accuracy, and efficiency [67,68].

Besides the hexahedral elements, tetrahedral elements are affirmed due to their su-
perior ease of use in terms of the capability of adapting to curved shapes. However,
hexahedral elements provide relatively higher accuracy, allowing for a lower mesh den-
sity, thus, for a better computational efficiency [69,70]. The lower accuracy of tetrahedral
elements manifests more clearly, especially on the occasion of high deformation problems,
such as nonlinear elasto-plastic analyses. For instance, even second-order tetrameshes
underperform when compared to the ones obtained using linear brick elements when
shear stress is dominant. Moreover, it is shown that in structural dynamics problems,
different performances are found since tetrahedral elements tend to overestimate the model
stiffness [17].

Despite the documented superior performance of brick elements with respect to
tetrahedral ones, in some cases, it is still preferable to use both types leading to the necessity
of transition elements, such as the prismatic and pyramidal ones. It is worth noting
that all the solid elements, including the tetrahedral ones, can be easily formulated by
“degeneration” of the eight-node hexahedron by collapsing two or multiple nodes.

The study presented here focused on comparing hexahedral elements with increasing
order formulations up to the cubic one. Implementation details of all the considered formu-
lations are reported in Appendix A. For all the considered formulations, the iso-parametric
approach was adopted, thus using the same interpolating functions to approximate the
state (displacements, strains, stresses, etc.) fields, as well as the geometry. The position
vector of each point within an iso-parametric regular brick element can be transformed
from the local coordinates (ξ, η, ζ) that vary between −1 and 1 into the Cartesian (X,Y,Z)
coordinates and vice versa.

4.1. Serendipity Brick Elements

As noted in [71], using higher-order elements will produce matrices with a larger
bandwidth. As a consequence, denser sparse matrices will cause a corresponding decrease
in computational performances.

A common solution used to alleviate the computational burden is represented by
the serendipity elements [18,20,22,72–74], which are obtained from the regular ones by
keeping only the nodes belonging to the edges, which are the only ones contributing to
the inter-element C0 continuity connection. As a result, they provide similar accuracy to
their regular counterparts while obtaining a considerable reduction in the number of DOFs,
and, thus, in the size of the element matrices. This property could, in part, mitigate the
computational disadvantage of obtaining denser matrices, which typically results from
using higher-order elements.

This fact, in part, justifies the frequent integration of these kinds of elements in com-
mercial FE software. Nevertheless, it is worth noting that although both serendipity and
regular elements can achieve complete polynomial resolution, they do it with different
degrees of completeness. For instance, second-order serendipity elements can fully repre-
sent first-order polynomials with the enrichment of a few quadratic terms, whereas regular
quadratic elements fully represent the second-order polynomials.

The superiority of regular elements with respect to the serendipity alternatives was
confirmed by studying the effects of element distortions on the displacement-based ac-
curacy. The reported advantages are known to be significant in case of high distortion,
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which manifests clearly along the coarser-to-finer transition regions usually necessary to
discretize complicated geometrical boundaries, such as in holes and corners [75,76].

The comparative analysis of this study was, therefore, complemented, including the
quadratic and cubic serendipity elements. The implementation details are reported in
Appendix A.

4.2. Under-Integration vs. Full-Integration Schemes

As anticipated in Section 2.3, Gauss quadrature allows the evaluation of the definite
integrals, by means of a weighted sum of the integrand function over a set of interior points,
referred to as sampling points. In the Gauss quadrature, the position of the sampling points
and the corresponding weights are chosen so that a polynomial of a given degree can be
integrated exactly. For a polynomial of degree 2m − 1, full integration is achieved if m
sampling points and the corresponding weights are chosen according to the quadrature rule.

As mentioned in Section 4.1, when dealing with solids and structures with complicated
loads or geometries, locking problems may arise. In [67], full-order integration of trilinear
iso-parametric brick elements was shown to lead to locking phenomena. The use of reduced-
integration schemes is known to be beneficial to mitigate the locking effects. In fact, the
typical overestimation of the stiffness matrix can be balanced using fewer sampling points,
which can generate a less stiff element [77].

5. Results and Discussion

This section discusses the results of the comparative numerical analysis of several
C0 continuous hexahedral finite elements with the aim of assessing their computational
efficiency and predictive accuracy. The considered formulations and the related integration
schemes are detailed in Table 1.

Table 1. Design of experiments.

Integration Schemes

Order Nodes 2 × 2 × 2 3 × 3 × 3 4 × 4 × 4

Linear 8 Hexa8-Int8
Quadratic Serendipity 20 Hexa20-Int8 1 Hexa20-Int27

Quadratic 27 Hexa27-Int27
Cubic Serendipity 32 Hexa32-Int27 1 Hexa32-Int64

Cubic 64 Hexa64-Int64
1 Serendipity formulations with reduced integration.

As can be noted in Table 1, under-integration was considered only for the serendipity
elements since under-integration of regular elements may lead to unstable results. Over-
integration schemes, such as the Hexa8-Int27, Hexa8-Int64, Hexa20-Int64, and Hexa27-
Int64, were not considered in this study, as they produce the same accuracy as the regular
integration equivalents, but with deteriorating computational performances as documented
in [56].

The numerical comparison has been conducted by studying the eigenvalue problem
of a cube with size equal to 200 mm and clamped on one face, as depicted in Figure 1. The
main mechanical properties of the considered model are detailed in Table 2.

As detailed in Table 3, the following seven FE formulations were considered: the full-
order linear, quadratic, and cubic brick elements, as well as their serendipity counterparts.
For each considered FE formulation, the corresponding model was discretized using an
increasing mesh density, as reported in Table 3. In particular, the increasing mesh density
was tuned in order to maintain as much as possible a similar number of nodes, hence a
similar number of degrees of freedom.
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similar number of degrees of freedom. 

Table 3. FE formulations considered in the comparative analysis. 
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Hexa32-Int27 2 Cubic 3 × 3 × 3 3 6 9 12 15 18  
Hexa32-Int64 Cubic 4 × 4 × 4 3 6 9 12 15 18  
Hexa64-Int64 Cubic 4 × 4 × 4 2 4 6 8 10 12 14 1 

1 Referent mesh. 2. Reduced integration serendipity elements. 

For each scenario, first, the mass and the stiffness matrices were assembled, then the 
associated eigenvalue problem was solved, by means of the Krylov-Schur algorithm [78], 
extracting the first ten modes. The accuracy was investigated considering the mean value 
of the relative eigenvalue errors, as defined in Equation (22). For the purposes of evaluat-
ing the errors, the solution obtained with a mesh of 2744 equally spaced cubic hexahedral 
elements was assumed as a reference. The results of this computation are reported in Ta-
ble 4. 

All numerical evaluations were executed on a workstation featuring an 11th genera-
tion Intel® Core™ i7-1165G7 2.80 GHz quad-core eight-thread processor and 16 GB of 
DDR4 3200 MHz RAM, running on Windows 10 operating system and assigning to the 
working process higher execution priority. The FE solutions were obtained using a dedi-
cated in-house prototype implementation of the reported FE formulations. Being the pro-
totype code not yet optimized, the reported computational times are not meant for an 

Figure 1. 3D clamped cube model (a) and the corresponding FE cubic mesh (b).

Table 2. Mechanical properties of the material.

Young’s Modulus E, GPa Density ρ, kg/m3 Poisson’s Ratio ν

206.94 7829 0.288

Table 3. FE formulations considered in the comparative analysis.

Test Name Shape Type Integration Scheme N. of Elements in All Directions

Hexa8-Int8 Linear 2 × 2 × 2 6 12 18 24 30 36
Hexa20-Int8 2 Quadratic 2 × 2 × 2 4 7 11 15 19 23
Hexa20-Int27 Quadratic 3 × 3 × 3 4 7 11 15 19 23
Hexa27-Int27 Quadratic 3 × 3 × 3 3 6 9 12 15 18

Hexa32-Int27 2 Cubic 3 × 3 × 3 3 6 9 12 15 18
Hexa32-Int64 Cubic 4 × 4 × 4 3 6 9 12 15 18
Hexa64-Int64 Cubic 4 × 4 × 4 2 4 6 8 10 12 14 1

1 Referent mesh. 2. Reduced integration serendipity elements.

For each scenario, first, the mass and the stiffness matrices were assembled, then the
associated eigenvalue problem was solved, by means of the Krylov-Schur algorithm [78],
extracting the first ten modes. The accuracy was investigated considering the mean value of
the relative eigenvalue errors, as defined in Equation (22). For the purposes of evaluating the
errors, the solution obtained with a mesh of 2744 equally spaced cubic hexahedral elements
was assumed as a reference. The results of this computation are reported in Table 4.
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All numerical evaluations were executed on a workstation featuring an 11th generation
Intel® Core™ i7-1165G7 2.80 GHz quad-core eight-thread processor and 16 GB of DDR4
3200 MHz RAM, running on Windows 10 operating system and assigning to the working
process higher execution priority. The FE solutions were obtained using a dedicated in-
house prototype implementation of the reported FE formulations. Being the prototype
code not yet optimized, the reported computational times are not meant for an absolute
comparison with otherwise available solutions, such as commercial software, but they
still provide a useful insight into comparing the computational efficiency of the different
formulations.

5.1. Accuracy Convergence

Figure 2 depicts the convergence accuracy curves of the full-order linear (hexa8-int8),
quadratic (hexa27-int27), and cubic (hexa64-int64) hexahedral elements.
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As expected, linear brick elements have the worse convergence rate. Quadratic el-
ements perform much better, featuring a remarkable accuracy gain, as follows: above
one order of magnitude at converge values. Finally, also cubic elements show further
improvements with respect to quadratic ones, but less pronounced.

Figures 3 and 4 expand the previous comparisons, respectively, to the quadratic and
cubic serendipity elements, including the reduced integration variants. For the quadratic
case (Figure 3), the serendipity element (Hexa20-Int27) shows a marginally slower con-
vergence as compared to the full-order quadratic formulation. Moreover, as discussed
in Section 4, the reduced integration exhibits the expected beneficial effects, making the
corresponding serendipity formulation (Hexa20-Int8) as effective as the full-order one
(Hexa27-Int27).

On the opposite, all cubic serendipity formulations underperform with respect to
the quadratic formulation, indicating that there are no benefits in considering serendipity
variants above the second order, even when using reduced integration schemes.
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5.2. Accuracy vs. Assembly Time

This section reports on the computational efficiency of the considered FE formulations,
particularly focusing on the time required by the stage of assembling the mass and the
stiffness matrices (assembly time).

Figure 5 clarifies the superior performance of the higher-order formulations with
respect to the linear one. The achievement of a relative accuracy of 0.2% with the linear
element requires an execution time of about 9 s, while only 1.5 and 0.45 s are required for
the quadratic and cubic formulations, respectively, corresponding to speed-up factors of
about 6× and 20×.
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As reported in Figure 6, the assembly time averaged by the number of elements
still agrees with the expected assumptions, with the quadratic and cubic formulations
featuring, respectively, nearly one and two orders of magnitude larger timings. However,
the resulting formulations also provide faster convergence and demand drastically lower
numbers of elements to maintain the same number of DOFs. All considered, it is reasonable
that higher-order elements may provide better computational efficiency. For the assembly
stage, the quadratic formulation (hexa27-int27) shows slightly better results than the
cubic one (hexa64-int64). Due to their relatively bigger size, the quadratic and especially
the cubic elements may become suitable for acceleration by means of GPU processing,
making the computational advantages even more pronounced in favor of the higher-order
formulations [79].
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formulations as a function of the number of DOFs.

Figures 7 and 8 depict the computational efficiency of the serendipity quadratic and
cubic formulations, respectively. As expected, the quadratic serendipity formulation with
reduced integration (hexa20-int8) provides the best computational efficiency, whereas both
the cubic serendipity formulations (hexa32-int27) and (hexa32-int64) showed performance
degradations as compared to the full-order cubic element (hexa64-int64).
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5.3. Accuracy vs. Eigenvalue Computational Time

This section further analyzes the computational and efficiency performance of the
reviewed FE formulations by looking at the time required to solve the eigenvalue problem.

Similar to what was reported in the previous sub-section, higher-order elements exhibit
better results. The best computational efficiency is shown in Figure 9 by the cubic elements
(Hexa64-int64). For achieving an accuracy of 0.2%, the linear formulation requested the
finest mesh size and took more than 200 s to perform. The quadratic and cubic meshes
achieved the same accuracy, respectively, within 0.7 and 0.4 s, corresponding to speed-up
factors of 286× and 500× times faster than the linear solution.
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Figure 9. Convergence analysis of full−order linear, quadratic, and cubic FE formulations as a
function of the time for eigenvalue computations.

Figures 10 and 11 show the computational efficiency trends of the quadratic and cubic
serendipity elements. Quadratic serendipity elements (Figure 10) perform better when
combined with a reduced integration scheme. It is also interesting to note that the full-order
quadratic elements exhibit a convergence with a slightly larger slope, indicating that they
may converge even faster for decreasing mesh sizes. In line with the results shown for the
assembly stage, drastic performance degradation is appreciated for the cubic serendipity
elements, making them worse than the second-order elements.
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Figure 11. Convergence analysis of cubic serendipity FE formulations as a function of the time for
eigenvalue computation in comparison with full−order elements.

6. Conclusions

Although FEM is a mature widespread technology, the accuracy and efficiency of
the obtained results are still highly influenced by user expertise. The choice of the shape
functions has a strong impact on the performance as follows: the proper choice should be
made to minimize the computational effort while achieving the desired level of accuracy.
A wrong choice of the element type can be a source of potential issues, especially if the
element does not capture accurately the simulated physics, or it may demand excessively
dense meshes, which in turn leads to computational inefficiencies.

Supported by the common belief that hexahedral elements outperform other types
of formulations, a systematic review of several brick formulations was performed with
the aim of comparing the performances of linear, quadratic, and cubic elements, including
their serendipity variants.

The reported results clearly showed that the best choice should be made according
to the considered application. In applications dominated by assembly time demands, e.g.,
where remeshing is performed iteratively, second-order brick elements provide the best
computational efficiency, with serendipity elements achieving almost the same accuracy
when complemented by the reduced integration schemes. For dynamic investigations,
when the time spent on the solution of the eigenvalue problems represents the bottleneck,
the regular cubic formulation outperformed both linear and quadratic variants.

The reported study will be further developed by extending the performance analysis
of the considered formulations in a parallel computing environment, in which the quadratic
and especially the cubic elements are expected to become suitable for acceleration by means
of GPU processing.
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Figure A1. Cartesian global and local curvilinear coordinates of the 8-node brick FE.

Table A1. The shape functions of the 8-node brick FE.

Corner Nodes (8×)

for ξ = ±1, η = ±1, ζ = ±1 Ni =
1
8 (1 + ξ)(1 + η)(1 + ζ)
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Figure A2. Cartesian global and local curvilinear coordinates of the 27-node brick FE.

Table A2. The shape functions of the 27-node brick FE.

Corner Nodes (8×)

for ξ = ±1, η = ±1, ζ = ±1 N_i = 1/8(1 + ξ)ξ(1 + η)η(1 + ζ)ζ
Mid-Edge Nodes (12×)

for ξ = 0, η = ±1, ζ = ±1 Ni =
1
4
(
1 − ξ2)(1 + η)η(1 + ζ)ζ

for ξ = ±1, η = ±0, ζ = ±1 Ni =
1
4 (1 + ξ)ξ

(
1 − η2)(1 + ζ)ζ

for ξ = ±1, η = ±1, ζ = 0 Ni =
1
4 (1 + ξ)ξ(1 + η)η

(
1 − ζ2)

Mid-Face Nodes (6×)

for ξ = ±1, η = 0, ζ = 0 Ni =
1
2 ξ(1 + ξ)ξ

(
1 − η2)(1 − ζ2)

for ξ = 0, η = ±1, ζ = 0 Ni =
1
2
(
1 − ξ2)η(1 + η)η

(
1 − ζ2)

for ξ = 0, η = 0, ζ = ±1 Ni =
1
2
(
1 − ξ2)(1 − η2)ζ(1 + ζ)ζ

Mid-Volume Node (1×)

for ξ = 0, η = 0, ζ = 0 Ni =
(
1 − ξ2)(1 − η2)(1 − ζ2)
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Figure A3. Cartesian global and local curvilinear coordinates of the 64-node brick FE.

Table A3. The shape functions of the 64-node brick FE.

Corner Nodes (8×)

for ξ = ±1, η = ±1, ζ = ±1 Ni =
1

16 (1 + ξ)
(
9ξ2 − 1

)
(1 + η)

(
9η2 − 1

)
(1 + ζ)

(
9ζ2 − 1

)
Mid-Edge Nodes (24×)

for ξ = ±1, η = ±1, ζ = ±1/3 Ni =
1
16 (1 + ξ)

(
9ξ2 − 1

) 1
16 (1 + η)

(
9η2 − 1

) 9
16
(
1 − ζ2)(1 + 3ζ)

for ξ = ±1, η = ±1/3, ζ = ±1 Ni =
1
16 (1 + ξ)

(
9ξ2 − 1

) 9
16
(
1 − η2)(1 + 3η) 1

16 (1 + ζ)
(
9ζ2 − 1

)
for ξ = ±1/3, η = ±1, ζ = ±1 Ni =

9
16
(
1 − ξ2)(1 + 3ξ) 1

16 (1 + η)
(
9η2 − 1

) 1
16 (1 + ζ)

(
9ζ2 − 1

)
Mid-Face Nodes (24×)

for ξ = ±1/3, η = ±1/3, ζ = ±1 Ni =
9
16
(
1 − ξ2)(1 + 3ξ) 9

16
(
1 − η2)(1 + 3η) 1

16 (1 + ζ)
(
9ζ2 − 1

)
for ξ = ±1/3, η = ±1, ζ = ±1/3 Ni =

9
16
(
1 − ξ2)(1 + 3ξ) 1

16 (1 + η)
(
9η2 − 1

) 9
16
(
1 − ζ2)(1 + 3ζ)

for ξ = ±1, η = ±1/3, ζ = ±1/3 Ni =
1
16 (1 + ξ)

(
9ξ2 − 1

) 9
16
(
1 − η2)(1 + 3η) 9

16
(
1 − ζ2)(1 + 3ζ)

Mid-Volume Node (8×)

for ξ = ±1/3, η = ±1/3, ζ = ±1/3 Ni =
9
16
(
1 − ξ2) 9

16 (1 + 3ξ)
(
1 − η2)(1 + 3η) 9

16
(
1 − ζ2)(1 + 3ζ)
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Figure A4. Cartesian global and local curvilinear coordinates of the second-order 20-node serendipity
brick FE.

Table A4. The shape functions of the second-order 20-node serendipity brick FE.

Corner Nodes (8×)

for ξ = ±1, η = ±1, ζ = ±1 Ni =
1
8 (1 + ξ)(1 + η)(1 + ζ)(ξ + η + ζ − 2)

Mid-Edge Nodes (12×)

for ξ = 0, η = ±1, ζ = ±1 Ni =
1
4
(
1 − ξ2)(1 + η)(1 + ζ)

for ξ = ±1, η = 0, ζ = ±1 Ni =
1
4 (1 + ξ)

(
1 − η2)(1 + ζ)

for ξ = ±1, η = ±1, ζ = 0 Ni =
1
4 (1 + ξ)(1 + η)

(
1 − ζ2)
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Figure A5. Cartesian global and local curvilinear coordinates of the third-order 32-node serendipity
brick FE.

Table A5. The shape functions of the third-order 32-node serendipity brick FE.

Corner Nodes (8×)

for ξ = ±1, η = ±1, ζ = ±1 Ni =
1
64 (1 + ξ)(1 + η)(1 + ζ)

[
9(ξ2 + η2 + ζ2)− 19]

Mid-Edge Nodes (24×)

for ξ = ±1/3, η = ±1, ζ = ±1 Ni =
9

64
(
1 − ξ2)(1 + 9ξ)(1 + η)(1 + ζ)

for ξ = ±1, η = ±1/3, ζ = ±1 Ni =
9
64 (1 + ξ)

(
1 − η2)(1 + 9η)(1 + ζ)

for ξ = ±1, η = ±1, ζ = ±1/3 Ni =
9

64 (1 + ξ)(1 + η)
(
1 − ζ2)(1 + 9ζ)
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