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Abstract: This paper presents an integrated active obstacle avoidance controller in the Model Predic-
tive Control (MPC) framework to ensure adaptive collision-free obstacle avoidance under complex
scenarios while maintaining a good level of vehicle stability and steering smoothness. Firstly, with
the observed road conditions and obstacle states as inputs, a data-driven Gaussian Process Regression
(GPR) model is constructed and trained to generate confidence intervals, as scene-adaptive dynamic
safety envelopes represent the safety boundaries of obstacle avoidance. Subsequently, the generated
safety envelopes are transformed into soft and hard constraints, incorporated into the MPC controller
and rolling updated in the prediction horizon to further cope with uncertain and rapidly evolving
driving conditions. Minimizing both the control increments and stability feature parameters are
formulated into the objectives of the MPC controller. By solving the multi-objective optimization
problem with soft and hard constraints imposed, control commands are obtained to steer the vehicle
in order to avoid the obstacles safely and smoothly with guaranteed vehicle stability. The experiments
conducted on a motion-base driving simulator show that the proposed controller manages to perform
safe and stable obstacle avoidance even under hazardous conditions. It is also verified that the
proposed controller can be applied to more complex scenarios with dynamic obstacles presented.

Keywords: obstacle avoidance; Gaussian processes regression (GPR); safety envelope; model predic-
tive control (MPC); multi-objective optimization

1. Introduction

In recent years, technologies related to Intelligent Connected Vehicles (ICV) have
been developed rapidly, showing great potential in addressing traffic safety concerns [1–4].
Active obstacle avoidance systems can effectively improve traffic safety and have become a
research hotspot in the field of ICV [5].

Existing obstacle avoidance controllers are mainly devised in a hierarchical structure,
in which the path planner generates a collision-free path, which is then tracked by the
lower-level tracking controller [6]. In this hierarchical and sequential framework, paths
are usually planned regardless of the complex dynamics of the vehicle, without taking
into account the stability feature parameters of the vehicle, such as sideslip angle and yaw
rate, as well as the road parameters that affect the stability of the vehicle, such as the road
adhesion coefficient [7]. As a result, when the driving conditions are complex, especially
when the road conditions change rapidly or the vehicle exhibits prominent nonlinearity, the
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path planning module may generate infeasible paths due to neglect of road conditions and
vehicle state. In this case, the tracking controller is prone to either cause vehicle instability
in attempting to accurately track the infeasible path, or lead to collision due to sacrificing
tracking accuracy in order to maintain vehicle stability, neither of which are desirable for
an obstacle avoidance system.

To address the above issue, some studies have proposed integrating path planning and
tracking into a single module and performing path planning and tracking simultaneously
by solving a constrained optimization problem with the same vehicle model to ensure that
obtained control commands are feasible from the perspective of tracking. Febbo et al. [8]
combined path planning and tracking into a single optimization problem by incorporating
obstacles in the form of hard constraints into a nonlinear model predictive controller (MPC).
Li et al. [9] constructed a motion trend function to predict the position of obstacles in the
MPC prediction horizon to optimize the front wheel steering angle for simultaneous path
planning and tracking. Guo et al. [10] achieved simultaneous obstacle avoidance path
planning and tracking by calculating the ideal obstacle avoidance lateral displacement
at a future moment and incorporating this into the optimization objective of the tracking
controller. Although the above methods effectively improve the vehicle obstacle avoidance
performance, the optimization functions constructed are nonconvex [11] and the constraints
are complex, leading to sizeable computational overheads. Meanwhile, these methods tend
to fall into local optimality due to the limited horizon. Inspired by the envelope-based
control of aircraft, scholars have explored methods using safety envelopes to improve
obstacle avoidance performance. Erlien et al. [12,13] constructed a safe driving envelope
consisting of both a vehicle stability envelope and the physical boundaries of lanes and
obstacles, so that the vehicle is allowed to safely deviate from the path when necessary in
order to ensure vehicle stability. However, it is worth noting that the proposed envelope
is not continuous and does not match the steering characteristics of the vehicle. More
importantly, the kinematics and physical boundary-based envelopes are nonadaptive to
arbitrary obstacle avoidance scenarios.

Obviously, effectively constructing safety envelopes is an essential issue in devising
scene-adaptive and robust obstacle avoidance controllers. However, it is a rather nontrivial
task to obtain the safety envelopes, since the integrated effects of the complex vehicle
dynamics and the evolving driving situation, and the probabilistic uncertainty due to
modeling errors and inaccuracies in observing the environment, should also be taken
into account. The Gaussian process regression (GPR) model has significant advantages
in modeling nonlinear dynamical systems with uncertainties, due to its native ability
to express probabilistic uncertainty by calculating confidence intervals for the estimates
through variance prediction [14]. Therefore, in this paper, a data-driven GPR model is
proposed to generate the safety envelope of obstacle avoidance using the distances of the
obstacles relative to the ego-vehicle and the road boundaries as inputs.

Furthermore, exploiting the predictive capability of MPC and its unique advantages in
rolling optimization when dealing with optimization problems [15,16], this paper proposes
to incorporate the constructed safety obstacle avoidance envelope into the framework of
MPC and rolling updates the safety envelope in the MPC prediction horizon to further
improve the adaptability to uncertain environments. Suh et al. [17] calculate the ideal
steering angle to keep the vehicle located within the envelope, which is then tracked by a
tracking controller. Brown et al. [13] incorporate the distance between the vehicle and the
envelope boundary as a penalty term in the tracking controller objective function. However,
the above method still requires calculating the ideal reference trajectory and then balancing
the tracking accuracy and stability. Instead of planning a reference trajectory beforehand,
we impose the safety envelopes as constraints, so that the controller is allowed to obtain
the collision-free control commands within the safety envelopes, subject to optimization
objectives of vehicle stability and steering smoothness. Moreover, in order to improve the
robustness and safety of the controller, this paper adopts two confidence intervals (m± σ)
and (m± 2σ) as the soft and hard constraints for obstacle avoidance, respectively. The
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interval between soft and hard constraints is considered as a buffer area. When the driving
condition is challenging, such as on low-adhesion roads, the vehicle can cross the soft
constraints to avoid instability by driving in the buffer zone.

The contributions of this paper are summarized as follows:

(1) A GPR-based vehicle obstacle avoidance safety envelope is proposed, which is more
scene-adaptive and consistent with the steering characteristics of the vehicle as com-
pared to envelopes constructed based on explicit metrics and physical boundaries.
Moreover, the safety envelope is rolling updated in the MPC prediction horizon. Com-
bined with the advantages of the GPR model in modeling uncertainties, the proposed
method can better cope with uncertain and rapidly evolving driving conditions.

(2) A multi-objective MPC controller incorporating the safety obstacle avoidance en-
velopes as constraints is proposed. With soft and hard constraints imposed, the
MPC controller solves the optimization problem, with vehicle stability and steering
smoothness as the objectives, to obtain control commands that guarantee collision-
free obstacle avoidance, meanwhile maintaining a good level of vehicle stability and
steering smoothness. The experiments prove that, in challenging and dynamic scenes,
the stability of the vehicle is significantly improved under the premise of avoiding
obstacles safely.

The framework of the proposed obstacle avoidance controller is illustrated in Figure 1.
The remainder of the paper is organized as follows. Section 2 describes the methodology
for constructing the obstacle avoidance controller. The simulation results and analysis of
the proposed obstacle avoidance controller are introduced in Section 3. Finally, conclusions
are presented in Section 4.
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2. Methodology
2.1. Vehicle Models

This section introduces the vehicle dynamics model of the ego-vehicle and the obstacle
vehicle model, both adopted as prediction models for MPC-based obstacle avoidance
controllers.

2.1.1. Ego-Vehicle Dynamics Model

Considering the trade-off between computational efficiency and modeling accuracy of
the MPC controller, the bicycle model shown in Figure 2 [18] is adopted as the ego-vehicle
dynamics model, and the corresponding model parameters are shown in Table 1.
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Table 1. Vehicle Dynamics Parameters.

Description Symbol

Vehicle Mass m
Distance from the center of mass to the

front/rear axis L f / Lr

Longitudinal force of the front/rear tires FX f / FXr
Lateral force of front/rear tires FY f /FYr

Sideslip angle of front/rear tires α f /αr
Steering angle of the front wheel δ f

Longitudinal/Lateral speed vx/vy
Yaw rate

.
ϕ

Sideslip Angle β

Analyzing the forces on the model, the expression for the vehicle dynamics force can
be obtained as given in Equation (1):

.
vy = −vx

.
ϕ +

2FYr+2(FY f cos(δ f )+FX f sin(δ f ))

m
.
vx = vy

.
ϕ +

2FXr+2(FX f cos(δ f )−FY f sin(δ f ))

m
..
ϕ =

2L f (FY f cos(δ f )+FX f sin(δ f ))−2Lr FYr
IZ.

Y = vx sin ϕ + vy cos ϕ
.

X = vx cos ϕ− vy sin ϕ

(1)

where IZ represents the yaw inertia and X and Y are the vehicle’s longitudinal and lateral
positions in the Cartesian coordinate system. When the sideslip angle and the longitudinal
slip ratio are small, the tire force is simplified as follows [19]:{

FY[ f ,r] = Cc[ f ,r]α[ f ,r]
FX[ f ,r] = Cl[ f ,r]κ[ f ,r]

(2)

where Cc[ f ,r] and Cl[ f ,r] represent the cornering and longitudinal stiffness of front (rear) tires,
respectively, and κ[ f ,r] represents the slip ratio of front (rear) tires, which can be measured
when the vehicle is equipped with an Antilock Brake System (ABS).α[ f ,r] represents the
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sideslip angle of front (rear) tires, which can be obtained by analyzing the geometric
relationship of the vehicle model shown in Figure 2:α f =

vy+L f
.
ϕ

vx
− δ f

αr =
vy−Lr

.
ϕ

vx

(3)

The sideslip angle of the vehicle mass can be obtained with the following formula:

β =
vy

vx
(4)

Combining Equations (1)–(4), the dynamic force equation of the vehicle can be obtained
as follows: 

.
Y = vx sin ϕ + vxβ cos ϕ

.
β =

−2(Ccr+Cc f )
mvx

β +
( 2Ccr Lr−2Cc f L f

mvx2 − 1
) .

ϕ +
2Cc f
mvx

δ f
.
ϕ =

.
ϕ

..
ϕ =

2Ccr Lr−2Cc f L f
Iz

β−
2Ccr L2

r+2Cc f L2
f

Izvx

.
ϕ +

2Cc f L f
Iz

δ f

(5)

Setting the state vector of the vehicle as ζ = [Y, β, ϕ,
.
ϕ]

T and the control vector
u =

[
δ f

]
, the nonlinear dynamics model of the vehicle can be obtained by Equation (6):

.
ζ(t) = f (ζ(t), u(t)) (6)

2.1.2. Obstacle Vehicle Model

In order to ensure safe obstacle avoidance, it is necessary to consider both the current
position and the future motion trend of the dynamic obstacles. Previous studies have
extensively investigated the measurement of coordinates, yaw angle and yaw rate of
obstacles [20,21]. In this paper, based on the premise that the obstacle parameters mentioned
above are obtainable at each sampling moment, the motion model of an obstacle vehicle in
the MPC prediction horizon is modeled with the following equations:

Xobs(s + 1) = Xobs(s) + TSVobs(s) cos(ϕobs(s))
Yobs(s + 1) = Yobs(s) + TSVobs(s) sin(ϕobs(s))

ϕobs(s + 1) = ϕobs(s) + TS
.
ϕobs(s)

(7)

where Xobs(s) and Yobs(s) represent the longitudinal and lateral coordinates of the obstacle
vehicle in the geodetic coordinate system at moment s. Vobs(k), ϕobs(s) and

.
ϕobs(s) are the

current speed, yaw angle and yaw rate, respectively, and TS is the sampling interval.

2.2. GPR-Based Obstacle Avoidance Safety Envelope

Nonlinear safety avoidance envelopes are produced with a GPR model whose inputs
are the main feature parameters of road conditions and obstacle states. Subsequently,
the model was trained with safety avoidance data for human drivers collected through a
driving simulator.

A Gaussian Process is a stochastic process specified by its mean function and covari-
ance function [14,22]. Essentially, a GP is a set of random variables and any finite number
of random variables have a joint Gaussian distribution [23,24]. With GP regressions, the
mapping relationship between the input feature vector f and the Gaussian distribution of
the output d is established by the GPR model, which can be expressed mathematically as
follows:

d( f ) ∼ GP
(
m( f ), K

(
f , f ′

))
(8)
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where m( f ) and K( f , f ′) represent the mean function and covariance function, respectively:

m( f ) = E[d( f )] (9)

K
(

f , f ′
)
= E

[
(d( f )−m( f ))

(
d
(

f ′
)
−m

(
f ′
))]

(10)

The E represents mathematical expectation. Assume the mean functions are zero and
adopt the square exponential kernel function shown in Equation (11) as the covariance
function to obtain the prior distribution of the sample:

K
(

f , f ′
)
= σf

2 exp
(
−1

2
(

f − f ′
)T M−1( f − f ′

))
− σn

2 (11)

where M = diag
([

l1 l2 l3
])

represents the weight matrix consisting of feature length
scales for each dimension of the input vector. σf

2 and σn
2 represent the process standard

deviation and the noise variance, respectively. M, σf
2 and σn

2 are hyperparameters and

are represented by the parameter vector h =
[

M, σf
2, σn

2
]
. The hyperparameters have a

significant impact on the performance of the GPR model [25]. In this paper, given a training
set containing N inputs and corresponding outputs, hyperparameters are obtained with
the maximum log-likelihood estimation as follows:

D = {F = [ f1, f2, · · · , fN ], Y = [d1, d2, · · · , dN ]} (12)

h∗ = argmax(log p(Y|F, h )) (13)

where 
log p(Y|F, h ) = − 1

2 YTKYY− 1
2 log|KY| − N

2 log(2π)
KY = K(F, F) + σn

2 I
[K(F, F)]ij = K( fi, f j)

(14)

where I represents the unit matrix. After obtaining the optimal set of hyperparameters and
updating the kernel function, for the new prediction points f ∗, the predicted values d( f ∗)
and the training set output Y should satisfy the joint Gaussian distribution as follows:(

Y
d( f ∗)

)
∼ N

((
m(F)
m( f ∗)

)
,
(

K(F, F) + σn
2 I K(F, f ∗)

K( f ∗, F) K( f ∗, f ∗)

))
(15)

Furthermore, the posterior distribution of the predicted values d( f ∗) is also a Gaussian
distribution with mean and variance.

d( f ∗) ∼ N
(

K( f ∗, F) ·Y
K(F, F) + σ2

n I
, k( f ∗, f ∗)− K( f ∗, F) · K(F, f ∗)

K(F, F) + σ2
n I

)
(16)

As shown in Figure 3, in order to consider the size of the obstacle and the relative
position between the obstacle and the road boundary, in this paper we adopt the concept
of “channel tubes”, used in the literature [12,26] to link the infeasible gaps between the
obstacles and the road boundaries, unifying the representation of the obstacles through the
uncrossable area.
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Further, the farthest distance L between the ego-vehicle and the uncrossable area and
the width W of the uncrossable area are selected as the feature parameters. Considering
the difference of obstacle avoidance behaviors under different vehicle speeds, the feature
vector f = [L, W, V] is adopted as the input of the GPR model. In order to unify the
probability distribution of obstacle avoidance trajectory points regardless of the lane that
the ego-vehicle is in, the relative distance d between the ego-vehicle and the boundary of
the starting lane of obstacle avoidance is adopted as the output of the model.

The training data of the GPR model is collected using a motion-base driving simulator
consisting of a real vehicle cockpit and a 180◦ ring screen as shown in Figure 4. A standard
two-lane road is constructed as shown in Figure 5, with obstacles in the left and right
lanes at intervals with a longitudinal distance (120–150) m. Drivers with extensive driving
experience are recruited to drive the vehicle to complete the obstacle avoidance experiments.
Drivers are instructed to perform obstacle avoidance operations at diverse safe distances
based on their driving experiences. To consider the impact of driving speed on the process
of obstacle avoidance without increasing the operational difficulty, we set up three groups
of experiments; the speed intervals of each group are (0–30 km/h), (30–50 km/h) and
(50–70 km/h), respectively. In each group of obstacle avoidance experiments, drivers can
accelerate and decelerate appropriately within the speed interval according to their driving
habits.

The data obtained by collecting samples are expressed in the form of data pairs:

Ddyn = { fk, dk} = {Lk, Wk, Vk, dk}, ∀k ∈ {0, 1, · · · , N} (17)

The size of the GPR data dictionary has a significant impact on the performance
of the model [27]. As the dictionary data increases, the accuracy of the GPR model is
improved, but the computational burden also increases significantly, often causing failures
of model convergence. In this study, the maximum size of the GPR data dictionary is set
to 1000 empirically. Once the training data size reaches the maximum, referring to the
literature [28], we evaluate the new data using distance measures to determine which data
samples are substituted with new ones. This distance measure is defined as the posterior
variance of the new data f ∗ points as follows:

Θ∗ = K f ∗, f ∗ − K f ∗,F∗(KF∗,F∗ + σI)−1KF∗, f ∗ (18)
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where σ is the optimization adjustment parameter and KF∗,F∗ represents the covariance
matrix. F∗ is the dataset in the dictionary. The new data is evaluated by feedback gain and
the data point with the smallest measurement distance will be replaced.
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2.3. Envelope-Based Obstacle Avoidance Tracking Controller

Based on the obstacle avoidance safety envelope produced by the GPR model, a novel
MPC control scheme is proposed. The obstacle avoidance safety envelope is transformed
into soft and hard constraints. Both optimizing vehicle stability and steering smoothness are
formulated into the objective functions to realize stable and smooth control of the vehicle.

To improve the computational efficiency and real-time performance of the controller,
the vehicle dynamics model established in Section 2 is discretized with a fixed sam-
pling time TS and Taylor expansion at the operating point, the following expression
being obtained:

ζ(s + 1) = Asζ(s) + Bsu(s) (19)

Y(s) = Hsζ(s) (20)
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η(s) = Csζ(s) (21)

where

As =


1 TSvx cos ϕ TS(vx cos ϕ− vy sin ϕ) 0

0 1− 2TS(Cc f +Ccr)

mvx
0

2TS(Ccr Lr−Cc f L f )

mv2
x

− TS

0 0 1 TS

0
2TS(Ccr Lr−Cc f L f )

Iz
0 1−

2TS(Ccr L2
r+Cc f L2

f )

Izvx



Bs =

[
0,

2TSCc f

mvx
, 0,

2TSCc f l f

Iz

]T

, Cs =
[
1 0 0 0

]
, Hs =

[
0 1 0 0
0 0 0 1

]
Adding the control factors u(s− 1) to ξ(s), a new state quantity ξ̃(s) is given by the

following equations.
ζ̃(s + 1) = Ãs ζ̃(s) + B̃s∆u(s) (22)

Y(s) = H̃sζ(s) (23)

η(s) = C̃s ζ̃(s) (24)

where

ζ̃(s) =
[
Y(s) β(s) ϕ(s)

.
ϕ(s) δ f (s− 1)

]T , ∆u(s) = u(s)− u(s− 1)

Ãs =

[
As Bs
0 I

]
, B̃s =

[
Bs I

]T , H̃s =
[
Hs 02×1

]
, C̃s =

[
Cs 0

]
Assuming that the vehicle speed remains constant in the predicted horizon, as shown

in Figure 6, based on the obstacle vehicle model constructed in Section 2, at each sampling
moment the feature input of the GPR model at the next PN prediction points can be
obtained.

FPN =
{

fk+1 fk+2 · · · fk+PN

}
=
{
{Lk+1, Wk+1, vx(k)} {Lk+2, Wk+2, vx(k)} · · ·

{
Lk+PN , Wk+PN , vx(k)

} } (25)
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Figure 6. Collection of GPR model input parameters in MPC prediction horizon.

Inputting FPN into the GPR model to obtain a Gaussian distribution corresponding to
the future N predicted outputs and transforming them into the global coordinate system:

Y(k + i) ∼ N (mk+i, σk+i), i = 1, 2, · · · , PN (26)
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Referring to [29], when the obstacle avoidance trajectory point is located in a small
probability interval with high uncertainty, it is identified as having a collision risk. There-
fore, two confidence intervals (mk+i ± σk+i) and (mk+i ± 2σk+i) are adopted as the soft and
hard constraints to ensure driving safety and vehicle stability. The hard constraint ensures
that the obstacle avoidance trajectory of the vehicle is collision-free. The soft constraint
ensures that the vehicle drives along the center of the safety region when possible while
allowing the vehicle to go beyond the soft intervals to maintain vehicle stability. Assuming
that the current time step is k, the vehicle control increment remains constant between
the control horizon and the prediction horizon, and the vehicle states in the state matrix
have been obtained from the on-board sensors and the state observer, the designed multi-
objective MPC is expressed as in Equations (27)–(32). The stability feature parameters
sideslip angle β and yaw rate

.
ϕ are selected as outputs.

min
∆U(k)

Jk =
PN
∑

i=1
‖η(k + i)‖2

Q +
CN−1

∑
i=0
‖∆u(k + i)‖2

R + ρε2 (27)

subj. to Equations (28)–(32)

ζ̃(k + 1) = Ãk ζ̃(k) + B̃k∆u(k)
Y(k) = H̃kζ(k

)
η(k) = C̃k ζ̃(k)

(28)

∆u(k) = u(k)− u(k− 1) (29)

mk+i − (1 + ε)σk+i ≤ Y(k + i) ≤ mk+i + (1 + ε)σk+i (30)

0 ≤ ε ≤ 1 (31)

umin ≤ u(k) ≤ umax
∆umin ≤ ∆u(k) ≤ ∆umax

(32)

where Q, R and ρ are the weight matrices of output, input and slack variables respectively.
Equations (31) and (32) represent the constraints on the slack factor, control input and
control increment, respectively.

It is assumed that the control input remains constant during each control step. Trans-
form Equation (27) into standard quadratic form combined with the constraints:

min
∆U(k),ε

1
2

[
∆U(k)

ε

]T

Pe

[
∆U(k)

ε

]
+ Ge

[
∆U(k)

ε

]
(33)

subj. to 

I 0
−I 0
R 0
−R 0

0 1
0 −1

Θk −Ωk
−Θk −Ωk


[

∆U(k)
ε

]
≤



∆δ f ,max × ones(CN , 1)
−∆δ f ,min × ones(CN , 1)

δ f ,max × ones(CN , 1)
−δ f ,min × ones(CN , 1)

1
0

Mk + Ωk −Ψk ζ̃(k)
−Mk + Ωk + Ψk ζ̃(k)


(34)

where
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Ωk =

[
σk+1 σk+2 · · · σk+PN

]T
, Mk =

[
mk+1 mk+2 · · · mk+PN

]T

∆U(k) =
[

∆u(k) ∆u(k + 1) · · · ∆u(k + CN − 1)
]T

, Qe = IPN ⊗Q, Re = ICN ⊗ R

Pe =

[
2
(

Ξk
TQeΞk + Re

)
0CN×1

01×cN ρ

]
Ge =

[
2ζ̃(k)TΓk

TQeΞk 0
]

Ξk =


C̃k B̃K 0 · · · 0

C̃k Ãk B̃K C̃k B̃k+1 · · · 0
...

...
. . .

...

C̃k
PN−1

∏
i=0

Ãk+i B̃k C̃k
PN−1

∏
i=1

Ãk+i B̃k+1 · · · C̃k
PN−1

∏
i=CN−1

Ãk+i B̃k+CN−1


PN×CN

R =


1 0 · · · 0
1 1 · · · 0
...

...
. . . 0

1 1 · · · 1


CN×CN

Γk =


C̃k Ãk

C̃k Ãk Ãk+1
...

C̃k
PN−1

∏
i=0

Ãk+i


PN×1

Θk=


H̃k B̃K 0 · · · 0

H̃k Ãk B̃K H̃k B̃k+1 · · · 0
...

...
. . .

...

H̃k
PN−1

∏
i=0

Ãk+i B̃k H̃k
PN−1

∏
i=1

Ãk+i B̃k+1 · · · H̃k
PN−1

∏
i=CN−1

Ãk+i B̃k+CN−1


PN×CN

Ψk =


H̃k Ãk

H̃k Ãk Ãk+1
...

H̃k
PN−1

∏
i=0

Ãk+i


PN×1

By solving Equation (33), the sequence of control inputs at each step is obtained and
the first element is chosen as the control variable. As a result, the trajectory that satisfies
the objectives of optimal vehicle stability and steering smoothness within the safe obstacle
avoidance region is executed:

δ f (k) = δ f (k− 1) + ∆δ f ,k
∗ (35)

3. Experiments

To verify the proposed obstacle avoidance strategy, a series of obstacle avoidance
simulation studies are conducted using the motion-base driving simulator described in
Section 2.2. The vehicle dynamics are simulated using the CarSim B-class sedan model,
which outputs the vehicle states at a frequency of 50 Hz. The driving simulation program
provides a MATLAB/Simulink interface which receives real-time control commands gener-
ated by the proposed obstacle avoidance controller. The parameters of the vehicle dynamics
model and the MPC controller are presented in Tables 2 and 3.

Table 2. Parameters of the vehicle model.

Symbol Value

m 1723 kg
IZ 4175 kg·m2

L f 1230 mm
Lr 1470 mm
Ccr 62,700 N·rad−1

Cc f 66,900 N·rad−1
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Table 3. Parameters of the MPC controller.

Symbol Value

T 0.02
PN 20
CN 5
Q

[
10000 0

0 2000

]
R 50000
ε 1000

3.1. Scenario A

Scenario A is a standard two-lane continuous obstacle avoidance scenario with lane
width of 3.5 m, where three static obstacle vehicles of 4.65 m length and 2.1 m width are
set at positions (99, 2.75), (190, 6.25) and (295, 2.75), respectively. In order to verify the
effectiveness of the proposed MPC controller based on the GPR safe obstacle avoidance
envelope, in ensuring vehicle stability and control smoothness while performing safe
obstacle avoidance, another MPC controller is built as a comparison. The comparison
controller uses the mean value of the GPR real-time output as the reference trajectory and
the objective functions and weight coefficients are defined referring to the literature [30].
The proposed obstacle avoidance controller in this paper is denoted as controller A and
the controller for comparison is denoted as controller B. A fine driving condition with
a high ground adhesion coefficient (µ = 0.85) and a hazardous driving condition with a
low adhesion coefficient (µ = 0.2) are used to compare the tracking performance of the
controllers and the vehicle speed was set at a constant 72 km/h. The experimental results
are shown in Figures 7 and 8, respectively.
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Figure 7 illustrates the experimental results of obstacle avoidance on the high-adhesion
road. As shown in Figure 7a, both controller A and controller B achieve safe obstacle avoid-
ance. Since no specific reference trajectory is given, controller A would start the obstacle
avoidance operation in advance when facing each obstacle and choose the smoothest ob-
stacle avoidance route possible within the soft constraints (µ± σ) to ensure high level of
safety, as well as optimal stability and control smoothness. As shown in Figure 7b, the
front wheel steering angles of controller A and controller B both stay within a reasonable
range throughout the obstacle avoidance process and the front wheel steering angle of
controller B is significantly greater than that of controller A, with a maximum steering
angle of 1.55 deg compared to 1.1 deg for controller A. It is also shown in Figure 7c,d
that, throughout the obstacle avoidance process, the control increment of controller A is
smoother and the slip angle and yaw rate of controller A are both smaller than those of
controller B, demonstrating better vehicle stability.

When the vehicle is driven under hazardous conditions with low adhesion, as shown
in Figure 8, controller B yields significant tracking errors due to handling limits (Figure 8a).
To eliminate the tracking error, the steering control command of controller B increases
rapidly to a maximum of more than 4 deg. Meanwhile, the yaw rate and sideslip angle of
controller B increase significantly, exceeding 0.3 rad/s and 1.1 deg, respectively, indicating
that the vehicle has already become instable in attempting to track the reference trajectory.
By contrast, the trajectory of controller A exceeds the interval (µ± σ), but is still located
within (µ± 2σ), indicating that the vehicle exceeds the soft constraint in order to maintain
stability, but still ensures safe driving without collision. As presented in Figure 8b–d, the
steering angle, yaw rate and sideslip angle of controller A are much smaller than those of
controller B, proving the capability of controller A in maintaining a good level of stability
while safely avoiding the obstacles, even under challenging conditions.
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The results presented above clearly show that the proposed MPC tracking controller
based on the safety avoidance envelope can make full use of the vehicle’s handling limit to
ensure stable and smooth driving under the premise of safe obstacle avoidance.

3.2. Scenario B

In scenario B, to verify the effectiveness of the proposed obstacle avoidance control
scheme in more complex situations where both dynamic and static vehicles are presented,
we set a dynamic vehicle with a speed of 10 m/s in the first lane and a static obstacle is
placed at position (180, 2.75) in the second lane. The ego-vehicle is driving in the first lane
at a speed of 20 m/s. To avoid collision with the dynamic vehicle in the first lane, the
vehicle needs to change to the second lane for overtaking and then return to the original
lane to avoid the static vehicle.

Figure 9 shows the experimental results of scenario B. As shown in Figure 9a,b, the
obstacle avoidance trajectory of the ego-vehicle is always located within the interval (µ± σ)
and the minimum distances between the ego-vehicle and the dynamic and static obstacle are
3.44 m and 2.99 m, respectively, both greater than the safety distance of 2.1 m, considering
the length of the vehicles. As shown in Figure 9c,e,f, during the entire process, the front
steering angle of the vehicle is quite smooth, which ensures the smoothness and comfort
of the obstacle avoidance process. The maximum yaw rate and the sideslip angle were no
more than 0.07 rad/s and 0.08 deg, respectively, indicating that the vehicle is maintained at
a stable state.

The results presented verify that the data–driven GPR model proposed in this pa-
per can accurately generate nonlinear safety envelopes under complex scenarios with
dynamic obstacles.
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3.3. Scenario C

In scenario C, to verify the effectiveness of the proposed obstacle avoidance scheme in
coping with environmental uncertainty through the prediction of obstacle motion trends in
the MPC prediction horizon, we set up a standard three-lane continuous obstacle avoidance
scenario with a lane width of 3.5 m. As shown in Figure 10a, from the top down, the first
lane, second lane and third lane are shown, respectively. The ego-vehicle starts at (0, 6.2)
and drives in the second lane at a speed of 20 m/s. In the third lane, a dynamic obstacle
vehicle changes lanes towards the second lane at a speed of 10 m/s and a static obstacle
vehicle is placed at position (160, 9.75) in the first lane. There will be a collision between the
two vehicles if both the ego-vehicle and the obstacle vehicle drive in their current state. To
avoid collisions, the ego-vehicle needs to change to the first lane and, after the overtaking
is completed, the ego-vehicle needs to return to the second lane to avoid the static obstacle.
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Figure 10 shows the experimental results of scenario C. As shown in Figure 10a,b, based
on the constructed obstacle vehicle model, the ego-vehicle enables active and safe obstacle
avoidance when the obstacle vehicle merges in, and the minimum distances between the
ego-vehicle and the dynamic and static obstacle are 3.19 m and 3.45 m, respectively, both
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reasonable safe distances. Although there are some abrupt changes in the generated GPR
envelope due to sudden changes in the motions of the dynamic vehicle, the proposed
controller ensures smooth obstacle avoidance by crossing the soft constraint and avoids
collision by staying within the hard constraint (µ± 2σ). As shown in Figure 10d,e, during
the entire process, the maximum yaw rate and the sideslip angle were no more than
0.08 rad/s and 0.18 deg, respectively, indicating that the vehicle is maintained at a stable
state. The experimental results prove that the obstacle avoidance controller is robust to
environmental uncertainties in the sense that the GPR model is capable of generating safety
envelopes in response to abrupt changes in the motion states of surrounding obstacles.
Furthermore the proposed constrained multi-objective MPC controller is able to perform
safe and stable obstacle avoidance based on the dynamically generated envelopes.

4. Conclusions

This paper presents an active obstacle avoidance framework for collision-free obstacle
avoidance while ensuring vehicle stability and steering smoothness. First, scene-adaptive
safety envelopes representing the safety boundaries of obstacle avoidance are generated
with a GPR model from observed road conditions and the states of obstacles. On the basis
of the safety envelopes, soft and hard constraints are generated and incorporated into
the MPC controller, and are rolling updated in the prediction horizon. Both minimizing
the control increments and stability feature parameters are formulated into the objectives
of the MPC controller. By solving the constrained multi-objective optimization problem,
control commands that guarantee safe obstacle avoidance with complex vehicle dynamics
taken into account are obtained. In contrast to hierarchical and sequential methodologies
consisting of separated path planning and trajectory tracking procedures, the proposed
framework solves the dilemma of tracking infeasible paths by modeling the procedure
of obstacle avoidance as an integrated constrained multi-objective optimization problem.
A series of experiments are conducted on a motion-base driving simulator to verify the
effectiveness of the proposed framework under various conditions. The results prove that
the data-driven GPR model proposed in this paper is highly adaptable to complex obstacle
avoidance scenarios and can accurately and robustly produce safety envelopes in various
scenes. Consequently, the proposed MPC controller built upon the safety envelopes is
robust and adaptive to challenging conditions, demonstrating optimal performance in
avoiding obstacles safely, with vehicle stability guaranteed.
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