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Abstract: This article presents a model of a novel 4-DOF kinematically redundant planar parallel
grasping manipulator. As distinct from the traditional 4-DOF manipulator, the proposed design
includes an extensible platform, which provides kinematic redundancy. This constructive feature
is used for grasping. The article discusses the inverse and forward kinematics of the proposed
manipulator. The inverse kinematics algorithm provides the analytical relations between the platform
coordinates and the driven (controlled) coordinates. The forward kinematics algorithm allows
defining different assembly modes of the manipulator. Both algorithms are demonstrated using
numerical examples. The article discusses different designs of the manipulator in which its links are
placed in one, two, or three layers. Based on these designs, we performed their workspace analyses.

Keywords: 4-DOF parallel manipulator; kinematically redundant manipulator; degree of freedom;
grasping; mechanism design; inverse and forward kinematics; workspace analysis

1. Introduction

One of the most common designs of parallel mechanisms, manipulators and robots
in engineering is the planar design. Mechanisms of this type are widely used in many
industrial and technological applications, for example, in pick-and-place operations [1,2],
medical devices [3–5], machining technologies [6,7], high-speed operations [8], packaging
technologies [9], depaneling procedures [10], gripping operations [11], high-precision
manipulations [12,13], walking architectures [14,15], etc.

Among planar parallel mechanical systems, considerable attention is paid to the study
of 4-RRR manipulators. Structurally, these are 3-RRR manipulators with an additional
RRR chain. In the technical literature, there are a number of publications that address
individual issues of the analysis of 4-RRR manipulators. For instance, the inverse position
problem, the problems of velocities and accelerations, as well as the dynamic analysis
of the manipulator have been considered in [16]. In this study, the authors conduct a
comparative analysis of 3-DOF (abbr. expansion: degree of freedom) 4-RRR, 3-RRR and
2-RRR manipulators, on the basis of which it is concluded that the dynamic performance
of the 4-RRR manipulator is better than the dynamic performance of 3-RRR and 2-RRR
manipulators. In [17], the authors propose an approach for dynamic balancing the 4-RRR
manipulator. Based on this approach the authors propose the DUAL-V prototype, which
provides high-speed motion with low base vibration. The authors of [18] summarize
general approaches for dynamic balancing of 4-RRR-type manipulators and their synthesis
by using reactionless mechanisms.
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The authors of [19] provide a workspace analysis of the 4-RRR manipulator. Reach-
able, orientation and nonsingular workspaces have been constructed. Another study on
workspace construction is presented in [20]. Here the authors propose a numerical ap-
proach that is based on the Genetic algorithm, which allows identifying the singularity-free
space of the manipulator and defining the effects of joint positions on the singularity-free
space. A singularity analysis of the manipulator is presented in [21]. The paper has pro-
posed a method that is based on a geometric approach. The authors of [22], using the
example of the 4-RRR manipulator, demonstrate an approach to determine closeness to
singularities using screw theory.

Wrench capabilities (the maximal forces and torques that might be applied or sustained
by a manipulator) of planar parallel manipulators, including the 4-RRR manipulator, are
studied in [23]. Wrench capabilities are used in path planning and manipulator design
(they allow the exploration of such parameters as the actuator torque capabilities and the
element dimensions). The authors of [24], using the example of the 4-RRR manipulator,
demonstrate a novel method of the optimum design. The method takes into consideration
both the kinematic and dynamic characteristics. The authors of [25] propose an approach
for the minimization of revolute joint clearances applied for the 4-RRR manipulator. The
authors established a dynamic model of the manipulator with joint clearances and applied
two-step Bathe integration to solve the highly nonlinear equations.

In the works discussed above, the 4-RRR manipulator has actuation redundancy
(when extra actuators are added in passive joints or extra actuated kinematic chains are
introduced [26]). Another type of redundancy is kinematic redundancy (when extra
actuated links are added in one or several kinematic chains of a parallel manipulator
changing its structure to get extra DOFs [26]). Examples of planar kinematically redundant
manipulators, their design and analysis methods are considered in [27–30].

The presence of redundancy in the 4-RRR manipulators compared to 3-RRR manip-
ulators allows reducing the number of singularities and increasing the rigidity of their
structures, as well as having better positioning accuracy [31] and better dynamic perfor-
mance in some regions within the workspace [16], which is sufficiently important for the
efficient operation of parallel manipulators.

It should be noted that the works with 4-RRR manipulators discussed above actually
study only one manipulator scheme having actuation redundancy. In this article, we
propose a novel 4-RRR manipulator with kinematic redundancy. In addition, in this
manipulator, the fourth DOF is proposed for grasping procedures.

The article has the following organization. Section 2 describes the structure of the
proposed 4-DOF kinematically redundant planar parallel grasping manipulator. This
section also discusses various designs with consideration of different rotation angles in
joints. Section 3 discusses analytical algorithms of the inverse and forward kinematics.
Section 4 continues this analysis and provides numerical examples of solving both problems
(inverse and forward). Section 5 analyzes the workspace of the manipulator based on the
different designs shown in Section 2. Section 5 also analyzes gripping force distribution
along the workspace for the three-layer design. Section 6 discusses the obtained results.
Section 7 summarizes the results and presents directions for future research.

2. Manipulator Design

Here we consider a new design of the 4-DOF kinematically redundant planar parallel
grasping manipulator. Figure 1a shows its structural scheme with kinematic notations.
Here, link 1 is the fixed one, links 2 are the cranks (driving links), links 3 are the couplers
and links 4 and 5 are the parts of the extensible moving platform.

The manipulator consists of four identical planar RRR kinematic chains. Here “R”
denotes a revolute joint, and the underscore means that the joint is actuated. Axes of all
twelve revolute joints (Ai, Bi, and Ci, i = 1 . . . 4) are parallel to each other. The moving
platform of the manipulator has two parts that are connected via passive prismatic joints,
which allow the platform to change its length. It should be noted that, theoretically, one
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prismatic joint would be enough to describe the kinematics of the manipulator. In this
particular example, however, we will use two prismatic joints with parallel axes as it will
be closer to the possible design of the actual manipulator. As long as these joints work
synchronously, their number is irrelevant in the kinematic analysis.
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Figure 1. 4-DOF kinematically redundant planar parallel grasping manipulator: (a) structural scheme
with kinematic notations; (b–d) CAD models of the manipulator with all links in a single layer (b), in
two layers (c), and in three layers (d).

One can see that the discussed manipulator is planar as its moving platform has three
DOFs: two translations and one rotation in a plane. The additional DOF is a translation
between the platform parts. The position of the moving platform is described by the
coordinates x and y of point D, while its orientation is described by rotation angle ϕ. The
design of the manipulator also allows controlling the length s of the moving platform by
changing input angles θi. Therefore, the discussed manipulator is kinematically redundant
(the kinematic redundancy is produced by an extensible platform, which includes two
movable parts by contrast with the redundantly actuated 4-RRR manipulator discussed
above). Four drives allow controlling three movements in a plane and one movement
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between platform parts. For the sake of simplicity, from this point, we also assume that the
moving platform of the manipulator has a rectangular shape.

The proposed manipulator could be applied as a grasping device due to the extension
of the moving platform. So the grasping object might be fixed between platform parts and
then replaced. Figure 1b–d demonstrates such CAD models of the grasping manipulator in
which all links are in a single layer (b), in two layers (c), and in three layers (c). Furthermore,
in this article, we will perform the workspace analysis to calculate the dimensions of the
workspaces to compare based on these designs.

3. Kinematic Analysis
3.1. Inverse Kinematics

For the inverse kinematics, the x and y coordinates are known, along with the ro-
tation angle ϕ and the length of the moving platform s. The task is, therefore, to find
corresponding values of the input angles θi.

The solution to the inverse kinematics is rather straightforward and similar to other
planar manipulators with RRR kinematic chains. First, we find the coordinates of point Ci
in the fixed reference frame Oxy: [

xCi
yCi

]
= R

[
x′Ci
y′Ci

]
+

[
x
y

]
, (1)

where x′Ci and y′Ci are the coordinates of Ci in the moving reference frame Dx’y’ and R is a
rotation matrix that defines the orientation of the moving platform:

R =

[
cosϕ −sinϕ
sinϕ cosϕ

]
. (2)

It should be noted that x′ coordinates for all Ci and y′ coordinates for C1 and C2
are constant and defined by the manipulator design, while y′ coordinates of C3 and C4
depend on the value of s. Since we assumed that the moving platform has a rectangular
shape, we can designate the following constant geometrical parameters: x′C1 = x′C3 = x′C13,
x′C2 = x′C4 = x′C24, y′C1 = y′C2 = y′C12, therefore:

y′C3 = y′C4 = y′C12 + s. (3)

Now the coordinates of Ci in Oxy are known, for each chain we write the following
equation:

(xCi − xBi)
2 + (yCi − yBi)

2 − l2
BiCi = 0, (4)

where the coordinates of point Bi can be expressed using θi as follows:

xBi = xAi + lAiBicos θi, yBi = yAi + lAiBisin θi. (5)

Here xAi is the coordinate of point Ai in Oxy and lAiBi is the length of AiBi. Then, since
lBiCi, which is the length of BiCi, is known, each θi can be found by solving the following
equation obtained by substituting (5) into (4):

(xCi − xAi − lAiBicos θi)
2 + (yCi − yAi − lAiBisin θi)

2 − l2
BiCi = 0. (6)

It is well-known that for planar RRR chains the inverse kinematics can be solved
analytically (the task is equivalent to finding the points of intersection for two circles).
Therefore, in general, for any i, Equation (6) will yield two solutions, and the total number
of solutions for the inverse kinematics of the manipulator in any non-singular point is equal
to sixteen.
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3.2. Forward Kinematics

For the forward kinematics, the task is to find coordinates of the moving platform x, y,
angle ϕ and length s for a given set of input angles θi. First, since θi are known, xBi and yBi
will also be known, according to (5). This means, that (4) is a quadratic polynomial equation
with two unknown variables, namely xCi and yCi. Thus, for the whole manipulator, we
have four such equations with eight unknowns.

Now, let us examine the moving platform. Since it has a rectangular shape, C1C2 is
always parallel to C3C4 and C1C3 is always parallel to C2C4. This fact allows us to write
two more equations using the unknowns mentioned above:

xC2 − xC1 = xC4 − xC3, yC2 − yC1 = yC4 − yC3. (7)

By rearranging (7) and substituting in (4) for i = 4 we can exclude xC4 and yC4 from
the latter. Then, the system of four quadratic polynomial equations (4) can be written as
follows:

(xC1 − xB1)
2 + (yC1 − yB1)

2 − l2
B1C1 = 0,

(xC2 − xB2)
2 + (yC2 − yB2)

2 − l2
B2C2 = 0,

(xC3 − xB3)
2 + (yC3 − yB3)

2 − l2
B3C3 = 0,

(xC2 − xC1 + xC3 − xB4)
2 + (yC2 − yC1 + yC3 − yB4)

2 − l2
B4C4 = 0.

(8)

Now we are left with four equations and six unknowns. Further inspection of the
moving platform’s geometry allows us to write two more independent equations.

The first, again, is related to the fact that the moving platform has a rectangular shape,
which means that C1C2 and C1C3 are orthogonal, and the dot product of the corresponding
vectors should be equal to zero:

(xC2 − xC1)·(xC3 − xC1) + (yC2 − yC1)·(yC3 − yC1) = 0. (9)

The second comes from the fact that the length of C1C2 (denoted as lC1C2), unlike C1C3,
is always constant:

(xC2 − xC1)
2 + (yC2 − yC1)

2 − l2
C1C2 = 0. (10)

Thus, (8), (9) and (10) form a system of six quadratic polynomial equations with six
unknowns. After solving the system using any suitable numerical method, the values of
xC1, yC1, xC2, yC2, xC3, yC3 will be obtained, and Equation (7) can be used to find xC4 and
yC4, if needed. After that, coordinates of the moving platform along with its length can be
easily found, starting with s and ϕ:

s =
√
(xC3 − xC1)

2 + (yC3 − yC1)
2, ϕ = atan2(yC2 − yC1, xC2 − xC1). (11)

It should be noted that, technically, s in (11) can be a negative number, but since it
most likely can be only positive in real-life design, we neglect the possibility of the negative
solution for the sake of simplicity.

After ϕ is known, x and y can be obtained from (1), for instance:[
x
y

]
=

[
xC1
yC1

]
−R

[
x′C1
y′C1

]
. (12)

4. Numerical Example

To demonstrate the solution to the inverse and forward kinematics we will use
the manipulator with the following geometry (in meters): xA1 = −0.115, yA1 = −0.200,
xA2 = 0.115, yA2 = −0.200, xA3 = −0.115, yA3 = 0.200, xA4 = 0.115, yA4 = 0.200, lAiBi = 0.130,
lBiCi = 0.130, x′C13 = −0.115, x′C24 = 0.115, y′C12 = −0.070. We also set the limits for the value
of s to be equal to 0.140 m and 0.220 m.
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Figure 2 shows an example of the inverse kinematics solution for x = −0.050 m,
y = 0.050 m, ϕ = 20 deg, s = 0.18 m.
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Figure 2. Example of the inverse kinematics solution.

As we mentioned above, there are sixteen possible solutions to the inverse kine-
matics (two for each chain) in any non-singular point. The solid lines in Figure 2 corre-
spond to the first set of input angles (in degrees): θ1 = 41.720, θ2 = 68.754, θ3 = 163.781,
θ4 = 115.809, while the dashed lines correspond to the second set of the input angles
(in degrees): θ1 = 153.318, θ2 = 128.037, θ3 = −70.152, θ4 = −106.978. Theoretically, any
combination of these angles is a valid solution to the inverse kinematics.

There are several methods to approach the forward kinematics numerically, namely,
dialytic elimination, Groebner basis, and homotopy (polynomial) continuation [32], which
are commonly used in similar research. In this work, we will utilize the latter by using
Bertini package [33] through the MATLAB environment in order to solve the system of
Equations (8)–(10). We also use the first set of input angles θi mentioned above as an
example. The result of the calculation of the forward kinematics is presented in Table 1 and
visualized in Figure 3. Note that the value of s is not limited in any way in this example.

Table 1. Solutions to the forward kinematics.

Solution # x, m y, m ϕ, deg s, m

1 0.00153 −0.13144 0.35013 0.40051
2 0.12390 −0.02729 49.86840 0.41721
3 −0.05000 0.05000 20.00000 0.18000
4 −0.02240 0.07427 16.21927 0.40693
5 0.15676 −0.08402 25.10639 0.60040
6 0.0000 −0.13000 0.00000 0.40000

First, we can see that in this example there are only six real-number solutions to
the forward kinematics. We can also clearly see that solution 3 corresponds precisely to
the solution of the inverse kinematics, which was used as an input to solve the forward
kinematics. It is worth mentioning that five other possible solutions will not be probably
feasible in practice as there is a linkage interference present in one way or another. Solutions
1 and 6 are also worth some attention. These solutions are very close to each other, and
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while solution 1 is close to a serial singularity, solution 6 is precisely a serial singularity.
Due to the manipulator parameters used in this example, more precisely, lAiBi = lBiCi and
lA1A2 = lA3A4 = lC1C2 = lC3C4, there will always be a valid real-number solution for any set
of input angles θi with coinciding points Ai and Ci in each leg.
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5. Workspace Analysis
5.1. Workspace Size and Singularity

The next step is to analyze the workspace of the manipulator (size and shape). We will
use the same dimensions as those we used previously for the numerical examples of kine-
matics analysis. During the analysis we can use an iterative approach: each coordinate is
changed within a certain range with a specified step, then for each point (set of coordinates)
we try to solve the inverse kinematics problem. If there is a real-number solution to this
problem, then the point belongs to the workspace. It is also clear that both the size and the
shape of the workspace can be greatly dependent on the design choices. For instance, let us
consider the case when the moving platform and all the links of each kinematic chain are in
the same layer (Figure 1b). In this case, the angle between links AiBi and BiCi cannot be less
than a certain value which is defined by the design features of the links. The same is also
true for the angle between BiCi and the moving platform. Therefore, the actual workspace
of the manipulator will be smaller than the theoretical one. To address this issue, we can
displace the moving platform and/or the coupler (BiCi) in each chain to a parallel layer
(Figure 1c,d).

In addition to the shape and size of the workspace, manipulator singularities can also
be studied during the iteration analysis. By taking partial derivatives of the constraint
equations, we can obtain two following matrices:

A =



∂F1

∂x
∂F1

∂y
∂F1

∂ϕ

∂F1

∂s
∂F2

∂x
∂F2

∂y
∂F2

∂ϕ

∂F2

∂s
∂F3

∂x
∂F3

∂y
∂F3

∂ϕ

∂F3

∂s
∂F4

∂x
∂F4

∂y
∂F4

∂ϕ

∂F4

∂s


, B =



∂F1

∂θ1
0 0 0

0
∂F2

∂θ2
0 0

0 0
∂F3

∂θ3
0

0 0 0
∂F4

∂θ4


, (13)

where Fi is the i-th constraint Equation (6).
According to Gosselin and Angeles [34], Type I (serial) singularity occurs when

det(B) = 0, and Type II (parallel) singularity occurs when det(A) = 0. Here we are mainly
interested in parallel singularities as their impact on the manipulator’s performance can
be significant. Therefore, during the iteration analysis of the workspace, we can calculate
matrix A using (13) in each point and analyze the sign of its determinant. If in two neigh-
boring points, this sign is different, then there must be a singular point between these two
points. Figure 4 shows positive values of det(A) in red and negative values in blue.

Let us now consider numerical examples. To visualize the workspace, we will use
an iterative approach analyzing points within the range of [−0.3, 0.3] for both x and y
coordinates with a step of 0.003 m. The rotation angle of the moving platform in these
examples is zero and s is set to its extreme values of 0.140 m or 0.220 m. The results are
demonstrated in Figure 4.

For the first example (Figure 4a,b), all links and the moving platform are placed in
the same layer. The minimal allowed value of the angle between AiBi and BiCi was found
(using the CAD model) to be equal to α1 = 23.26 deg, and for BiCi and the moving platform,
the threshold is α2 = 48.88 deg. Both angles are demonstrated in Figure 5. For the second
example (Figure 4c,d) the moving platform is located above all intermediate links, thus
only angle α1 between AiBi and BiCi is limited. Finally, in the third example (Figure 4e,f),
no limitations are present for both mentioned angles.
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the manipulator model shown in Figure 1b; (c,d) correspond to the manipulator model shown in
Figure 1c; (e,f) correspond to the manipulator model shown in Figure 1d.
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Figure 5. Design limitations in the manipulator kinematic chains: both angles α1 and α2 are in the
manipulator model shown in Figure 1b; only angles α1 are in the manipulator model shown in
Figure 1c.

One can clearly see the difference between the presented examples. For the third
design variant, the workspace is roughly two times bigger than for the first variant. It can
also be seen that singular points for the analyzed orientation of the moving platform are, in
general, located near the edge of the workspace.

5.2. Gripping Force Analysis

Since the manipulator design allows it to act as a gripping device, it is crucial to
analyze the gripping force and how it changes over the workspace. To do that we first
obtain the transposed Jacobian matrix of the manipulator:

JT =
(

J−1
)T

=
(
−B−1A

)T
. (14)

Then we can calculate torque Tai in each active joint by taking the dot product of the
i-th row of JT with the vector of external load F, i.e.:

Ta1
Ta2
Ta3
Ta4

 = −JTL = −JT


Fx
Fy
Tz
Fs

, (15)

where Fx and Fy are the external forces that act parallel to Ox and Oy, respectively; Tz is the
external torque; and FS is the force acting on/from the gripper.

Since the system of Equation (15) is linear, it is possible to separate actuation torques
produced by external forces and torque Tex

ai and the torques that correspond to the gripping
force Ts

ai: 
Ta1
Ta2
Ta3
Ta4

 =


Tex

a1
Tex

a2
Tex

a3
Tex

a4

+


Ts

a1
Ts

a2
Ts

a3
Ts

a4

 = −JT


Fx
Fy
Tz
0

− JT


0
0
0
Fs

. (16)

Now let us assume that the gripping force is equal to 1 N. Then:

T̂s
ai = −jTi,4, (17)

where jTi,4 is the element of the i-th row and 4-th column of JT and T̂s
ai is the torque in the

i-th drive that corresponds to a unit gripping force.
Let Tmotor be the torque of the actual driving motor torque used in the manipulator.

Assuming that all four actuated joints utilize the same type of motor, we can now calculate
the maximum allowed value of the gripping force for each active joint as follows:

Fmax
si =

Tmotor − Tex
ai

T̂s
ai

·1N. (18)
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Finally, for the whole manipulator in a certain configuration, we can write:

Fmax
s = min(Fmax

s1 , Fmax
s2 , Fmax

s3 , Fmax
s4 ), (19)

where Fmax
s includes the maximum possible gripping force for a given configuration of the

manipulator and external load.
Let us now consider a numerical example. We will use a widely available NEMA23-type

stepper motor with 1.8 N·m holding torque. For the sake of simplicity, we conduct a static
analysis with no external load, i.e., Fx = 0, Fy = 0, Tz = 0, using the same iterative approach as
before. The results of the analysis for the three-layer manipulator with s = 0.18 m and several
values of ϕ are shown in Figure 6.
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One can clearly see that the areas of lower gripping force values are located near Type
II singularities, since, as expected, when the manipulator is close to this type of singularities,
the load on the actuated joints rapidly increases.
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6. Discussion

When analyzing the gripping force (and indeed when performing any force analysis)
of a manipulator with stepper motors, the torques in its drives are highly dependent on
the rotation speed. In this article, we perform an analysis in statics, but when moving,
the torque of the NEMA23-type stepper motor may be less than 1.8 N·m (holding torque
value for this motor). Accordingly, when designing a manipulator prototype for a specific
purpose, it is necessary to know not only the external loads and the required gripping
force, but also the rotation speed. It is possible, and logical, that servomotors would be
the best option for a manipulator prototype. However, it should be noted that the cost of
servomotors significantly exceeds the cost of stepper motors.

As for the advantages and disadvantages of the suggested design, we would like to
note the following. The three-layer design obviously has unlimited rotation angles of the
neighboring links, which is definitely an advantageous feature. However, this solution also
has a certain disadvantage, which is in a less reliable hinge design. If one detail is covered
by another (i.e., when the links are in the same layer), then the bearings can be placed in
the female part and then the hinge axis will be a beam on two supports; and if one detail is
above the other one (i.e., when the links are in different layers), then each detail will have
its own bearing and the axle load will be cantilevered.

The developed manipulator is proposed as a general-purpose grasping device. Ac-
cordingly, the provided number and type of DOFs are selected for allowing a wide range
of different applications providing manipulations without requiring design modifications.

7. Conclusions

The article has presented the novel variation of a planar 4-DOF manipulator, which is
suggested for grasping operations. Due to having four drives and realizing planar motion,
the manipulator has kinematic redundancy. It should be noted that, compared to the
redundantly actuated 4-RRR manipulator, the additional DOF (platform extension) of the
proposed manipulator also allows reducing the loads in drives. The manipulator has been
analyzed in terms of the inverse and forward kinematics and workspace. For the inverse
kinematics, an analytical solution is presented, while the forward kinematics is solved
numerically using the Bertini and MATLAB packages. Next, the workspace and parallel
singularity iterative analysis is presented for three variants of the manipulator design with
different values of feasible rotation angles between the links. The material presented in
this article forms a basis for subsequent kinematic (velocity and acceleration) and dynamic
analyses of the manipulator and its optimal design. Additionally, the developed CAD
models serve as a basis for prototyping the manipulator.
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