
Citation: Tang, M.; Yan, Y.; An, B.;

Wang, W.; Zhang, Y. Dynamic

Parameter Identification of

Collaborative Robot Based on

WLS-RWPSO Algorithm. Machines

2023, 11, 316. https://doi.org/

10.3390/machines11020316

Academic Editor: Dan Zhang

Received: 13 January 2023

Revised: 8 February 2023

Accepted: 18 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Dynamic Parameter Identification of Collaborative Robot Based
on WLS-RWPSO Algorithm
Minan Tang 1,* , Yaguang Yan 1 , Bo An 1 , Wenjuan Wang 2 and Yaqi Zhang 1

1 School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
* Correspondence: tangminan@mail.lzjtu.cn; Tel.: +86-138-9368-8178

Abstract: Parameter identification of the dynamic model of collaborative robots is the basis of
the development of collaborative robot motion state control, path tracking, state monitoring, fault
diagnosis, and fault tolerance systems, and is one of the core contents of collaborative robot research.
Aiming at the identification of dynamic parameters of the collaborative robot, this paper proposes
an identification algorithm based on weighted least squares and random weighted particle swarm
optimization (WLS-RWPSO). Firstly, the dynamics mathematical model of the robot is established
using the Lagrangian method, the dynamic parameters of the robot to be identified are determined,
and the linear form of the dynamics model of the robot is derived taking into account the joint friction
characteristics. Secondly, the weighted least squares method is used to obtain the initial solution of
the parameters to be identified. Based on the traditional particle swarm optimization algorithm, a
random weight particle swarm optimization algorithm is proposed for the local optimal problem to
identify the dynamic parameters of the robot. Thirdly, the fifth-order Fourier series is designed as
the excitation trajectory, and the original data collected by the sensor are denoised and smoothed
by the Kalman filter algorithm. Finally, the experimental verification on a six-degree-of-freedom
collaborative robot proves that the predicted torque obtained by the identification algorithm in this
paper has a high degree of matching with the measured torque, and the established model can reflect
the dynamic characteristics of the robot, effectively improving the identification accuracy.

Keywords: collaborative robot; parameter identification; weighted least squares method; random
weight particle swarm algorithm; Kalman filter

1. Introduction

At present, robot technology is developing towards intelligence, and the manufactur-
ing mode is also changing. In recent years, collaborative robots have received extensive
attention and research around the world. According to the definition in ISO10218-2, a robot
that can interact directly with humans in a designated collaborative area is called a collabora-
tive robot. Compared with traditional industrial robots, collaborative robots have the benefits
of high security, good versatility, sensitivity, precision, ease of use, and human–machine
collaboration. The above advantages make collaborative robots not only applicable in the
manufacturing field, but also gives them potential application value in the fields of home
service and rehabilitation medicine—for example, compliant robotic arms in the industrial
field, surgical robots in the medical field, wearable rehabilitation assistance robots, and anti-
terrorist and explosion-proof robots in special applications [1,2]. Utilizing the technology of
human–machine fusion, the establishment of a fusion robot technology with intrinsic safety,
human–machine collaborative cognition, and behavioral mutual assistance can provide
support for emerging new application scenarios such as industry, service, and medical care.
To break through the challenges of existing robots in the four aspects of environmental
adaptability, task adaptability, safety, and interactive capabilities, it is urgent to study a
new generation of human–machine fusion robots [3,4].
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As collaborative robot technology is developing towards high speed and high intelli-
gence, people also put forward higher requirements on its control accuracy. In the course of
human–robot collaboration—affected by uncertain factors such as robot joint friction, the mo-
ment of inertia and nonlinearity, end load, and external disturbance—people cannot directly
measure robot parameters and it is challenging to model [5]. In addition, the precision require-
ments of the machining process are gradually increasing. If the method of obtaining inertia
parameters from CAD software is used to model each part of the robot, the dynamic model of
the robot cannot be accurately established. Currently, the only effective way to obtain the
precise dynamic parameters of the robot is the robot parameter identification method based
on experiments [6,7]. The identification of robot dynamic parameters includes six steps: dy-
namic modeling, model linearization, excitation trajectory optimization, experimental data
sampling and preprocessing, parameter calculation, and experimental authentication [8].
The parameter estimation determines the accuracy of the entire identification. The joint
model of the robot is an important part of dynamic modeling. In many previous research
results, the method of joint modeling was neglected, and the Coulomb viscous friction
model or Stribec friction model were often used to represent the overall friction of the
joint [9,10]. The current difficulties in dynamic parameter identification mainly lie in the
following: (1) Insufficient prediction accuracy. Due to the limitation of the identification
algorithm on the model, the precision of the robot model used in the identification method
is insufficient and the accuracy of the predicted torque based on this model is also limited.
(2) Predict torque fluctuations, which are caused by discontinuous jumps in a large range
of predicted values at certain nodes in the dynamic model. (3) The error peak, which
is due to the inaccurate description of the dynamic characteristics of the special motion
state by the traditional friction model, resulting in a large deviation compared with the
actual required torque value near these motion states. Therefore, obtaining accurate robot
dynamic parameters becomes particularly important [11,12].

For tandem robots represented by collaborative robots, it is necessary to establish their
joint models to improve the overall model accuracy. Kircanski et al. [13] carried out identifica-
tion work on joint friction and joint stiffness. However, the friction torque is not estimated
approximately, which leads to inaccurate parameters and does not improve the accuracy of
the model. Atkeson et al. [14] used the WLS-based serials identification method to obtain the
robot’s dynamic parameters, which can accurately predict the force and torque generated by
load movement; however, this method has many identification times and ignores the cou-
pling between joints. This leads to increased recognition time and the inability to obtain the
dynamic parameters of complex robot joints accurately and in a timely manner. Liu et al. [15]
improved the genetic algorithm by using the inter-cell generation method and the large
mutation strategy, which effectively improved the identification accuracy of the dynamic
parameters of the space robot; however, the algorithm is complex in the calculation, slow in
convergence, and needs to adjust many parameters. Sun et al. [16] used genetic algorithms
to identify the parameters of the dynamics model of industrial robots. This algorithm can
effectively avoid local optimal solutions but its efficiency will be affected because of the
need to design a tedious coding and decoding process. Chen et al. [17] discussed the appli-
cation of the artificial neural network algorithm in robot dynamic parameter identification
such that the structure and weight of the neural network have clear physical meaning,
but only the identification of inertial parameters on both sides of the end of the robot
was analyzed, and there was no research on parameter identification of other joints of the
robot. Wang et al. [18] proposed an identification algorithm based on an adaptive particle
swarm optimization genetic algorithm for the dynamic parameter identification of flexible
joint robots. In order to improve the convergence speed of the particle swarm optimization
algorithm, the algorithm uses a dynamic adaptive adjustment strategy and introduces a new
genetic algorithm hybrid cross-mutation mechanism to avoid particle swarms getting stuck
in local optima. Due to joint flexibility and complex friction sources, this method cannot
accurately reflect the internal friction of joints. Zhang et al. [19] proposed a model parameter
identification method based on combination, proposed a hybrid genetic algorithm and
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cosine trajectory, took the multi-joint series robot as the research object, and carried out
friction parameter identification experiments, which further improved the accuracy of the
robot dynamics model. However, this article did not study other nonlinear disturbance
factors in the joint. Guo et al. [20] designed an identification method based on particle
swarm optimization (PSO) for robot dynamics parameter identification. In order to obtain
the dynamic parameters of the robot, the PSO algorithm was used to calibrate the dynamic
model of the robot according to the motion state and torque of each joint. Experiments
show that the parameters obtained by this method are correct and feasible. However,
the algorithm is not conducive to global search and is prone to local optimum problems.
Lin et al. [21] proposed a hybrid estimation strategy for the parameter identification of
underwater vehicles; for the rough estimation of the dynamic parameters of underwater
vehicles, the least squares (LS) algorithm is used, and the improved particle swarm opti-
mization (IPSO) algorithm is used for the accurate estimation. The advantage of the least
squares method is that it can improve the identification accuracy; however, its calculation
is complex. When the amount of computation is large, the real-time performance will be
greatly reduced [22] and there is a problem of limited search space. Cao et al. [23] designed
a dual quantum behavior PSO algorithm for parameter identification of parallel robots. For
the covariance matrix of measurement noise and process noise, the QPSO-1 algorithm is
suitable. For the optimization of motion parameter error estimated by the EKF algorithm,
the QPSO-2 algorithm is adopted. Experimental results show that this method significantly
improves localization accuracy. Liu et al. [24] proposed a connection combination method
based on improved artificial fish swarm algorithm for dynamic parameter identification,
which can identify the independent value of the required parameters and avoid the impact
of load changes. However, the convergence speed of this algorithm is slow and it is difficult
to ensure real-time performance.

Inspired by the above point of view, to ensure the cooperation between humans and
collaborative robots and realize the precise and stable control of the collaborative robots
system, this paper designs an improved algorithm based on weighted least squares and
random weight particle swarm optimization to identify the parameters of robot dynamics.
Firstly, the Lagrange method is used to establish the dynamic model of the collaborative
robot and determine the joint dynamic parameters to be identified. Because measurement
noise will be generated when collecting raw data, the weighted least squares method is
adopted. The identification algorithm is designed by adding the measurement torque
noise to form the weight coefficient matrix. The weighted least squares method is used
to generate the initial solution, and the search range is set to about 10% according to
the absolute value of the initial solution. Secondly, based on traditional particle swarm
optimization (TPSO), a random weight particle swarm algorithm is proposed, and the
random weight particle swarm algorithm is used to make the dynamic parameters to be
identified quickly jump out of a small local search range under the influence of random
weights, speed up the identification in a large search range, and obtain accurate optimal
parameters. Finally, due to the noise and burr in the original data collected, the Kalman
filtering algorithm is used to filter the data, and good denoising and smoothing effects are
achieved. The validity of the WLS-RWPSO algorithm is verified on a 6-DOF collaborative
robot. The results show that the identification algorithm used in this paper can accurately
identify the dynamic parameters and effectively improve the identification accuracy of the
dynamic parameters compared with the identification results of LS-PSO and WLS-PSO
identification algorithms.

The rest of the paper is organized as follows: Section 2 establishes the dynamic equations
of the collaborative robot system subject to frictional disturbances. Section 3 introduces the
weighted least squares algorithm and the random weight particle swarm algorithm, and
analyzes the stability and convergence of the random weight particle swarm algorithm.
Section 4 introduces the design of the excitation trajectory for parameter identification and
the preprocessing of the experimental raw data. Section 5 introduces the experimental
collaborative robot system and its dynamics parameter identification process using the
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WLS-RWPSO algorithm, and verifies the performance and efficiency of the WLS-RWPSO
method by comparing it with the WLS-PSO algorithm. Section 6 presents the conclusions.

2. Robot Dynamics Modeling

The robotic arm is assumed to be a tandem robotic arm in the study. Without loss
of generality, the dynamic equation of the n-DOF tandem robot is obtained by using the
Lagrangian method [25]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τdyn (1)

In order to improve the real-time performance, reduce the identification cost, and
improve the identification accuracy, the dynamic equation of the collaborative robot is
linearized. Without changing the robot model, according to the method proposed by
Swevers et al. [26], this paper includes the influence of other factors on the inertial parame-
ters of the robotic arm through the identification process to obtain a set of comprehensive
parameters that meet the accuracy of calculation. The dynamic equation is expressed in the
linear form of dynamic parameters through parameter transformation:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Ψdyn(q, q̇, q̈)Edyn (2)

where Ψdyn(q, q̇, q̈) ∈ Rn×m is the observation matrix and Edyn is the inertial parameter ma-
trix to be identified. For a given robot whose inertial parameters are constant, the lineariza-
tion of robot joint moments greatly simplifies the entire parameter identification process.

In addition to the joint torque required to drive the link movement, the dynamic
equation of the robot actually includes additional torque caused by factors such as friction
and the moment of inertia of the motor rotor [27]. The joint friction includes Coulomb
friction, viscous friction and static friction. This paper does not model static friction. The
joint friction moment consists of Coulomb viscous friction:

τf = νq̇ + csign(q̇) (3)

where τf is the friction torque, ν is the coefficient of viscous friction, and c is the Coulomb
coefficient of friction.

By approximating this function to a tangent hyperbolic function, the non-smooth
function in the robot model can be avoided, which is expressed as follows:

sign(q̇) ≈ tanh
(

q̇
ε

)
(4)

where ε is a constant that makes the slope of the tangent hyperbolic function very steep
near zero. Simultaneous Equations (2) and (3) can obtain the complete robot dynamics
linearization equation:

τs = Ys(q, q̇, q̈)θs (5)

where τs ∈ Rn is the motor torque vector, Ys ∈ Rn×12n is the observation matrix, and
θs ∈ R12n is the robot dynamics parameter vector.

The parameters of the dynamic equation are determined by the unknown parameter
θ∗, which is expressed as {

θ∗ = vec({m∗, I∗, ν∗, c∗})
θ∗i = [m∗i , I∗i , ν∗i , c∗i ], i[1, j]

(6)

where θ∗i is the actual parameter of connecting rod i; j is the number of robot joints; and m∗,
I∗, ν∗, and c∗, respectively, represent the actual mass, moment of inertia, viscous friction
coefficient, and Coulomb friction coefficient of the connecting rod.
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In addition, because not every dynamic parameter has an impact on torque, Ys is not a
full rank matrix. For removing redundant parameters, the linear recombination method is
used to obtain a minimum set of parameters [8]:

τ = Y(q, q̇, q̈)θ (7)

where Y ∈ Rn×(p+2n) is the observation matrix, θ ∈ Rp+2n is the total dynamic parame-
ter vector containing the minimum dynamic parameters and friction parameters of the
connecting rod, p is the minimum number of kinetic parameters, and 2n is the number of
friction parameters.

3. WLS-RWPSO Identification Algorithm
3.1. Weighted Least Squares Algorithm

During the identification process, the robot is moved along a certain trajectory, the
joint torque and joint angle of the robot at N different times are sampled, and the joint
angular velocity and angular acceleration of the collaborative robots are calculated and
filtered by difference. The processed data are substituted into Equation (7) as follows:

Γ = W × θ (8)

where Γ = [τ1, τ2, · · · , τn]
T represents moment observations and W =

[
Y1 Y2 · · · Yn

]T

represents the observation matrix.
In fact, due to measurement errors and other reasons, non-homogeneous linear

Equation (8) will generally result in incompatible equations. Although the incompati-
ble equations cannot find the solution that fully satisfies the conditions, it can find the least
squares solution θOLS

θOLS = arg min‖Wθ − Γ‖ (9)

The least squares solution of Equation (8) is

θOLS =
(

WTW
)−1

WΓ (10)

Since the motor torque data of each joint of the robot have different levels of noise,
for the parameter estimation problem of heteroscedasticity, the weighted least squares
estimation has a better effect and the weighted least squares method is used:

θWLS = arg min‖ΣWθ − ΣΓ‖

σ2
j =

∥∥Γj − θ
∥∥2

N − rj
(11)

where rj is the number of dynamic parameter combinations of joint j, and the weighting
matrix is

Σ =


diag

(
σ2

1
)

diag
(
σ2

2
)

. . .
diag

(
σ2

n
)


The robot dynamic parameter identification adopts the least squares method to solve,
and the dynamic parameter θ of the robot can be obtained:

θ =
(

WTΣ−1W
)−1

WTΣ−1Γ (12)

where Σ is the diagonal matrix [28] formed by measuring the variance of moment Γ, which
is called weight matrix.
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3.2. Basic Particle Swarm Algorithm

The particle swarm algorithm is an optimization method for parameter calculation,
in which the solution of each optimization problem is a bird in the search space, called a
particle, and the fitness value of each particle is determined by the optimization function.
There is always a speed to determine the orientation and removal of each particle, and
to follow the current optimal particle to search in the solution space. The benefits of the
PSO algorithm are as follows: Compared with other intelligent algorithms, PSO relies on
particle speed to complete the search. There is no crossover and mutation operation, and
the search speed is fast. Only the best particles will transfer information to other particles
in iterative evolution. Since the particle swarm algorithm has the characteristic of memory,
the best historical position of the particle swarm can be remembered and transferred to
other particles. The particle swarm optimization algorithm adopts real number coding,
which is directly determined by the solution of the problem, and the number of variables
of the solution of the problem is directly used as the dimension of the particle. It has few
adjustment parameters, simplicity in formation, and is easy to apply in engineering.

The particle velocity and update position equation are

Vt+1
i = WVt

i + c1r1
(

pt
i − Xt

i
)
+ c2r2

(
St

i − Xt
i
)

(13)

Xt+1
i = Xt

i + Vt+1
i (14)

where t = 1, 2, · · · , G; G is the search space dimension; i = 1, 2, · · · , N is the population
size; c1 is the local learning factor; c2 is the global learning factor; W is the inertia weight;
r1 and r2 are the random numbers that obey the r(0, 1) distribution; and pt

i and St
i are the

local optimum and the global optimum, respectively.

3.3. Particle Swarm Algorithm Based on Random Weight

In the particle swarm optimization algorithm, parameter particles will gather to their
own best historical position and the best historical position of the population; so, it is
easy to form a rapid convergence effect of the particle population, and it is prone to local
extreme, premature astringency, or stagnation phenomena, resulting in imprecise parameter
identification [29]. In particular, the local and global optimal search ability of parameter
particles will be affected by inertia weight. Larger weights are conducive to jumping out
of local optima, while smaller weights will enhance local search capabilities and facilitate
algorithm convergence [30]. Aiming at the problems, POS tends to be limited in the search
space, easily falls into local optima, and has unsatisfactory convergence rates. In this paper,
we have designed a method of randomly selecting weight values so that the influence
of the historical speed of parameter particles on the current speed is random, which can
effectively increase the large search range and prevent parameters from falling into local
optimal solutions, speed up parameter identification, and improve parameter identification
accuracy. In the random weight method, the dynamic parameters to be identified can
quickly jump out of the local small search range under the influence of the random weight,
accelerate the identification speed in the large search range, and obtain accurate optimal
parameters. The random weight W can be calculated by the following formula:{

W = µ + σN(0, 1)

µ = µmin + (µmax − µmin) + rand(0, 1)
(15)

where µ is the parameter adjustment factor, N(0, 1) represents random numbers from a
standard normal distribution, and rand(0, 1) represents a random number between 0 and
1. The random weight particle swarm algorithm can avoid falling into the local optimum
to a certain extent, increase the range of parameter particle search, and help improve the
accuracy of the parameter identification of the robot. The dynamic parameter identification
process of the collaborative robot is shown in Figure 1.



Machines 2023, 11, 316 7 of 19

Figure 1. RWPSO identification flow chart.

3.4. Stability and Convergence Analysis of Random Weight Particle Swarm Algorithm

Assuming that the number of population particles is Φ, the global optimal position of
population particles can be obtained:

St
i = min

{
f
(
St

1
)
, f
(
St

2
)
, · · · , f

(
St

Φ
)}

(16)
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Let θ1 = c1r1, θ2 = c2r2, · · · , θ = θ1 + θ2, by sorting out Equations (13) and (14):[
vi(t + 1)

xi(t + 1)

]
=

[
w −θ
w −θ

][
vi(t)
xi(t)

]
+

[
θ1 θ2
θ3 θ4

][
pi(t)

St
i

]
= C

[
vi(t)
xi(t)

]
+ D

[
vi(t)
xi(t)

]
(17)

where C =

[
w −θ
w −θ

]
, D =

[
θ1 θ2
θ3 θ4

]
; w, θ1, and θ2 change adaptively during the

iterative process; and θ2 = c1r1 + c2r2 varies randomly in the interval with iteration. At
this time, C(t) belongs to the time-varying matrix. According to the system theory, it can
be known that [

vi(t)
xi(t)

]
= Θ(t, 0)

[
vi(0)

xi(0)

]
+

t−1

∑
k=o

Θ(t, k + 1)D
[

pt
i

St
i

]
(18)

where Θ(t, k) is the system state transition matrix, expressed as

Θ(t + 1, k) = C(t)Θ(t, k) (19)

where Θ(t, 0) = C(t− 1)C(t− 2) · · ·C(0).
Assume y(t) =

[
vi(t) xi(t)

]T; define scalar function as vector norm V(y(t)) =
‖y(t)‖; then, the following hold:

(1) V(y(t)) > 0.
(2) ∆V(y(t)) = V(y(t + 1))−V(y(t)) 6 (‖C(t)‖ − 1)‖y(t)‖. However, the values of

w, θ1, and θ2 make ‖C(t)‖ < 1, so ∆V(y(t)) is negatively determined.
(3) When ‖y(t)‖ → ∞, V(y(t))→ ∞.
According to the Lyapunov stability theorem, the system is asymptotically stable—that

is, the algorithm is stable.
According to Equation (18), when the modulus of eigenvalues of C(t) is less than 1, it

can be obtained that

lim
t→∞

[
vt

i
xt

i

]
= lim

t→∞
Θ(t, 0)

[
vi(0)
xi(0)

]
+ lim

t→∞

t−1

∑
k=0

Θ(t, k + 1)D
[

pt
i

St
i

]
=

[
0

θ1 pt
i+θ2St

i
θ

]
(20)

When pt
i and St

i are fixed, t→ ∞ and vi(t)→ 0. xi(t)→
θ1 pt

i+θ2St
i

θ is a point on the line
connecting pt

i and St
i . According to Equation (13) and the root mean square error, it can be

seen that pt
i eventually tends to St

i , which shows that the algorithm converges.

4. Identify Experimental Design
4.1. Design of Excitation Trajectory

A reasonable design of excitation trajectory for parameter identification can hasten
the convergence speed of parameter estimation and improve the precision of parameter
estimation. The robot excitation trajectory design can be performed in two steps: The first
step is to parameterize the joint trajectory. The second step uses the optimization algorithm
to determine the undetermined coefficients in the joint trajectory function according to the
designed objective function and motion constraint conditions.

In view of the fact that the finite Fourier series has the advantages of convenient data
processing, insensitivity to measurement noise, and easy implementation in the parametric
representation of the robot joint trajectory [31,32], this paper uses the finite Fourier series to
realize the joint trajectory of the collaborative robot parameterization [33]. The joint angle
of the i-th joint of the collaborative robot is denoted as

qi(t) = qi0 +
N

∑
l=1

(
ai

l
ω f l

sin
(

ω f lt
)
−

bi
l

ω f l
cos
(

ω f lt
))

(21)

where ω f is the fundamental frequency of the Fourier series and qi0 is the joint angle offset.
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Each joint of the robot uses the same fundamental frequency to ensure the periodicity
of the excitation trajectory. The parameterized motion trajectory of each joint of the space
robot contains 2N + 1 undetermined coefficients. By reasonably selecting ai

l , bi
l , and qi0, the

motion of the manipulator can meet the PE conditions of parameter identification.
In order to obtain the angular velocity and angular acceleration of joint i, the first and

second derivatives of Equation (21) with respect to time can be calculated:

q̇i(t) =
N

∑
l=1

(
ai

l cos
(

ω f lt
)
+ bi

l sin
(

ω f lt
))

(22)

q̈i(t) = ω f

N

∑
l=1

(
bi

l l cos
(

ω f lt
)
− ai

l l sin
(

ω f lt
))

(23)

Since the excitation trajectory is constrained by conditions such as motor torque, joint
position, joint velocity, joint acceleration, and workspace, the designed trajectory needs to
meet the following conditions:

min cond(W)

qmin 6 q(β) 6 qmax

|q̇(β)| 6 q̇max

|q̈(β)| 6 q̈max

|Φ(ϕ(β), ϕ̇(β), ϕ̈(β))θ| 6 τmax

(24)

where cond(W) is the condition number of the observation matrix. To reduce the theoretical
error of identification, it is necessary to optimize the parameters in the above trajectory,
and reduce the influence of noise on the identification accuracy by reducing the condition
number of the observation matrix [34]. qmin and qmax are the minimum and maximum
joint positions, respectively; q̇max is the maximum joint velocity; q̈max is the maximum
joint acceleration; β is the trajectory parameter; and τmax is the maximum joint torque.
The essence of the parameter optimization of the excitation trajectory is a multi-variable
constrained nonlinear function optimization problem [35,36]. The parameters are optimized
using the fmincon function in the Matlab optimization toolbox.

4.2. Data Preprocessing

When the collaborative robot tracks the excitation trajectory, the joint position and
motor current are collected, and the motor current is converted into the motor torque
through the torque constant. Due to the measurement noise interference of the original data,
it is necessary to denoise and smooth the collected data before the identification experiment.

Combining with the problems studied in this paper, the torque displayed by the
theoretical model of the collaborative robot at a certain moment is used as the predicted
torque in the Kalman filter algorithm, and the torque of the collaborative robot measured
by the sensor is used as the measured torque in the Kalman filter algorithm; then, the
established state equation and the measurement equation are expressed as

xk = Akxk−1 + Bkuk + wk (25)

zk = Hxk + vk (26)

where xk is the system state variable at time k, Ak and Bk are the system parameters, uk is
the control variable of the system, Bk is the system input relationship matrix, H is the state
output transition matrix, wk is the noise deviation of the robot control system, and vk is the
sensor measurement noise deviation.
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The essence of the Kalman filter algorithm is to use recursive thinking to reduce the
impact of noise. Each operation cycle contains two stages: time update and measurement
update. The former uses the system model and the estimates for the previous cycle to
obtain the prior estimate; the latter uses the actual measured output together with the prior
estimate to obtain a posterior estimate of the state.

Time update stage: transition from time k− 1 to time k.

x̄k
− = Ax̄k−1 + Buk (27)

P−k = APk−1 AT + Q (28)

where x̄k
− is to use the optimal estimate at time k− 1 to predict the estimated state variable,

which is called the prior estimate value, at time k. Q is the noise covariance of the control
system; Pk

− is the estimated value of the covariance of the system at time k.
Measurement update phase: Use the output at time k to correct the prior estimate

k|k− 1.
x̃k = x̃−k + Kk

(
zk − Hx̃−k

)
(29)

Pk = (I − Kk H)P−k (30)

Kk = P−k HT
/(

HP−k HT + R
)

(31)

where Kk is the Kalman gain at time k and R is the measurement noise covariance.
The Kalman filter only uses the first two-order information (mean and covariance) of

the state in the update rule; so, the Kalman filter has the following advantages: (1) The
acquisition of the mean and covariance of the unknown distribution only needs to save less.
(2) The mean and covariance have linear transitivity. (3) The set of mean and covariance
estimates can be used to characterize additional characteristics of the distribution.

Therefore, for the torque signal collected by the sensor, the Kalman filter algorithm [37]
is used to preprocess the original data and compare them with the five-point thrice smooth-
ing method [38]. The comparison between the torque signal before and after processing is
shown in Figure 2.

The experiment usually cannot directly measure the joint velocity and acceleration.
If the joint position is differentiated, the measurement noise will be amplified. In order
to reduce the impact of measurement noise when collecting the original torque signal,
through the Butterworth filter function in Matlab, the joint angle q is first differentially
calculated and then low-passed. The actual angular velocity q̇ and angular acceleration
q̈ of the connecting rod are obtained by filtering and noise reduction to reduce the noise
influence caused by differential processing.

In Figure 2a–f, the collected original torque data are represented by a blue line; the
green line and the red line are the torque data processed by the five-point thrice smoothing
method and the Kalman filtering method, respectively. It can be obtained from Figure 2 that
before signal processing, the acceleration signal is noisy, has many burrs, and has certain
data mutation points. If it is used for parameter identification calculation, it will lead to
a large deviation. However, the torque signal after Kalman filter processing is smooth
and has low data distortion; it also has a better processing effect than the five-point thrice
smoothing method, which can be used for parameter identification calculation.
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Figure 2. Data preprocessing.

5. Experimental Results and Analysis
5.1. Simulation Verification of Structure Simplification Results

The experiment was carried out on the six-degree-of-freedom collaborative robot
ROCR6, as shown in Figure 3, and the modified DH parameters are also shown in Table 1.
The excitation trajectory of the joint is a 5-order Fourier series with a fundamental frequency
of 0.05 Hz and a bandwidth of 0.25 Hz. The joint angle and joint torque in motion are
sampled at a frequency of 1000 Hz, with a total 20,000 sets of original data. An excess
of data will reduce the efficiency of identification and cause the fluctuation of bad data.
To improve the efficiency, 2000 groups of joint positions and motor current signals required
for identification are obtained in the 20 s motion process as the original data required
for identification.
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Figure 3. The experimental platform ROCR6 and its improved DH model. (a) Experimental platform
ROCR6. (b) Modified DH model.

Table 1. Improved DH parameters of ROCR6.

Link i αi−1 ai−1 di θi

1 0 0 0.126 0
2 π/2 0 0.216 −π/2
3 0 −0.257 0 0
4 0 −0.215 0.103 −π/2
5 π/2 0 0.127 0
6 −π/2 0 0.104 0

The experiments send the excitation trajectories to the control platform, which ensures
that all joints reach the commanded positions and receive real-time measurements of the
actual values (joint position q, joint torque τ).

The system is identified by basic PSO and RWPSO, respectively. The number of
population is selected as 200, the learning factor c1 is 1.5, c2 is 3, the inertia weight is 1.3,
and the maximum number of iterations is 200.

The fitness change curve during the identification process is shown in Figure 4. It can
be seen from the figure that the initial particle search range (0–370) obtained by applying the
RWPSO is obviously larger than the search range (0–201) of the basic PSO. When updating
the position and velocity information, the basic PSO takes about 83 generations to converge,
while the RWPSO takes about 20 generations to reach convergence, which shows that the
improved algorithm has significantly improved the convergence speed and parameter
particle search range.

0 50 100 150 200
-50

0

50

100

150

200

250

300

350

400

J (
N

.m
)

Iteration

 RWPSO
 PSO

Figure 4. Iteration curves of two algorithms.
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To identify the inertial parameters of the collaborative robot, given the excitation track
of the joint, as shown in Figure 5, drive the joint axis to track the excitation track and
identify the inertial parameters of the link.
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Figure 5. Robot excitation trajectory. (a) Excitation trajectories of joints 1, 2, and 3. (b) Excitation
trajectories of joints 4, 5, and 6.

Taking the first three joints of the collaborative robot as an example, the identification
values of the robot dynamics parameters are obtained through the WLS-RWPSO algorithm
identification, and the results are shown in Table 2. Among the 21 identification parameters
in Table 2, the first 15 are inertia parameters and the last 6 are friction parameters.

Table 2. Results of the identification of robot dynamics parameters.

Identifiers Identifying Value Identifiers Identifying Value Identifiers Identifying Value

Izz1(kg ·m2) 4.4672 m2ry2 (kg ·m) 0.0724 m3ry3 (kg ·m) 0.0057
Ixx2(kg ·m2) −1.4213 Ixx3 (kg ·m2) −0.7103 fc1 (N ·m) 18.3420
Ixy2(kg ·m2) −0.0502 Ixy3 (kg ·m2) −0.1641 fv1

(
N·m·s· rad−1) 8.5743

Ixz2(kg ·m2) −0.3501 Ixz3 (kg ·m2) −0.1513 fc2 (N ·m) 15.7401
Iyx2(kg ·m2) 0.6224 Iyz3 (kg ·m2) 0.0932 fv2

(
N·m·s· rad−1) 9.2475

Izz2(kg ·m2) 3.1617 Izz3 (kg ·m2) 0.7253 fc3 (N ·m) 20.7765
m2rx2(kg ·m) 4.4642 m3rx3 (kg ·m) 1.9305 fv3

(
N·m·s· rad−1) 9.5148

According to the dynamic parameters identified by the WLS-PSO, LS-PSO, and WLS-
RWPSO algorithms, the predicted torque under the excitation track is calculated and
compared with the actual torque. The results are shown in Figure 6. Figure 6a–f show the
predicted torque of each joint under three different algorithms. It can be seen from Figure
6 that under the identification trajectory, the predicted torque of the three algorithms is
close to the actual torque; however, on the whole, the predicted torque of the WLS-PSO
algorithm is better than that of the other two algorithms, which shows that the WLS-
RWPSO algorithm has a better effect on the prediction of torque. The identification effect of
the algorithm will be further analyzed in combination with the verification trajectory.

To further compare the identification accuracy of the two algorithms, this paper
introduces the root mean square error (RMS) λ to verify the validity of the identified model:

λ =

√√√√√ N
∑

a=1

(
τpa − τ̄pa

)2

N
(32)

where τ̄pa is the average torque value after identification. If the value of λ is closer to
0, the identification accuracy is higher. In addition, in order to show the advantages of
our method compared with traditional recognition methods, we list the root mean square
(RMS) of the validation residuals of different recognition methods in Table 3, where LS-PSO
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is the standard least-squares particle swarm optimization algorithm, and WLS-PSO is the
weighted least-squares particle swarm optimization algorithm.

Table 3. The root mean square error of different algorithm identifications.

Link i LS-PSO WLS-PSO WLS-RWPSO

1 0.3816 0.3661 0.3502
2 0.2478 0.2325 0.2080
3 0.4012 0.3986 0.3524
4 0.2186 0.2035 0.1671
5 0.1937 0.1867 0.1610
6 0.3506 0.3462 0.3148
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Figure 6. Joint moments of collaborative robots predicted by different algorithms. (a) Predicted
torque of joint 1 by identification. (b) Predicted torque of joint 2 by identification. (c) Predicted torque
of joint 3 by identification. (d) Predicted torque of joint 4 by identification. (e) Predicted torque of
joint 5 by identification. (f) Predicted torque of joint 6 by identification.

The above results show that our proposed WLS-RWPSO algorithm is compared with
these two methods. Taking joint 2 and joint 3 as examples, the predicted torque obtained by
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the three recognition methods is compared with the measured joint torque. The recognition
accuracy of this algorithm for joint 2 is 16.1% and 10.5% higher than that of the LS-PSO
algorithm and WLS-PSO algorithm, respectively, and the recognition accuracy of joint 3
is 12.2% and 11.5% higher than that of the LS-PSO algorithm and WLS-PSO algorithm,
respectively. The corresponding predicted torque is closer to the measured joint torque.
It can be seen that WLS-RWPSO algorithm has stronger optimization ability and higher
recognition accuracy.

5.2. Model Validation

After the completion of parameter identification, it is necessary to evaluate and verify
the accuracy of parameters. It is worth noting that the significance of parameter identifica-
tion itself is that under any given trajectory, the predictive value of motor output torque
can be obtained based on the identified parameters; then, the control current of the joint
motor can be obtained. In order to verify the validity of the dynamic parameters identified
by WLS-RWPSO, the verification trajectory is selected as a Fourier series different from
the previous excitation trajectory, and the robot joint is driven by the controller to track
according to the verification trajectory. The identified dynamic parameters are used to
predict the torque of the verification track. The experimental verification process is shown
in Figure 7. After sorting out the torque vector obtained, the joint torque of each joint
under the verification track can be obtained, as shown in Figure 8, Figure 8a–f show the
comparison between the predicted torque and the actual torque of each joint of the robot.
(τm is the measured torque of the identification track, τ′m is the measured torque of the
verification track, and τp is the predicted torque of the verification track).
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Figure 7. Flow chart of experimental validation.

It can be seen from Figure 8 that the deviation between the joint torque calculated by
this identification method and the actual torque is small, and the torque curve is closer to
the actual torque on the whole, which further proves that the WLS-RWPSO algorithm has
higher accuracy in identifying the robot dynamic model and can accurately predict the
dynamics characteristics of the robot system.
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Figure 8. Comparison of predicted torque and measured torque of collaborative robot. (a) Predicted
torque of joint 1 by identification. (b) Predicted torque of joint 2 by identification. (c) Predicted torque
of joint 3 by identification. (d) Predicted torque of joint 4 by identification. (e) Predicted torque of
joint 5 by identification. (f) Predicted torque of joint 6 by identification.

6. Conclusions

This paper summarizes the basic knowledge of dynamics model identification of
collaborative robots and proposes identification strategies based on WLS-RWPSO. The
optimal value of the fitness function obtained by the WLS-RWPSO algorithm is the smallest,
which is not prone to local optima, is convenient for global search, and can better improve
the accuracy of parameter identification. In the data preprocessing, the raw data collected
by the sensor are preprocessed with the Kalman filter algorithm, which achieved good
denoising and smoothing effects. In order to ensure the accuracy of parameter identification
under disturbance, the excitation trajectory is designed based on finite Fourier series.

The identification algorithm proposed by the collaborative robot is tested to evaluate
its performance and compared with WLS-PSO. The experimental results show that the
WLS-RWPSO parameter identification algorithm proposed in this paper can accurately
identify the dynamic parameters of the cooperative robot and has fast convergence speed,
strong optimization ability, and certain engineering significance.
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The identification algorithm proposed in this paper is helpful to improve the accuracy
and stability of the trajectory control of the collaborative robot; however, there are still
some shortcomings:

(1) This paper does not consider its inherent complex nonlinear behavior.
(2) When the collaborative robot moves along the specified excitation track, the sudden

change of friction torque is not considered at the joint commutation, which makes us unable
to obtain more accurate friction prediction.

Therefore, in future work, we will be committed to integrating these factors into
the proposed parameter identification process. In addition, the control system of the
collaborative robot can be designed by using the improved identification algorithm to
further expand its application scope.
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