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Abstract: This paper studies the problem of distributed predefined-time optimization for leaderless
consensus of second-order multi-agent systems under a class of weighted digraphs. The proposed
framework has two main steps. In the first step, the agents communicate to perform a consensus-
based distributed predefined-time optimization and to generate a constant optimal output reference
for each agent. In the second step, each agent tracks its corresponding optimal output reference,
using a sliding-mode controller to reach the global optimum in a predefined time, even under
matched disturbances. The proposed algorithm relies explicitly on user-defined constant parameters.
Numerical simulations are performed to validate the efficacy of the algorithm.
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1. Introduction

With the development of distributed computing and large-scale networks during the
past decade, distributed optimization has become a highly active subject. The mentioned
approach is attractive due to its application in areas, such as opinion dynamics [1], resource
allocation [2], smart grids [3], sensor networks [4], and machine learning [5], to name a few.
In particular, special attention has been paid to consensus-based distributed algorithms in
continuous time, which may facilitate the analysis [6].

Most of the vast literature on consensus-based distributed optimization, particularly
in the case of Multi-Agent Systems (MAS), presents schemes with asymptotic/exponential
convergence, which may impose severe limitations when the optimization time is a crucial
factor, and the initial conditions of the agents are inaccurate or even unknown. A solution to
these shortcomings was explored early in [7] and extended by Polyakov [8], who introduced
the concept of fixed-time stability, where the convergence time is uniformly-bounded for all
initial conditions. However, despite the demonstrated applicability of fixed-time stability,
there are some issues related to the convergence time estimation. The main drawback is that
the relationship between the system parameters and the convergence time is not explicit.
Thus, finding the system parameters to enforce a desired bound for the stabilization time
constitutes a challenging problem, leading to conservative estimations [9].

To deal with the scenario when the convergence time is an important restriction and
the initial conditions are uncertain, a class of systems where an Upper Bound of the Settling
Time (UBST) is a tunable parameter was proposed in [9] and further studied in [10,11]. Such
systems are called fixed-time stable systems with predefined UBST or simply predefined-time
stable systems. This concept has been applied to first-order, second-order, and nonholonomic
systems [12] and even consensus problems [13] and discretization schemes [14].
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Current works on distributed optimization mostly focus on leaderless first-order
dynamics, covering asymptotic, finite, fixed, and predefined-time convergence (see [15–20]).
On the other hand, the literature on distributed optimization for second-order systems
are growing fast in recent years, but works with a predefined-time approach are
scarce. For instance, Tang [21] proposed an algorithm that includes an optimal signal
generator embedded in the MAS feedback loop. This approach reduces the complex
optimization problem into two simpler sub-problems: first-order distributed optimization
and constant reference tracking. Adibzadeh et al. [22] used the same embedded control
scheme with the addition of inequality constraints. Nonetheless, both algorithms show
asymptotic/exponential convergence and can be applied only on undirected graphs.
Wang et al. [23] proposed an optimization algorithm for integrator chain systems based on
the same idea of an optimal signal generator. The algorithm is a significant improvement
compared to [21,22] due to the consideration of matched and unmatched disturbances and
finite-time convergence. Although the results are satisfactory, the main drawback is that the
settling time depends on the initial condition of the agents. Additionally, only undirected
topologies are taken into account. A different approach is suggested by Tran et al. [24].
In this paper, the authors considered the distributed optimization problem for double
integrator systems with the presence of external disturbance by using the internal model
principle. However, the scheme can be applied only on undirected graphs, requiring the
computation of several matrices in order to find the corresponding bounds of the gains, and
its convergence is asymptotic. In Li et al. [25], the distributed predefined-time optimization
problem for homogeneous and heterogeneous linear systems is studied using a Time-Base
Generator (TBG) technique. However, it was applied only to undirected graphs, and no
disturbance was considered. Moreover, according to Aldana-López et al. [26], this kind
of algorithm with time-varying gains may present inherent performance limitations due
to the lack of uniform stability and robustness to measurement noise. Moreover, due
to singularities present in these time-varying gains, there is no satisfactory evidence of
solutions for these systems at and after the predefined time. Motivated by the previous
discussion, this paper introduces a distributed predefined-time optimization algorithm for
leaderless consensus of second-order MAS when the communication topology is modeled
by a detail-balanced graph, which is a particular case of directed graphs. The proposed
algorithm has a first step in which the agents communicate to perform a first-order
distributed optimization and to generate a constant optimal output for each agent. In
the second step, each agent tracks the corresponding optimal output obtained in the first
step using a sliding-mode controller, which presents robustness to matched disturbance.
The algorithm relies on explicit system parameters and user-defined parameters without
the requirement of time-variable gains. In comparison to the existing results in the literature,
the salient features of the proposed algorithm are as follows:

• In contrast to [21–24], the proposed algorithm performs both the optimization and
stabilization processes in a predefined time.

• The algorithm can be applied to undirected graphs and detail-balanced graphs. None
of the discussed papers considers this extension.

• The initial optimization step of the algorithm requires fewer adjustable parameters
than many other algorithms found in the literature.

• Compared to many existing works, the gradients and Hessians are not shared
among agents.

• Contrary to [25], the proposed algorithm is robust in the presence of matched
disturbances and does not use a TBG.

The paper is structured as follows. Section 2 introduces the essential mathematical
background and important definitions. The problem statement is explained in Section 3.
Then, the proposed scheme, including its proof of stability, is developed in Section 4.
Section 5 discusses the validity of the proposed scheme through several simulations. Finally,
conclusions and future work are presented in Section 6, and some useful lemmas can be
found in Appendix A.
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2. Preliminaries
2.1. Notation

Let R denote the set of real numbers and Rm the m-dimensional Euclidean space.
For x ∈ Rm, xT denotes its transpose, ‖x‖ its Euclidean norm and, for r ∈ R+,
Br(x) = {y ∈ Rm : ‖y− x‖ < r}. Im is the identity matrix with dimensions m × m,
and 0m is the zero column vector of dimension m.

For a twice differentiable function f : Rm → R, ∇ f (x) and ∇2 f (x) represent the
gradient and Hessian of the function, respectively. For matrices A ∈ Rm×n and B ∈ Rp×q,
A⊗ B ∈ Rmp×nq denotes the Kronecker product.

For any real number h, the functions b•eh : R→ R and |b•e|h : Rm → Rm are defined
as bxeh = |x|hsign(x) for any x ∈ R \ {0} and |bxe|h = x/||x||1−h for any x ∈ Rm \ {0m},
respectively. Moreover, if h > 0, b0eh = 0 and |b0me|h = 0m.

For α ∈ R+, the Gamma Function Γ is defined as Γ(α) =
∫ ∞

0 tα−1e−tdt.

2.2. Graph Theory

Let G = (V , E) denote a graph, where V = 1, 2, . . . , N is the set of vertices (agents),
and E ⊆ V × V is the set of edges (links). The corresponding weighted adjacency
matrix is A = [aij] ∈ RN×N with aij > 0 if (j, i) ∈ E and aij = 0 otherwise. No self-
loops are allowed, hence aii = 0, ∀i ∈ V . The neighbor set of agent i is defined as
Ni = {j ∈ V|(j, i) ∈ E}. The Laplacian matrix LG = [lij] ∈ RN×N associated with G is
defined as lij = −aij for i 6= j and lii = ∑N

j=1,j 6=i aij. A directed graph is detail-balanced
with weight vector γ = (γ1, γ2, . . . , γN)

T if γiaij = γjaji ∀i, j = 1, 2, . . . , N. Its Laplacian
matrix LD is defined as LD = ΞLG , where Ξ = diag[γ1, γ2, . . . , γN ], with eigenvalues
0 = λ1(LD) < λ2(LD) ≤ · · · ≤ λN(LD) [27].

2.3. Convex Analysis

Let us recall some basic notions on convex analysis (one can refer to Boyd and
Vandenberghe [28] and Hiriart-Urruty [29] for more details). A set C ⊆ Rm is convex
if, for any x, y ∈ C and any α with 0 ≤ α ≤ 1, αx + (1− α)y ∈ C. A function f : Rm → R
is convex if its domain, denoted as dom f , is a convex set and if for all x, y ∈ dom f and
any α with 0 ≤ α ≤ 1, f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y). A twice continuously
differentiable convex function f : Rm → R is θ-strongly convex with 0 < θ < Θ if one of
the following conditions holds

θ

2
‖x− y‖2 ≤ f (y)− f (x)−∇ f (x)T(x− y) ≤ Θ

2
‖x− y‖2, (1a)

θIm ≤ ∇2 f (x) ≤ ΘIm. (1b)

If f is a θ-strongly convex function, then its minimizer x∗ = arg minx∈Rm f (x) is unique.

2.4. Predefined-Time Stability

Consider the autonomous system

ẋ = f(x; ρ), x0 = x(0) (2)

where x ∈ Rm is the system state, ρ ∈ Rb with ρ̇ = 0 represents the parameters of the
system and function f : Rm → Rm is such that the solution of (2), denoted as Φ(t, x0), exists
and is unique. The origin x = 0m is the unique equilibrium point of (2).

Definition 1 (Stability notions [10]). The origin of system (2) is

• Lyapunov is stable if for any x0 ∈ Rm, the solution Φ(t, x0) is defined for all t ≥ 0, and for
any ε > 0, there is δ > 0 such that for any x0 ∈ Rm, if x0 ∈ Bδ(0) then Φ(t, x0) ∈ Bε(0)
for all t ≥ 0;
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• It is finite-time stable if it is Lyapunov stable and for any x0 ∈ Rm, there exists
0 ≤ τ < ∞ such that Φ(t, x0) = 0 for all t ≥ τ. The function T(x0) =
inf{τ ≥ 0 : Φ(t, x0) = 0, ∀t ≥ τ} is said the settling-time function of system (2);

• It is fixed-time stable if it is finite-time stable, and the settling-time function of system (2),
T(x0), is bounded on Rm, i.e., there exists Tmax such that supx0∈Rm T(x0) ≤ Tmax;

• It is predefined-time stable if it is fixed-time stable and for any Tc ∈ R+ there exists some
ρ ∈ Rb such that the settling-time function of system (2) satisfies

sup
x0∈Rm

T(x0) ≤ Tc.

Proposition 1 ([12]). If there exists a continuous, positive definite and radially unbounded function
V : Rm → R≥0 such that the time-derivative of V along the trajectories of (2) satisfies

V̇(x) ≤ − 1
αsTc

exp(αV(x)s)V(x)1−s, (3)

for x ∈ Rm \ {0m} and constants Tc := Tc(ρ) > 0, α > 0, s ∈ (0, 0.5), then the origin of (2) is
fixed-time stable with Tc as a predefined UBST.

Proposition 2 ([12]). Consider the second-order system

ẋ1(t) = x2(t)

ẋ2(t) = u(t) + ∆(t)
(4)

where x = (x1, x2)
T ∈ R2 is the state vector, u ∈ R is the control input, and ∆(t) ∈ R is a

disturbance with known bound |∆(t)| ≤ δ.
The stabilization of system (4) in a predefined time Tc < Tc1 + Tc2 can be performed by using

the following sliding-mode controller

u =−
α

β2q2−1
p2

2 Γ
(

1−β2q2
p2

)
p2Tc2

exp(α2|σ|p2)bσeβ2q2 − ζikbσe0

−

2
1−q1/2

p1 Γ
(

1−q1/2
p1

)
p1Tc1

(q1 + p1bx1ep1 |x1|q1−1) exp(|x1|p1)bσe0, (5)

where the sliding variable σ is defined as follows

σ = x2 +

bx2e2 + 2

2
1−q1/2

p1 Γ
(

1−q1/2
p1

)
p1Tc1

 exp(|x1|p1)bx1eq1


1/2

(6)

with ζ ≥ δ and the parameters Tc1 > 0, p1 > 0, 1 ≤ q1 < 2, Tc2 > 0, α2 > 0, β2 > 0, p2 >
0, q2 > 0 such that β2q2 < 1.

3. Problem Statement

Consider a leaderless MAS with N agents whose dynamics are given by

ẋi(t) = vi(t) i = 1, 2, . . . , N

v̇i(t) = ui(t) + ∆i(t)
(7)

where xi, vi ∈ Rm represent the position and the velocity vectors of the i-th agent,
respectively. ui(t) = [ui1(t), ui2(t), . . . , uim(t)]T ∈ Rm is the control input and ∆i(t) =
[∆i1(t), ∆i2(t), . . . , ∆im(t)]T ∈ Rm is a disturbance vector with |∆ik(t)| ≤ δik for k =
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1, 2, . . . , m. Additionally, agent i is endowed with a local function fi(xi) : Rm → R only
known by itself.

The objective is to design the control input ui for each agent that achieves leaderless
consensus to the global minimizer of an objective function F(x), which is the sum of the local
functions of the agents. The optimization process must be achieved in a predefined time
Tc > 0 using information from the neighbors. In particular, all agents face the following
unconstrained optimization problem:

min
x∈Rm

F(x) = min
x∈Rm

N

∑
i=1

fi(x) (8)

such that

lim
t→Tc

N

∑
i=1
‖xi(t)− x∗‖ = 0 and

N

∑
i=1
‖xi(t)− x∗‖ = 0 ∀t ≥ Tc.

Here x∗ = arg minx∈Rm F(x).

Assumption 1. The communication topology is described by a time-invariant detail-balanced
graph.

Assumption 2. For each agent, the local cost function fi is twice differentiable, θi-strongly convex
with 0 < θi < Θi, and ∇ fi(xi) is Lipschitz continuous.

Assumption 3. The global function F(x) := ∑N
i=1 fi(x) is µ-strongly convex with µ ≥ ∑N

i=1 θi,
hence, it has a unique minimizer x∗.

Remark 1. Many kinds of functions satisfy Assumptions 2 and 3, such as quadratic, fractional,
trigonometric, exponential, logarithmic, and other bounded differentiable functions. Some practical
examples can be found in economic dispatch, optimal rendezvous of multiple mobile robots, and
machine learning [17].

4. Main Results

In this section, we divide the Distributed Predefined-Time Optimization problem into
two sub-problems. First, a Zero Gradient Sum (ZGS) algorithm is proposed to solve a
first-order distributed optimization problem of a virtual system associated with the outputs
of original system (7) in a predefined time ν1Tc + ν2Tc and to generate optimal signals to
be tracked. For t ≥ ν1Tc + ν2Tc, the optimal outputs xre f

i from the virtual system (9) remain
constant and can be used as a reference to be tracked in a predefined time ν3Tc + ν4Tc.
Constants νk are used to establish the duration of each step in terms of the total optimization
time Tc. Hence, 0 < νk < 1 and ∑4

k νk = 1.

4.1. Distributed Predefined-Time Optimal Signal Generator (DPTOSG)

Consider the virtual system

żi(t) = νi(t) i ∈ V

xre f
i (t) = zi(t),

(9)

where zi(t) = [zi1(t), . . . , zim(t)]T ∈ Rm is the i-th agent state, νi(t) = [νi1(t), . . . , νim(t)]T ∈
Rm is the i-th agent virtual control input, and xre f

i (t) is the output. The task is to design a
distributed controller vi, i ∈ V for the virtual multi-agent system (9), such that its outputs
zi reach the unique minimizer x∗ of the global cost function F(x) in a predefined time.



Machines 2023, 11, 299 6 of 13

The proposed two-stage controller has the form

νi(t)=


−c1

[
∇2 fi(zi)

]−1 exp(‖∇ fi(zi)‖s)|b∇ fi(zi)e|1−s, 0 ≤ t ≤ ν1Tc

−2c2
[
∇2 fi(zi)

]−1
∑j∈Ni

exp((c3γiaij
∥∥zij

∥∥2
)s)(γiaij)

1−s
∣∣⌊zij

⌉∣∣1−2s, t > ν1Tc
(10)

with zij = zi − zj, 0 < s < 0.5, and c1, c2, c3 to be defined later.

Theorem 1. If Assumptions 1–3 hold, the optimization problem (9) is solved in a predefined time
ν1Tc + ν2Tc with parameters

c1 =
1

sν1Tc
, c2 =

c1−s
3

sν2Tc
, c3 ≥

Θ̄
2λ2(LD)

where Θ̄ ≥ maxi∈VΘi.

Proof. For 0 ≤ t ≤ ν1Tc, according to (9) and (10), the closed-loop system is

żi = −c1

[
∇2 fi(zi)

]−1
exp(‖∇ fi(zi)‖s)|b∇ fi(zi)e|1−s. (11)

Let gi(t) = ∇ fi(zi). Therefore, ġi = ∇2 fi(zi)żi = −c1 exp(‖gi‖s)|bgie|1−s. For agent i ∈ V ,
one can define the Lyapunov function candidate Vi(gi) = ‖gi‖. which is positive, radially
unbounded, and equal to zero if and only if gi = 0m, i.e., when each agent has reached its
local minimum. The time derivative of Vi takes the form

V̇i =
gT

i ġi

‖gi‖
=
(
|bgie|0

)T
ġi. (12)

Replacing the definition of ġi into (12) and rearranging yields

V̇i = −c1 exp(‖gi‖s)‖gi‖1−s = − 1
sν1Tc

exp(Vs
i )V

1−s
i , (13)

due to
(
|bgie|0

)T
|bgie|1−s = ‖gi‖1−s. This corresponds to a fixed-time stable system with

ν1Tc as the UBST and α = 1, as shown in Proposition 1.
For t > ν1Tc, according to equations (9) and (10), the closed-loop system becomes:

żi = −2c2

[
∇2 fi(zi)

]−1
∑

j∈Ni

exp((c3γiaij
∥∥zij

∥∥2
)s)(γiaij)

1−s∣∣⌊zij
⌉∣∣1−2s

= −2c2

[
∇2 fi(zi)

]−1
∑

j∈Ni

exp((c3γiaij
∥∥zij

∥∥2
)s)

(γiaij
∥∥zij

∥∥2
)s

γiaijzij. (14)

Consider the following Lyapunov function

V(z) =
N

∑
i=1

fi(x∗)− fi(zi)−∇ fi(zi)
T(x∗ − zi), (15)

with z =
[
zT

1 , . . . , zT
N
]T . Applying equations (1a) and (1b), V(z) ≥ ∑N

i=1
θi
2 ‖zi(t)− x∗‖2 ≥ 0,

which is positive, radially unbounded, and equal to zero if and only if zi = x∗, i.e., when
consensus is achieved. The derivative of (15) along the closed-loop system (14) becomes

V̇ =
N

∑
i=1

(zi − x∗)T∇2 fi(zi)żi =
N

∑
i=1

zT
i ∇2 fi(zi)żi − x∗T

N

∑
i=1
∇2 fi(zi)żi (16)
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Since the graph is detail-balanced (Assumption 1), one has

N

∑
i=1
∇2 fi(zi)żi = −2c2

N

∑
i=1

∑
j∈Ni

exp((c3γiaij
∥∥zij

∥∥2
)s)

(γiaij
∥∥zij

∥∥2
)s

γiaijzij = 0. (17)

Therefore, (16) becomes

V̇ =
N

∑
i=1

zT
i ∇2 fi(z)żi = −2c2

N

∑
i=1

∑
j∈Ni

exp((c3γiaij
∥∥zij

∥∥2
)s)

(γiaij
∥∥zij

∥∥2
)s

γiaijzT
i zij. (18)

By applying Lemma A1 on (18) and multiplying by N2 on top and bottom, one gets

V̇ = −c2

N

∑
i=1

∑
j∈Ni

exp((c3γiaij
∥∥zij

∥∥2
)s)

(γiaij
∥∥zij

∥∥2
)s

γiaij
∥∥zij

∥∥2

= −c2
N2

N2

N

∑
i=1

∑
j∈Ni

exp((c3γiaij
∥∥zij

∥∥2
)s)(γiaij

∥∥zij
∥∥2
)1−s (19)

From Lemmas A2 and A3, (19) takes the form

V̇ ≤ −c2N2 exp

((
c3

N2

N

∑
i=1

∑
j∈Ni

γiaij
∥∥zij

∥∥2
)s)(

1
N2

N

∑
i=1

∑
j∈Ni

γiaij
∥∥zij

∥∥2
)1−s

. (20)

Since ∑N
i=1 ∑j∈Ni

γiaij
∥∥zij

∥∥2
= 2zT(LD ⊗ Im)z

V̇ ≤ −c2N2 exp
((

2c3

N2 zT(LD ⊗ Im)z
)s)( 2

N2 zT(LD ⊗ Im)z
)1−s

. (21)

Following the procedure in [20], Lyapunov functions V(z) and LD of the network are
related by the expression

V ≤ Θ̄
λ2(LD)

zT(LD ⊗ Im)z, (22)

After replacing (22) in (21) and rearranging some terms, one has

V̇ ≤ −

(
c3

2λ2(LD)
Θ̄

)1−s

sν2Tc
N2s exp

(
N−2s

(
c3

2λ2(LD)

N2Θ̄
V
)s)

V1−s. (23)

Finally, according to the definition of c3, (23) reduces to:

V̇ ≤ − 1
αsν2Tc

exp(αVs)V1−s, (24)

where α = N−2S. This corresponds to a fixed-time stable system with ν2Tc as UBST,
according to Proposition 1.

As can be seen, the DPTOSG problem is solved in a predefined time ν1Tc + ν2Tc.

Corollary 1. If Assumptions 2 and 3 hold and the topology corresponds to an undirected connected
graph, the DPTOSG problem is solved in predefined-time ν1Tc + ν2Tc under the controller (10) by
setting γ1 = γ2 = · · · = γN = 1.

Proof. In this case, LD = LG and the proof can be carried out in a similar fashion as shown
in Theorem 1. Hence, it is not included to avoid redundancy.
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Remark 2. Note that Algorithm (10) does not depend explicitly on the number of agents, contrary
to similar works in the literature, such as Lin et al. [30], Gong et al. [18], and Ma et al. [20].

4.2. Predefined-Time Reference Tracking—PTRT

We define a tracking error vector for agent i as e1
i = xi − xre f

i and since xre f
i is constant

∀t ≥ ν1Tc + ν2Tc, the derivatives ẋre f
i = ẍre f

i = 0m. Hence system (7) can be reformulated
in terms of the tracking error as

ė1
i (t) = vi(t) = e2

i i = 1, 2, . . . , N

ė2
i (t) = ui(t) + ∆i(t)

(25)

Now, it is possible to stabilize system (25) in a predefined time ν3Tc + ν4Tc using the
controller established in Proposition 2, as follows

ui=

{
0m, t ≤ ν1Tc + ν2Tc

[ui1, . . . , uim]
T , t > ν1Tc + ν2Tc

(26)

with

uik = −
α

β2q2−1
p2

2 Γ
(

1−β2q2
p2

)
p2ν4Tc

exp(α2|σik|p2)bσikeβ2q2 − ζikbσike0

−

2
1−q1/2

p1 Γ
(

1−q1/2
p1

)
p1ν3Tc

(q1 + p1

⌊
e1

ik

⌉p1
∣∣∣e1

ik

∣∣∣q1−1
) exp(

∣∣∣e1
ik

∣∣∣p1
)bσike0 (27)

where the sliding variable σik is defined as

σik = e2
ik +

⌊e2
ik

⌉2
+ 2

2
1−q1/2

p1 Γ
(

1−q1/2
p1

)
p1ν3Tc

 exp(
∣∣∣e1

ik

∣∣∣p1
)
⌊

e1
ik

⌉q1


1/2

and k = 1, . . . , m. Finally, the whole distributed predefined-time optimization process (i.e.,
DPTOSG + PTRT) is completed in a predefined time Tc. A basic graphical representation of
the proposed scheme can be found in Figure 1.

DPTOSG PTRT
xre f = x∗

t ≥ ν1Tc + ν2Tc

x = xre f

t ≥ ν3Tc + ν4Tc

Disturbances

Figure 1. Graphical representation of the proposed scheme.

5. Numerical Example

Consider a two-dimensional MAS with three agents whose dynamics are given by (7)
with xi = [xi1, xi2]

T , vi = [vi1, vi2]
T , ui = [ui1, ui2]

T and ∆i = [6 sin(i ∗ t), 6 sin(i ∗ t)]T . The
communication topology is described by the graph depicted in Figure 2. One can easily see
that Assumption 1 is fulfilled, with γ = [1.5, 1.2, 1.0]T .

The local cost function for each agent is defined as

fi(xi) = (xi1 − i)2 + (xi2 + i)2. (28)
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The global minimizer is x∗ = [2,−4]T , with F(x∗) = 10. The algebraic connectivity of
the graph is λ2(LD) = 0.7608, the maximum upper-bound strong-convexity parameter is
Θ̄ = Θi = 2, and in order to guarantee predefined-time stability, parameter c3 is fixed to
1.4 > Θ̄

2λ2(LD)
. The total predefined time is Tc = 12. The rest of the parameters for controller

(10) are defined as s = 0.3 and ν1 = ν2 = 1/12. The initial position of the agents xio in the
original system is randomly selected between [−5, 5] for both coordinates and, without any
loss of generality, the initial velocity vio = [0, 0]T . The initial condition of the virtual system
is zio = [0, 0]T . For controller (26), the parameters are kept identical for all agents and fixed
as p1 = p2 = 0.3, q1 = q2 = 1.5, α2 = β2 = 1, ζ i = [6, 6]T , ν3 = 3/4 and ν4 = 1/12.

2

31

0.5

0.61

0.8

Figure 2. Communication topology.

Figure 3 shows the trajectories of the virtual system (9) through time according
to the topology in Figure 2. For t ≤ ν1Tc, the controller leads all agents to their local
function’s minimizer regardless of the initial conditions. This is performed to guarantee
that ∑N

i=1∇ fi(zi) = 0m, which is an important requirement when designing ZGS algorithms
(see [31]). For t > ν1Tc, the controller forces all agents to achieve consensus and reach the
global function’s minimizer before the predefined time ν1Tc + ν2Tc.

0 0.5 1 1.5 2 2.5 3

Time

0

1

2

3

4

Agent 1 Agent 2 Agent 3

(a)

0 0.5 1 1.5 2 2.5 3

Time

-7

-6

-5

-4

-3

-2

-1

0

Agent 1 Agent 2 Agent 3

(b)

Figure 3. Response curves for the outputs of distributed optimal signal generator. (a) zi1 (b) zi2.

Figure 4 shows the behavior of the original MAS with respect to time. According to
the initial conditions, where velocities were chosen equal to zero, notice that all agents
remain in their initial position up to t = ν1Tc + ν2Tc, when the DPTOSG is taking place.
For t > ν1Tc + ν2Tc, agents obtain the optimal output signal and proceed to track it in
predefined time ν3Tc + ν4Tc in spite of the non-vanishing disturbance. Evidently, the
complete optimization process is performed before Tc. The trajectories described by the
agents in a 2-D plane can be found in Figure 5. The quasi-linear displacement toward
the optimum indicates the effectiveness of the disturbance rejection. Finally, the behavior
of system (25) is depicted in Figure 6. Note that both tracking errors in position (a) and
velocity (b) are zero before Tc regardless of the disturbance.
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0 2 4 6 8 10 12

Time

-4

-2

0

2

4

6

Agent 1 Agent 2 Agent 3

(a)

0 2 4 6 8 10 12

Time

-6

-4

-2

0

2

4

6

Agent 1 Agent 2 Agent 3

(b)

Figure 4. Evolution of the position of the agents in the presence of matched disturbances with respect
to time. (a) xi1 (b) xi2.

-4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Agent 1 Agent 2 Agent 3

Figure 5. Phase plane where ◦ (Initial state), × (Final state), and • (Global optimum).
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4 6 8 10 12

Time

0
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6
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10

Agent 1 Agent 2 Agent 3

(a)

4 6 8 10 12

Time

0

2

4

6

8

10

Agent 1 Agent 2 Agent 3

(b)

Figure 6. System evolution with respect to time in the presence of matched disturbances. (a) Norm of
the tracking error in position. (b) Norm of the tracking error in velocity.

6. Conclusions and Future Work

This paper has introduced a robust predefined-time control framework to solve the
problem of leaderless distributed optimization for second-order MAS under detail-balanced
graphs. The control framework presents two main steps. Initially, a first-order Distributed
Predefined-time Optimal Signal Generator is designed to provide optimal reference outputs
for the agents. Agents are not required to share information about their gradients or
Hessians during this step, which is an essential difference compared to several algorithms
found in the literature. Secondly, the outputs obtained in the first step are tracked in a
predefined time using a robust sliding-mode controller. This scheme leads all agents to the
global function’s minimizer, even in the presence of matched disturbances. Future work
will focus on relaxing the strongly-convex condition and the extension to directed graphs
and high-order systems.
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Appendix A. Useful lemmas

Lemma A1 ([32]). For a general undirected graph G with weighted adjacency matrix A = (aij) ∈
RN×N and for given vectors xi, yi ∈ Rm, it follows that

N

∑
i=1

∑
j∈Ni

aijxT
i (yi − yj) =

1
2

N

∑
i=1

∑
j∈Ni

aij(xi − xj)
T(yi − yj).

Lemma A2. Let
f (x) = exp

(
ksx2s

)
x2(1−s).

If k ≥ 0 and 0 < s < 0.5, then f (x) is convex for x > 0.

Proof. The second derivative of f (x) with respect to x produces:

d2

dx2 f (x) = (1− 2s)(2− 2s) exp
(

ksx2s
)

x−2s + 2kss(2− 2s) exp
(

ksx2s
)
+ ∆,

where ∆ = 2kss exp(ksx2s) + 4k2ss2x2s exp(ksx2s). Notice that ∆ ≥ 0 for k, s, x ≥ 0. By
fixing 0 < s < 0.5, the convexity of f (x) is guaranteed, since d2

dx2 f (x) > 0 for x > 0.

Lemma A3. Let f : R → R be convex with f (0) = 0 and a set of N2 numbers vij with
i, j ∈ {1, . . . , N}. Let,Mi ⊆ {1, . . . , N} be an arbitrary index set. Then,

1
N2

N

∑
i=1

∑
j∈Mi

f (vij) ≥ f

(
1

N2

N

∑
i=1

∑
j∈Mi

vij

)
.

Proof. First, set ṽij = vij if j ∈ Mi and ṽij = 0 otherwise. Then,

1
N2

N

∑
i=1

∑
j∈Mi

f (vij) =
1

N2

N

∑
i=1

N

∑
j=1

f (ṽij)

since f (ṽij) = 0, ∀j /∈ Mi. Note that ∑N
i=1 ∑N

j=1 f (ṽij) is a weighted sum of N2 terms with
equal weights 1/N2. Hence, convexity of f (•) implies

1
N2

N

∑
i=1

N

∑
j=1

f (ṽij) ≥ f

(
1

N2

N

∑
i=1

N

∑
j=1

ṽij

)
= f

(
1

N2

N

∑
i=1

∑
j∈Mi

vij

)
by using Jensen’s inequality [28] and ṽij = 0, ∀j /∈ Mi.
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