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Abstract: The seat suspension has a significant influence on riding comfort in many practical applica-
tions, such as heavy duty vehicles, military vehicles, and high-speed crafts. This paper proposes a
seat suspension equipped with a variable equivalent inertance-variable damping (VEI–VD) device
and a novel semi-active vibration control strategy. The VEI–VD device can control its equivalent
inertance and damping by controlling two external resistors in its electric circuit. Especially, the
VEI part of the device can store and release vibration energy via the inside flywheel, which enables
the seat suspension to have a four-quadrant controllable capability in the available force–velocity
diagram, similar to an active system. First, the dynamic model of the VEI–VD device is built, and
a prototype is developed and tested to identify the model parameters and verify its characteristics.
Then, a semi-active vibration control method is proposed for the VEI–VD seat suspension. The control
method uses a sliding mode controller to acquire the desired control force for reducing vibration;
then, according to the desired force and system states, the VEI–VD device is tuned by a force-tracking
scheme to generate a real force. In the numerical validation, the vibration transmissibility of VEI–VD
seat suspension around its natural frequency is tested with different states. The effectiveness of
force-tracking control strategies for different types of suspensions is verified. In the random excitation
test, the root means square acceleration of the VEI–VD seat is reduced by 30.72% compared with a
passive seat. The VEI–VD seat suspension shows great potential in applications.

Keywords: semi-active control; seat suspension; variable equivalent inertance; variable damping;
four-quadrant controllable capability

1. Introduction

Low-frequency seat vibration leads to unsafety and uncomfortableness when the
vehicle travels on uneven roads [1]. The vibration caused by road conditions is finally
transferred through the chassis and seat to the human body; therefore, research on suppress-
ing seat suspension vibration is essential. Researchers have conducted vibration control
experiments using passive, semi-active, and active seat suspensions. A passive suspen-
sion applied a spring design with negative stiffness [2], and researchers have carried out
multi-criteria optimization for passive seat suspension [3]. As an advanced technology in
passive suspension system, air suspension system is designed to improve the vehicles’ ride
comfort [4]. However, the passive seat suspension cannot provide a controllable damping
force; its vibration reduction performance is limited. Besides, active seat suspensions are
hard to be widely applied [5] because of their high price, massive energy consumption, and
complex system. Hence, the novel structure [6,7] and control strategy [8–10] of semi-active
seat suspension has become the focus of the research in the vibration reduction field.

Generally, damping, stiffness, and inertance are considered the basic elements in
vibration suppression suspension [11,12]. Thus, the semi-active seat suspension with
variable damping(VD) [8,13], variable stiffness(VS) [14], and variable inertance (VI) [15]
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capacity has attracted a large number of researchers to its in-depth study. Because the
semi-active control system can only output the mechanical energy [16], similar to passive
systems, thus it only consumes energy. The output mechanical energy of the active control
system can come from electric energy [17], hydraulic energy [18], and other forms; it can
output positive work. The study of whether there is an actuator that can achieve the effect
of active control in the form of a semi-active device that can output negative power becomes
a new direction of research [19]. It can rely on the advantages of the semi-active control
system, low cost, and simple control to achieve the performance of an active control system
while avoiding the trap of high cost and high energy consumption. According to this idea,
the variable equivalent inertance (VEI) device based on electromagnetic variable damping
is proposed [20].

The inerter has potential in the field of vibration control. The inertance is the mechani-
cal property of an inerter, which is a two-terminal mechanical device, like the spring and
damper [16]. The force generated by the inerter is proportional to the relative acceleration
of its two terminals [21]. The passive mechanical networks are investigated and applied
in vehicle suspension by employing the inerters, springs and dampers [22,23]. Mean-
while, in [23], a novel semi-active variable inertance device is proposed, which replaces
the fixed-inertia flywheel with a controllable-inertia flywheel. The shock absorber with
variable damping and inertance characteristics is proposed to improve the performance
of the seat suspension [24,25]. And according to the analogy between mechanical and
electrical systems [26], electrical characteristics of resistance, inductance, and capacitance
correspond to the mechanical components of damping, stiffness, and inertance [27]. An
electromagnetic variable inertance and damping seat suspension [28] is proposed, and
Ning et al. also proposed a semi-active variable equivalent stiffness and inertance device
implemented by an electrical network [29].

Because the vibration energy of the suspension can be stored in the inertial element
of the VEI device, it can release the energy by appropriate control strategy. The force
generated during the release of inertial energy can output positive power, resulting in
the effect of the active actuator. According to this, a novel concept of variable equivalent
inertance-variable damping (VEI–VD) seat suspension is proposed in this paper, and a VEI–
VD device is designed and tested. The VEI–VD device consists of VEI and VD parts. The
VEI part stores the energy and use the energy to generate control force; and the VD part can
provide conventional semiactive control when the stored energy is not sufficient. Therefore,
the VEI–VD seat suspension can achieve the active system’s excellent performance while
keeping the semi-active system’s advantage of low energy consumption.

The main contributions of this paper are as follows:

• A novel concept of the VEI–VD device is proposed and tested experimentally to verify
its controllability.

• A novel semi-active force tracking controller is designed to achieve better seat vibra-
tion control.

The rest of the paper is organized as follows: Section 2 proposes a novel concept
of VEI–VD device and establishes its dynamics model; Section 3 presents a VEI–VD seat
suspension prototype; and the force tracking performance of the novel device is discussed
in Section 4; Section 5 presents the validation on vibration isolation performance of the
VEI–VD seat suspension.; Finally, Section 6 presents the conclusions of this research.

2. VEI–VD Seat Suspension System
2.1. Motivation

Active seat suspension has the disadvantage of being bulky and expensive, and the
passive system has limited performance. Thus, semi-active seat suspension has been widely
studied in vibration reduction. Researchers have developed a kind of VEI device consisting
of a VD device and two inertial components. By varying the damping of the VD device,
the equivalent inertance of the VEI device is controllable in real-time. The VEI device can
store energy in the flywheel and release it to suppress vibration. An in-depth study of
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the VEI device shows that this part of the energy released from the flywheel can output
positive power, similar to the energy characteristic of the active control system. However,
the amplitude of energy stored in the flywheel is unstable, which may lead to significant
vibration at low frequencies. Therefore, a VD device is applied to assist the VEI device,
forming a variable equivalent inertance-variable damping (VEI–VD) suspension.

The VEI–VD device, combined with the conventional passive suspension, forms a
VEI–VD seat suspension, as shown in Figure 1, where M is the mass of the body and seat; K
and C are the spring stiffness and equivalent damping generated by friction, respectively;
Zs and Zv are the displacements of the seat and vehicle cab floor, respectively.
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Figure 1. The model of VEI–VD seat suspension.

2.2. System Analysis

The concept of VEI–VD seat suspension is a novel system that uses the positive power
generated by the VEI device and cooperates with the VD device to produce an effect
similar to the active control system. In addition, it takes into account the advantages of
semi-active control seat suspension, such as low energy consumption, simple structure,
and high reliability.

The VEI device consists of a ball screw, a rotary VD device, and a flywheel, as shown
in Figure 2. C1 is the damping of the VD device. J is the moment of inertia of flywheel. Zv
and Zs are the displacement of two terminals, and α, β are the rotation angle of ball screw
and flywheel, respectively. The function of the ball screw is changing the reciprocating
motion of vibration into rotary motion, and by varying the damping of the VD device,
the equivalent inertance of the VEI device is controllable in real-time. In the ideal status,
when the damping of the VD device is zero, the flywheel is in a state of free rotation and
is disconnected from the ball screw. When the damping of the VD device is infinite, the
flywheel considers that it is in a state of fixed connection with the ball screw. Therefore,
it can be considered that the energy output of the whole device will change when C1, the
damping of the VD device in the VEI device, is adjusted. Generally, the harvested vibration
energy by the ball screw can be stored in the flywheel of the VEI device. And, the energy
stored in the flywheel can be released under certain circumstances. The process of releasing
energy can be tuned through appropriate control strategies to cope with vibrations.
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The dynamic model of the VEI device can be built with the consideration of the
flywheel [15]:

C1

( .
α−

.
β
)
= J

..
β, (1)

α = R(Zs − Zv), (2)

where R is the transformation ratio of the ball screw, and R = 2π/d, the d is the lead of the
ball screw.

The force generated by the VI device:

Fb = R2C1(
.
α−

.
β), (3)

The VD device uses a ball screw to convert the reciprocating motion of vibration into
rotary motion, and the rotation angle of the ball screw is α also. The C2 of the VD device
can be adjusted to change the output of the VD device. In the VD device, the force is:

FD = R2C2
.
α, (4)

The VEI–VD device is composed of the VEI device and VD device. Thus, the output
force of the VEI–VD device:

Fout = Fb + FD, (5)

where Fb, FD, and Fout are the force generated by the VEI, VD and VEI–VD device in theory,
respectively. This model analyses the device’s controllability and simplifies the nonlinear
factors in the system, such as the inherent inertia of the ball screw and the friction force
of the system. The subsequent experiment tests will determine these nonlinear factors to
supplement the model.

According to the above dynamic equation, we can get the device admittance:

Yi = R2(C1 + C2)−
R2C1

2

J2ω2 + C1
2 +

R2 JC1
2

J2ω2 + C1
2 jω, (6)

where R2(C1 + C2)− R2C1
2

J2ω2+C1
2 represents the equivalent linear damping, and R2 JC1

2

J2ω2+C1
2 is

the equivalent linear inertance of device.
In order to analyze the frequency characteristics of the VEI–VD device, we apply a set

of parameters to Yi, where R = 2π/0.016, J = 160× 10−5 kgm2, Cmin and Cmax are the mini-
mum and maximum damping of the variable dampers, respectively. C1 and C2 are assumed
to be controllable within Cmin = 2.64× 10−3 Nms/rad to Cmax = 1.5× 10−2 Nms/rad, the
VEI and VD devices use electromagnetic variable dampers of the same design, and the
damping value can be changed from minimum to maximum.

The Figure 3 shows that when the C2 is set with its minimum value and C1 varies
in its controllable range, with the increasing of C1, the equivalent linear inertance of VEI–
VD is increasing. When the damping C1 is constant, the equivalent inertance decreases
with the increase of ω. The frequency in the X-axis is 2π/ω. The reason is that, in the
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traditional inerter, the rotation of flywheel in the inerter will generate the inertance force,
while in the proposed device, the flywheel is driven by the controllable damping torque,
and the flywheel needs time to accelerate to a high velocity. When the frequency of the
reciprocating rotation is high, the flywheel has not time to accelerate to a high velocity,
thus, the equivalent inertance of the device is low. In addition, the equivalent linear
damping of the VEI–VD device is determined by VEI and VD devices. Obviously, with
the increase of the C2, the equivalent linear damping is increasing and the Figure 4 shows
that the equivalent damping of the device is controllable with C1. Thus, the equivalent
linear damping will also increase with the increase of the two dampers. The results of the
simulation indicate that the inertance and damping of the VEI–VD device can be controlled
by varying the magnitude of C1 and C2.
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3. VEI and VD Device Test
3.1. Prototype of VEI and VD Device

An electromagnetic VD device using a permanent magnet synchronous motor (PMSM)
has been proposed in [30]. Due to the excellent controllability of the electromagnetic
damping device (EMD) demonstrated in the experiments, the VEI–VD device adopts two
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identical PMSM (MSMD022G1S), and the inertial element of the VEI device is a flywheel.
In the VEI device, the ball screw is connected to the shaft of the motor through a coupling,
and the flywheel is attached to the shell of the PMSM. The flywheel rotates with the shell of
the PMSM. The wire of the PMSM is led out through the conductive slip ring for its control.
The prototype design is shown in Figure 5.
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A real-time variable resistance circuit is designed to realize the function of the VD
device [29], which is shown in the Figure 6. A three-phase rectifier is used to convert the
three-phase electricity of PMSM into direct current. The PMSM and rectifier are equivalent
to a voltage source ei, an internal resistor Ri, and an internal inductor Li. The internal
inductance Li is ignored to simplify the modelling [30] because the seat vibration energy is
mainly at low frequency where the inductor can be treated as a conducting wire. At the
same time, a controller (NI My-Rio 1900) is used to control the external resistance. Thus,
the magnitude of resistors connected to the circuit can be controlled, achieving the purpose
of controlling the resistance of the whole circuit.
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Theoretically, the damping of the VD device can be changed by controlling the total
resistance of the PWSM circuit [30]. The generated voltage is proportional to the rotary rate
of the PMSM ω with a voltage constant Ke,

ei = Keω, (7)

The current ip will make the PMSM generate a torque,

T = Kiip = Ki
ei

Re + Ri
=

KiKe

Re + Ri
ω, (8)
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where Ki and Ke are the voltage and current constant of PMSM, respectively. It is generally
believed that Ki = Ke.

Then, the controllable rotary damping of the VD device is:

CT =
KiKe

Re + Ri
, (9)

where CT is the real-time damping of the VD device; Ri, Re are the internal resistance of
PMSM, external resistance, respectively.

3.2. Test Design

The time-domain test can effectively characterize the damping and inertance properties
of the VEI–VD device, and verify the accuracy of the model. According to the time-domain
test, it can be used to develop the model of VEI–VD. The time-domain test bench is shown
in Figure 7, where the servo motor driven (MSMF082L1A1) electric cylinder provides the
power source at the bottom of the bench, a laser displacement sensor (KathMatic 200 mm)
is applied to measure the displacement of device, and a force sensor (Transcell FAK-250 kg)
was installed on the upper part of the test bench. In addition, NI My-Rio 1900 is the control
center of the whole test system, and its tasks include controlling the servo motor rotating
following a set curve, controlling the resistance change of the EMD circuit, receiving voltage
signals of the force sensor and displacement sensor and converting them into corresponding
physical quantities.
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3.3. Time-Domain Characteristic

The VEI and VD devices were verified separately. A sine excitation source x = A ∗
sin(2π f t) is applied to the device, where A = 0.01 m, f = 1.5 Hz. In the test, the branch
resistors Re are 0, 3, 8, 15, 50 Ohm, respectively.

In the experiments, it was found that the main uncontrollable factors affecting the VEI
device included the friction between the device parts and the inherent inertial of the shaft
and PMSM itself.

Fj1 = R2 J1(
..

Zs −
..

Zv), (10)

Fr1 = fr1sat
( .

Zs −
.

Zv

)
, (11)
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where the sat
( .

Zs −
.

Zv

)
is defined:

sat
( .

Zs −
.

Zv

)
=


1

( .
Zs −

.
Zv

)
> τ

1
τ (

.
Zs −

.
Zv) − τ ≤

( .
Zs −

.
Zv

)
≤ τ

−1
( .

Zs −
.

Zv

)
< −τ

, (12)

where τ can be determined according to the fr1.
Thus, the output force of the VEI device can be obtained:

Fb = R2C1(
.
α−

.
β
)
+ Fj1 + Fr1, (13)

Figure 8 shows the characteristics of the VEI device. The VEI output force and the dis-
placement exhibit negative stiffness characteristics, and when the total resistance increases,
the negative stiffness decreases, which means that the inertance of the VEI device decreases.
The result indicates the method of changing the external resistance can adjust the inertance
of the VEI device.
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For the VD device, the friction between the device parts and the inherent inertial of
the ball screw itself affect the system.

Fj2 = R2 J2(
..

Zs −
..

Zv), (14)

Fr2 = fr2sat
( .

Zs −
.

Zv

)
, (15)

The output force of the VD device is:

FD = R2C2
.
α + Fj2 + Fr2, (16)

Figure 9 shows that the variable damping characteristic of the VD device under
different external resistance. It is seen that the enclosed areas of the force–displacement
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loops increase with the increasing of external resistance, which means that the damping
coefficient can be controlled by changing the branch resistor. The results of the VEI–VD
characteristic curve show that the device can use the controller to select appropriate branch
resistors to adjust the damping and inertance.
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A series of parameters of VEI–VD device are determined through the experiment, as
shown in Table 1. After the optimization of the system, the uncontrollable output force of
the VEI–VD device is:

Fr = fr1sat
( .

Zs −
.

Zv

)
+ fr2sat

( .
Zs −

.
Zv

)
, (17)

Fj = R2 J1(
..

Zs −
..

Zv) + R2 J2(
..

Zs −
..

Zv), (18)

where fr1, fr2, are the friction coefficient of VEI and VD device respectively, and Fr is friction
force of the VEI–VD device; J1, J2, are the inherent moment of inertia of VEI and VD device
respectively, and Fj are moment of inertia force of the two devices.

Table 1. Parameters of the VEI–VD device.

Semiactive Device Parameter Symbol Value

VEI device
Friction coefficient fr1 35 N

Inherent moment of inertia J1 200× 10−7 kgm2

Moment of inertia of flywheel J 160× 10−5 kgm2

Friction coefficient fr2 30 N
Inherent moment of inertia J2 150× 10−7 kgm2

VD device Constant of PMSM Ki(Ke) 0.41 Nm/A(Vs/rad)
Internal resistance of PMSM Rr 10.5 Ohm

The output force of the VEI–VD device is expressed as:

Fout = FD + Fb, (19)
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4. Controller Design
4.1. Control Scheme

For the VEI–VD seat suspension system, the semi-active force tracking control of the
control scheme is adopted. The flow chart of the control scheme is shown in Figure 10. The
R1 and R2 are the branch resistors of the VEI and VD device, respectively.
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4.2. Sliding Mode Control

The active control strategy adopts the sliding mode control. The VEI–VD seat suspen-
sion model can be built as:

M
..

Zs = −K(Zs − Zv)− Fout, (20)

where M is the mass of the body and seat; K is the stiffness of the spring; Fout is the
generated VEI–VD device force.

We assume an active seat suspension for designing the controller:

M
..

Zs = −K(Zs − Zv)− fdes − Fj − Fr, (21)

where fdes is the desired control force, which will be provided by the VEI–VD seat suspension.
The tracking error of the controller is [30]:

e = Zdes − Zs, (22)

where Zdes is the desired displacement, which is assumed as zero.
Therefore, the sliding surface is defined as:

s = ce +
.
e, (23)

where c > 0.
The derivative of the sliding surface is:

.
s =

K(Zs − Zv) + fdes + Fj + Fr

M
+ c

.
e, (24)

Considering the Lyapunov functions as:

L =
1
2

s2, (25)

So, its derivative is:

.
L = s

.
s = s ∗

[K(Zs − Zv) + fdes + Fj + Fr

M
+ c

.
e
]

, (26)
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Therefore, the sliding mode controller can be designed as:

fdes = −K(Zs − Zv)− Fj − Fr − γsgn(s)−Mc
.
e, (27)

where γ > D, the D is disturbance upper bound.
Last, we can get:

.
L =

−sγsgn(s)
M

= −γ | s |
M

≤ 0, (28)

When the
.
L ≡ 0, s ≡ 0, The system becomes stable. And as time goes on, s converges

and the system is stable.
In the traditional SMC, the chattering phenomenon will happen because the sign

function in the controller may lead to a significant change of control force. Thus, to avoid
the chattering phenomenon [30], sgn(s) is replaced by sat(s) in the implementation of the
controller. When the sign function is replaced by the saturation function, the convergence
speed of the controller may be influenced because the force in the saturation term needs
time to reach the settled saturation value. And, we have done further discussion of the
saturation function.

sat(s) =


1 k > 1

∆

ks k = 1
∆

−1 k > 1
∆

, (29)

where ∆ is the “boundary layer”. The application of the boundary layer can be further
deepened. Gohari et al. propose a novel strategy nominated as a self-adjusting boundary
layer in order to prevent the occurrence of the chattering phenomenon [10].

And, we can get a result:

.
L =

−sγsat(s)
M

=

{
− γ|s|

M ≤ 0 k > 1
∆ ,

− kγs2

M ≤ 0 k = 1
∆

, (30)

4.3. Force Track Control Strategy

The traditional semi-active control strategy of VEI and VD device may have superiority
in some states; the semi-active force tracking control scheme of VEI and VD device is shown
in Figure 11.

Firstly, the VD device is assigned to track desired force:

CVD =
fVDdes(
R2 .

αVD
) , (31)

where CVD is the assigned damping of the VD device, the fVDdes is the desired force of its
ideal controllers, and the

.
αVD is the shaft rotary speed of the VD device.

Similarly, the traditional VEI device is assigned to track desired force:

CVEI =
fVEIdes(

R2
( .

αVEI −
.
β
)) , (32)

where CVEI is the assigned damping of the VEI device, the fVEIdes is the desired force of
its ideal controllers, and the

.
αVEI is the shaft rotary speed of the VEI device. the ideal

controllers are resembling the sliding mode controller in the Section 4.2. The controller
scheme is shown in the Figure 11.
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For VEI–VD seat suspension, an appropriate force-tracking control strategy is the most
important part. How to use the VEI device to collect vibration energy, release the collected
energy, and use the VD device to suppress vibration is the focus of the tracking control
strategy. This paper proposes a semi-active control strategy based on the energy storage
characteristics of the VEI–VD seat. The flow chart of the execution process of the control
strategy is shown in Figure 12. The vibration energy of the seat suspension is stored in the
flywheel of the VEI device first. Then, the stored positive power is released at the right
moment to suppress the vibration of the seat suspension, which can effectively improve
the vibration control performance.

Step 1: The VEI device is working, the energy is stored:

C2 = Cmin , (33)

C1 =
( fdes − f1min)(

R2
( .

α−
.
β
)) , (34)

f1min = CminR
.
α, (35)

Then, the value of C1 needs to be judged, when C1 ≤ Cmin, the C1 = Cmin, and when
Cmin < C1 < Cmax, the C1 = C1; however, C1 > Cmax, the VEI device is insufficient, then,
the Step 2 starts execution.

Step 2: C1 of the VEI device is maximum, the VD begins to work; the energy is released:

C1 = Cmax, (36)

C2 =
( fdes − f2max)(

R2 .
α
) , (37)

f2max = CmaxR2
( .

α−
.
β
)

, (38)
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when C2 ≤ Cmin, the C2 = Cmin, when Cmin < C2 < Cmax, the C2 = C2, and when
C1 > Cmax, the C2 = Cmax.

Step 3: The basic principle of the electromagnetic damper is used, and the appropriate
external resistance value is calculated.

R1 =
Ki ∗ Ke

C1
− Ri, (39)

R2 =
Ki ∗ Ke

C2
− Ri, (40)
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5. Numerical Validation
5.1. Feasibility Test

To further verify the feasibility of VEI–VD seat suspension, the relevant tests were
carried out. The first thing to do is to determine the full working range of the VEI–VD
seat suspension. In the test, the suspension is divided into four states, including (1).the
external resistance of the VEI–VD device is connected to 50 Ohm, (2).the VD device is
connected to 0 Ohm, and the VEI is connected to 50 Ohm, (3).the VEI device is connected to
0 Ohm and the VD is connected to 50 Ohm, (4).the VEI–VD device is connected to 0 Ohm.
A sine source x = A ∗ sin(2π f t) is applied, A = 0.02 m, f = 1.5 Hz, the acceleration
vibration transmissibility of the four states near the resonance point of the system is
tested. The results, Figure 13, tests show that with the change of the system state, the
acceleration transmissibility of the suspension is changing, and it implies that the VEI–VD
suspension adopting the method of changing the external resistance is feasible in terms
of controllability.
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The sinusoidal source is used to test sliding mode control and semi-active force
tracking control strategies. The performance of force tracking control strategies is shown
in Figure 14, which shows the desired force and the force of the VD, VEI, and VEI–VD
suspension systems. The force of the VEI–VD suspension seems to have not tracked the
desired one well, because the stored energy of VEI equipment is unstable. If there is
an additional active power to supply the desired power totally, the system can have its
best performance. How to continue to increase this energy is the focus of the next step.
The proposed system can control the VEI–VD device to track a part of the desired force,
and hence, generate a beneficial force to improve the seat suspension’s performance in
vibration isolation.
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The simulation experiment of VEI and VD device was carried out, Figure 15 shows
that the VD device can only achieve a limited region in the second and fourth quadrants of
the available force-velocity diagram, while the VEI device can achieve mechanical control
within the four quadrants of the available force-velocity diagram. However, the VEI–VD
device loses a part of positive power compared with VEI device because the VD device
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plays a part. More essentially, from the energy point of view, both VEI device and VEI–VD
device can store energy.
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5.2. Sinusoidal Excitation Test

The test employs four different frequencies sinusoidal excitation to verify the per-
formance of the three control methods in Figure 16. The excitations are defined as
x = A ∗ sin(2π f t), where A = 0.02 m and f1 = 1.0 Hz, f2 = 1.5 Hz, f3 = 2.0 Hz, f4 = 2.5 Hz.
The f2 approximates the natural frequency of the seat suspension. The test can estimate the
optimal vibration isolation range of the three seat suspensions. Figure 16 shows that VD,
VEI, and VEI–VD seat suspension have obvious advantages compared with passive seat
suspension. The Table 2 shows the acceleration root mean square (RMS) under different
circumstances, which directly indicates that VD, VEI, and VEI–VD seat suspension have
their own advantages under different frequencies. When the frequency is lower than 1.5 Hz,
the VEI–VD has the best vibration isolation performance, and with the increasing of the
excitation frequency, the VEI device gradually shows advantages compared with VEI–VD.
However, the VD devices show superior performance when the excitation frequency is
higher than the 2.5 Hz. The sinusoidal excitation test shows that the three devices and
their control methods have different advantages under different excitation frequencies. In
the vehicle seat excitation, the vibration below 2.0 Hz accounts for the majority, thus the
comprehensive performance of VEI–VD equipment is superior.
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Table 2. The RMS acceleration reduction of different sinusoidal excitation.

Device 1.0 Hz 1.5 Hz 2.0 Hz 2.5 Hz

Passive — — — —
VD 10.72% 50.67% 51.69% 49.37%
VEI 27.64% 60.13% 48.89% 40.97%

VEI–VD 33.07% 59.13% 35.87% 22.56%

5.3. Radom Vibration Test

For evaluating its time-domain performance, a typical road condition is used to test
seat suspension performance. The displacement of the sprung mass of the quarter-car
model is taken as the vibration input to the seat suspension.

The seat acceleration comparison of the four kinds of seat suspensions is shown in
Figure 17; it shows the high magnitude peak of the acceleration is successfully reduced.
The frequency analysis in Figure 18 indicates that all seat suspensions can isolate vibration
in frequencies higher than 4.0 Hz. When the frequency is lower than 3 Hz, the vibration
isolation performance of the VEI–VD seat suspension with semi-active control is obviously
better than that of the other.

Based on ISO 2631-1, the frequency weighted-root mean square (FW-RMS) acceleration
and the fourth power vibration dose value (VDV) are obtained to evaluate the seat suspen-
sions’ performance. In Figure 19, the reduction of the FW-RMS indicates the improvement
of ride comfort, and the VDV values show that the VEI–VD seat suspension has a superior
performance in the shock vibration. Table 3 shows the performance improvement of the
three semi-active suspensions compared with the passive suspension. From the effect of the
random excitation test, the performance effect of VEI–VD seat suspension is better than that
of VD and VEI seat suspension, which verifies the views in 5.2 Sinusoidal excitation test.
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Table 3. Vibration reduction compared to passive.

Device FW-RMS VDV RMS

Passive — — –
VD 21.57% 17.21% 23.28%
VEI 25.91% 21.41% 24.62%

VEI–VD 30.97% 28.29% 30.72%

Figures 20 and 21 show the damping of the VEI–VD device and the external resistance
of the circuit. It applied that the damping of the VEI–VD device can be controlled by
controlling the resistance value of the external resistor, to change the equivalent inertance
and equivalent damping of the VEI–VD device, then, the output force of the VEI–VD seat
suspension can be controlled.
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devices provided power to the outside. In VEI and VEI–VD seat suspensions, when the
power of them is less than zero, it means that a part of the mechanical energy of seat
vibration is stored in the flywheel. When the power is greater than zero, it means that
the stored energy in the flywheel is converted into mechanical energy and suppresses the
vibration of the suspension.
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5.4. Bump Test

In addition, the vibration control performance of these seat suspensions under bump
excitation is evaluated. When a vehicle passes a bump, the displacement of its sprung mass
is used as the vibration input for these seat suspensions.

The Figure 23 shows that acceleration under bump excitation. The peak-to-peak
acceleration difference of the VD, VEI and VEI–VD seat is reduced by about 21.33%, 25.43%,
and 29.26%, respectively. Furthermore, the VEI–VD seat’s acceleration using the semi-active
control strategy at the second and third vibration peaks is better than that of the VD and
VEI seat, indicating that the designed VEI–VD device has a better vibration control effect
on the seat.
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6. Conclusions

This paper has proposed a VEI–VD device and a semi-active control strategy to verify
its performance in vibration control. In the proposed device, the VEI part uses a flywheel
as an inertance element, and both VEI and VD parts use EMDs to realize damping change.
The dynamic model of the device has been proposed and verified with experiments. A
semi-active control strategy that considers the energy storing and releasing of VEI–VD
device has been designed to suppress the seat vibration. Under the random excitation
test, the vibration reduction of VD, VEI, and VEI–VD seat compared with passive seat
are 23.68%, 24.62%, and 30.72%, respectively. And in the bump test, the peak-to-peak
acceleration is reduced. All tests indicate that the novel semi-active control strategy of
seat suspension equipped with VEI–VD device has greater potential compared with other
traditional semi-active control strategies. At this stage, we have developed and tested the
prototype of the VEI–VD device, and its vibration control performance has been validated
based on its model. However, the time-delay influence on its performance has yet to
be studied, and a seat suspension with the proposed device needs to be built to verify
its actual vibration control performance. In future work, we will optimize the system
parameters of the VEI–VD device, improve the control method, and apply the device in
practical application.
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