
Citation: Ozkan, M.; Demirci, Z.;

Aslan, Ö.; Yazıcı, A. Safety

Verification of Multiple Industrial

Robot Manipulators with Path

Conflicts Using Model Checking.

Machines 2023, 11, 282. https://

doi.org/10.3390/machines11020282

Academic Editor: Huosheng Hu

Received: 4 January 2023

Revised: 26 January 2023

Accepted: 5 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Safety Verification of Multiple Industrial Robot Manipulators
with Path Conflicts Using Model Checking
Metin Ozkan 1,*, Zekeriyya Demirci 1, Özge Aslan 2 and Ahmet Yazıcı 1

1 Department of Computer Engineering, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
2 Department of Computer Engineering, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey
* Correspondence: meozkan@ogu.edu.tr

Abstract: Software development for robotic systems is traditionally performed based on simulations,
manual code implementation, and testing. However, this software development approach can cause
safety issues in some scenarios, including multiple robots sharing a workspace. When different robots
are executing individual planned tasks, they may collide when not adequately coordinated. Safety
problems related to coordination between robots may not be encountered during testing, depending
on timing, but may occur during the system’s operation. In this case, formal verification methods can
provide a more reliable means to ensure the safety of robotic systems. This paper uses the formal
method of model checking for the safety verification of multiple industrial robot manipulators with
path conflicts. We give comparative results of two model-checking tools applied to a system with
two robot manipulators. Whole workflows, from requirement specification to testing, are presented.

Keywords: industrial robot; formal verification; model checking; model-driven engineering

1. Introduction

Multiple robot manipulators that carry out independent tasks in a shared workspace
need a solution to avoid mutual collisions. The risk of collision is an issue in various
robotic fields, including industrial and service applications. However, robotic system
software, which requires the evaluation of such issues, is traditionally developed by robotic
system experts. Moreover, manual tests are carried out both in the real system and in the
simulation environment. Therefore, the verification and validation (V&V) of the system
software depend entirely on the experience and attention of the experts. If the V&V of
the system software is not conducted adequately, overlooked system errors can lead to
downtime for extremely expensive production plants.

Although software plays an ever-increasing role in robotics, current software engi-
neering practices are perceived as insufficient, often leading to error-prone software that
is hard to maintain and cannot easily evolve [1]. Moreover, research and industry have
tried to propose many model-driven solutions to engineer the software of robotics systems.
Casalaro et al. [2] provide a map of software engineering research in MDE for robotic
systems since there is no systematic study of state-of-the-art developments in model-driven
engineering (MDE) for robotic systems. Robotic systems are advanced cyber-physical
systems (CPS) composed of an intricate blend of hardware, software, and environmental
components. Software engineering can be very beneficial in the CPS domain; however,
it has traditionally been considered an auxiliary concern of robotic system construction.
On the other hand, software engineering technologies and methodologies can facilitate
the development of robotic systems by adopting a systematic, disciplined, quantifiable
approach in each phase of a software application’s lifespan, from requirements analysis,
system architecture definition, and component design to code implementation, testing, and
deployment [3]. Some studies provide roboticists with methods and tools to easily create
and validate software for robotic systems. Miyazawa et al. [4] and Ye et al. [5] propose a

Machines 2023, 11, 282. https://doi.org/10.3390/machines11020282 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020282
https://doi.org/10.3390/machines11020282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5589-2032
https://doi.org/10.3390/machines11020282
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020282?type=check_update&version=3

Machines 2023, 11, 282 2 of 22

set of constructs suitable for modeling robotic applications and supporting verification via
model checking and theorem proving. Their goal is to support roboticists in writing models
and applying modern verification techniques using a language familiar to them. With the
use of formal verification methods together with software engineering approaches, robotic
systems can be less error-prone and more reliable, and the dependency on human skills
can be eliminated.

Although formal verification methods have been discussed in the software domain for
many years, they are relatively new for robotic systems. Therefore, the demonstration of
workflows and application models for formal verification of robotic systems is essential
for dissemination. Some survey papers are investigating formal verification methods for
robotic systems. Sinha et al. [6] survey formal methods for the dependability of industrial
automation systems. They focus on offline or static approaches, leaving out online or
runtime approaches like monitoring, diagnosis, and fault tolerance. Luckcuck et al. [7]
systematically survey the state of the art in formal specification and verification for au-
tonomous robotics. The main emphasis is that the commonly used both testing methods
and simulations are insufficient to ensure correctness, and there is a need to employ formal
methods for autonomous robotic systems. Zheng et al. [8] present a literature survey, an
online survey of CPS researchers, and interviews in their paper, Perceptions on the State
of the Art in Verification and Validation in Cyber-Physical Systems. Ingrand [9] deals
with recent trends in the formal V&V of autonomous robot software. Autonomous robot
software needs to be organized along with a particular architecture. Some architectures
make easier the V&V of the overall system.

Some studies present architectures to implement V&V for robotic systems. Kanter and
Vain [10] present a testing toolkit named TestIt. It provides tools for the automated model-
based testing of autonomous multi-robot systems. They use UPPAAL (Ver.4.1.26-2) [11] for
modeling and model checking. Wang et al. [12] present a model-based approach, which has
the phases of modeling, verification, and automatic code generation. In their framework,
UPPAAL is employed for verification, and the code generator produces ROS code. An
industrial robot application of grasping a cup is used to demonstrate and evaluate the
proposed framework.

The use of various verification methods like model checking, runtime verification,
and simulation-based testing, in combination, increases the verification coverage and
provide a more reliable system. Webster et al. [13] present an approach for the V&V of
a robot assistant in the context of human–robot interaction. They use model checking,
simulation-based testing, and user validation in experiments. They entitle their systematic
approach corroborative V&V. They employ PRISM (Ver.4.7) [14] for model checking and
ROS–Gazebo [15] for simulation-based testing. Villani et al. [16] propose the combined
application of two verification techniques: model checking with UPPAAL and CoFI (Con-
formance and fault injection) model-based testing with ConData [17]. They present the tool
and discuss its usage in industrial software development cases. Kejstova et al. [18] describe
a novel approach for adapting an existing software model checker to perform precise run-
time verification. They assert that the runtime verification after model checking improves
coverage. Desai et al. [19] also promote a similar approach. They present an approach for
validating the end-to-end correctness of a robotic system by combining model checking and
runtime verification. They claim that combining model checking with runtime verification
provides a bridge between software verification and the actual execution of the software on
a real robotic platform in the physical world.

On the other hand, demonstrating formal verification methods in robotic system ap-
plications is of great importance. These applications serve as a model for robotic system
developers. These demonstrations will remain valuable until formal verification methods
become standard processes in robotic systems and tools are developed to facilitate this
process. Halder et al. [20] propose an approach to model and verify ROS systems by using
the UPPAAL model checker, focusing on one of the main features of ROS, the communi-
cation between nodes. Webster et al. [21] present a case study on formal verification for a

Machines 2023, 11, 282 3 of 22

high-level planner for the robot named Care-O-bot, an autonomous personal robot assistant.
The robot can implement many service tasks in a structured robot house by operating close
to its human operators. In this study, the robot models and their environment are formally
verified by using model checking. Konur et al. [22] develop and apply automated proba-
bilistic formal verification techniques to robot swarms. They used the probabilistic model
checker PRISM and analyzed the probabilistic properties of the swarm. They targeted
an existing swarm algorithm for foraging robots. Gjondrekaj et al. [23] present a formal
verification approach for collective robotic systems. They used the formal language KLAIM
and related analysis tools. They claim that while existing approaches focus on microscopic
or macroscopic views of the system, they model aspects of both the robot hardware and
behavior, and the related environment. They model a scenario of collective transport by
robots. Dixon et al. [24] use formal verification techniques for analyzing the emergent
behaviors of robotic swarms. They apply model checking to check whether temporal prop-
erties are satisfied for all the possible behaviors of the system. Weismann et al. [25] present
a compiler that can transform industrial robot programs into PROMELA models. Then,
they implement model checking using SPIN (Ver.6.0) to check collisions and deadlocks in a
car-body welding station with nine robots. Quottrup et al. [26] present a study in which
they model, analyze, and verify motion-planning problems in a scenario with multiple
robotic vehicles. The verification is employed by using the verification software UPPAAL.
Gu et al. [27] explore model checking for the automatic generation of mission plans for
autonomous vehicles. They propose modeling autonomous vehicles as agents in timed
automata with a monitor. Then, they implement a tool called TAMAA (timed-automata-
based planner for multiple autonomous agents). The demonstration is conducted in an
industrial autonomous wheel-loader use case. Wang et al. [28] present a motion planning
method using model checking for reconfigurable robot systems. The verification of the
model is implemented by UPPAAL.

Industrial robots are programmable multifunction mechanical devices designed to
move material, parts, tools, and specialized devices in order to perform a variety of tasks
including assembly, sorting, inspection, and others. Many tasks require the robot to
work in coordination with other robots and mechanisms like conveyor bands and CNCs.
Studies indicate that many robot accidents occur during non-routine operating conditions,
such as programming, maintenance, testing, setup, or adjustment. Rather than directly
programming and testing a robotic system, modeling the system software, verifying the
model with a formal approach, and subsequently programming in accordance with the
model will not only reduce accidents but also increase confidence in the safety of the
developed system.

This paper presents a methodology from creating verified models to constructing
software designs for robotic systems. The methodology is explained through a case study
involving multiple industrial robot manipulators with path conflicts. When there is an
overlap in the workspaces of more than one robot, they may collide with each other in their
movements in this overlapping space. In order to avoid a safety problem, the robots should
not have a path passing through the overlapping space or they should be synchronized.
While a solution is proposed for the case study consisting of a safety problem that is
encountered with many similar problems in production processes, the methodology for
the safety verification of robotic systems is also given. The verified models are constructed
by using two prominent model-checking tools: UPPAAL and PRISM. The comparison of
the two tools is conducted in terms of the suitability and effectiveness of their features for
robotic systems. From the verified model, the design of the software in accordance with the
model is explained.

This paper uses the formal method, which is model checking, for the safety verification
of multiple industrial robot manipulators with path conflicts. The main contributions are:
(i) the presentation of model-checking methods for the conflict resolution of multiple
industrial robot manipulators that have a shared workspace; (ii) the creation of suitable
models in a sample scenario that can be easily adapted to different similar scenarios; and

Machines 2023, 11, 282 4 of 22

(iii) demonstration of the opportunities offered by the model-checking method for the
effective programming of robot systems. The paper is organized as follows. In Section 2, we
introduce the model-checking technique with two different model constructions. Section 3
describes the case study with modeling. Section 4 presents the verification analysis. The
results and discussions are given in Section 5. Then, we provide concluding remarks and
directions for future work in Section 6.

2. Model Checking

Model checking is one of the techniques for the formal verification of systems. It
verifies the correctness of a system (that is, meeting the defined requirements) by rigorously
exploring the behavior of the model, which is an abstraction of the system, expressed in
mathematical notation. Thus, all possible behaviors of the systems are described by a
finite structure such as a finite-state automaton. Then, the desired properties are specified
in a property specification language e.g., temporal logic. Furthermore, all possible paths
throughout the automaton correspond to all possible runs of the system. There are many
tools for model checking. Two of them, UPPAAL and PRISM, are used in this study. Thus,
the first stage of the formal verification of the system using the model-checking technique is
to construct the behavioral model of the system. In the following subsections, we introduce
the system modeling formalisms utilized by UPPAAL and PRISM, respectively.

2.1. System Modeling Based on Timed Automata

Timed automata were introduced as a formal notation to model the behavior of real-
time systems [29,30]. This formalism provides labeled state-transition graphs with timing
constraints using real-valued clock variables. The state transition system S is defined by a
tuple Q,Q0, Σ,→ , where Q is a set of states, Q0 ⊆ Q is a set of initial states, Σ is a set of
labels (or events), and →⊆ Q× Σ×Q is a set of transitions. The system starts in an initial
state, and any transitions between the states are written by α

a→ β for 〈α, a, β〉 ∈→ where
α, β ∈ Q and a ∈ Σ.

The behaviors of the system may also be expressed as a state transition system
S t with timing constraints. S t, also called a timed automaton, is defined by a tuple
〈L,L0, C, A, E , I〉. L is a finite set of locations (representing states of S t), L0 ⊆ L is the set
of start (initial) locations, C is the finite set of clocks,A is a set of actions (actions, co-actions,
internal τ-action), and E ⊆ L×A×B(C)× 2C ×L is a set of edges (transitions) between
locations with an action, a guard, and a set of clocks. B(C) is the set of clock constraints
involving clocks from C, and 2C is the powerset of C. A clock constraint is simply a term
of the form x ∼ c, where x is a clock, c ∈ N is a constant, and ∼∈ {〈,≤,=,〉,≥} is a
comparison operator. I : L → B(C) , which is called an invariant, is a mapping that labels
each location in L with some clock constraint in B(C).

The states of S t are represented by pairs (l, v), where l is a location and v is a clock
interpretation for C, such that v satisfies the invariant I(l). The set of all states of S t is
denoted byQ. A state (l, v) is the initial state if l is an initial location of S t and v(x) = 0 for
all clocks x.

The transition may occur with elapse of time for a state (l, v) and a real-valued time

increment δ > 0, (l, v) δ→ (l, v + δ), if for all 0 < δ′ < δ, v + δ′ satisfies the invariant
I(l). It may also occur with a location switch for a state (l, v) and a switch l, ε, g, r, l′

representing an edge from location l to location l′, where ε ∈ E is a label, g is a guard
and a clock constraint over C, and r ⊆ C is a subset of clocks to be reset. The location
switch implements (l, v) ε→ (l′, v[r 7→ 0]). v[r 7→ 0] means the clock assignment that maps
all clocks in r to 0 and agrees with v for other clocks in C r r.

Timed automata are often composed of a network of timed automata over a common
set of clocks and actions, consisting of n timed automata S t

i = 〈Li,L0i, C, A, Ei, 〉 Ii,
i ≤ i ≤ n.

The expressions in timed automata can be addressed in guard, invariant, channel,
and update. A guard is a particular expression evaluating a Boolean function on edges. An

Machines 2023, 11, 282 5 of 22

invariant is an expression that indicates the time that can be spent on a node. A channel
is considered for synchronizing the progress of two or more automata. An update is an
expression set that assigns values to clocks and variables.

2.2. System Modeling Based on Continuous Time Markov Chains (CTMC)

A continuous-time Markov chain (CTMC) is a continuous stochastic process. The
process changes state according to an exponential random variable and then moves to a
different state as specified by the probabilities of a stochastic matrix. A continuous-time
Markov chainM is a tuple Q, R, L, where Q is a finite set of states; R : Q×Q → R≥0 is
the transition rate matrix; and L : Q → 2AP is a labeling with atomic propositions [31]. L
assigns to each state s ∈ Q the set L(s) of atomic propositions a ∈ AP that are valid in s.

A transition between s and s′ may occur when R(s, s′) > 0, and 1− e−R(s,s′)t is the
probability that the transition s→ s′ can be triggered within t time units. Thus, the delay
of transition s→ s′ may occur with the exponential distribution with the rateR(s, s′).

2.3. Relation between Verification Models and Software Design

Software designs generally consist of many modules that interact with each other. If an
object-oriented approach is used for the software design, each module becomes an instance
of a class. The model of each module may be represented by timed automata or CTMS, and
the behavior of each module in the overall software is represented by the network of timed
automata, as seen in Figure 1.

Machines 2023, 11, x FOR PEER REVIEW 5 of 27

switch implements (𝑙, 𝑣) → (𝑙′, 𝑣[𝑟 ↦ 0]) . 𝑣[𝑟 ↦ 0] means the clock assignment that

maps all clocks in 𝑟 to 0 and agrees with 𝑣 for other clocks in 𝒞 ∖ 𝑟.

Timed automata are often composed of a network of timed automata over a common

set of clocks and actions, consisting of 𝑛 timed automata 𝒮𝑖
𝑡 = 〈ℒ𝑖 , ℒ0𝑖

, 𝒞, 𝒜, ℰ𝑖 , ℐ𝑖〉, 𝑖 ≤

𝑖 ≤ 𝑛.

The expressions in timed automata can be addressed in guard, invariant, channel,

and update. A guard is a particular expression evaluating a Boolean function on edges. An

invariant is an expression that indicates the time that can be spent on a node. A channel is

considered for synchronizing the progress of two or more automata. An update is an ex-

pression set that assigns values to clocks and variables.

2.2. System Modeling Based on Continuous Time Markov Chains (CTMC)

A continuous-time Markov chain (CTMC) is a continuous stochastic process. The

process changes state according to an exponential random variable and then moves to a

different state as specified by the probabilities of a stochastic matrix. A continuous-time

Markov chain ℳ is a tuple 〈𝒬, ℛ, ℒ〉, where 𝒬 is a finite set of states; ℛ: 𝒬 × 𝒬 → ℝ≥0 is

the transition rate matrix; and ℒ: 𝒬 → 2𝐴𝑃 is a labeling with atomic propositions [31]. ℒ

assigns to each state 𝑠 ∈ 𝒬 the set ℒ(𝑠) of atomic propositions 𝑎 ∈ 𝐴𝑃 that are valid in

𝑠.

A transition between 𝑠 and 𝑠′ may occur when ℛ(𝑠, 𝑠′) > 0, and 1 − 𝑒−ℛ(𝑠,𝑠′)∙𝑡 is

the probability that the transition 𝑠 → 𝑠′ can be triggered within 𝑡 time units. Thus, the

delay of transition 𝑠 → 𝑠′ may occur with the exponential distribution with the rate

ℛ(𝑠, 𝑠′).

2.3. Relation between Verification Models and Software Design

Software designs generally consist of many modules that interact with each other. If

an object-oriented approach is used for the software design, each module becomes an in-

stance of a class. The model of each module may be represented by timed automata or

CTMS, and the behavior of each module in the overall software is represented by the net-

work of timed automata, as seen in Figure 1.

Figure 1. A representation of timed automata as the members of a network.

In Figure 1, 〈𝑎𝑗!〉 ∈ 𝒜 are the sent synch messages from the 𝑖𝑡ℎ module to other

modules for triggering 𝑗𝑡ℎ action. Similarly, 〈𝑎𝑗? 〉 ∈ 𝒜 are the received synch from the

𝑎 module to the 𝑖𝑡ℎ module for triggering 𝑗𝑡ℎ action. Some state transitions of the

𝑖𝑡ℎ module may depend on the states of other modules as the parameters of the guard

condition. Therefore, 〈𝑙𝑗〉 ∈ ℒ𝑖 are the locations (states) of a module needed by another

module.

3. Multiple Industrial Robot Systems Operating in a Shared Workspace: A Case Study

Some robotic production scenarios need multiple robot manipulators to operate close

to each other. In this case, the robots in a shared workspace may cause safety issues that

will result in a mutual collision. Various approaches can be chosen to avoid a collision.

One of them is to employ online or offline motion planning to prevent collisions. Another

Figure 1. A representation of timed automata as the members of a network.

In Figure 1,
〈

aj!
〉
∈ A are the sent synch messages from the ith module to other

modules for triggering jth action. Similarly,
〈

aj?
〉
∈ A are the received synch from the a

module to the ith module for triggering jth action. Some state transitions of the ith module
may depend on the states of other modules as the parameters of the guard condition.
Therefore,

〈
lj
〉
∈ Li are the locations (states) of a module needed by another module.

3. Multiple Industrial Robot Systems Operating in a Shared Workspace: A Case Study

Some robotic production scenarios need multiple robot manipulators to operate close
to each other. In this case, the robots in a shared workspace may cause safety issues that
will result in a mutual collision. Various approaches can be chosen to avoid a collision.
One of them is to employ online or offline motion planning to prevent collisions. Another
approach is to synchronize the robots in possible collision zones and make them wait. In
all cases, robot software should be developed to ensure safe operation.

We studied a robotic production system, including two industrial robots sharing
a workspace. The scenario discussed includes common problems with many robotic
production systems, and the solution can be generalized to be used in all these systems.
This system can be seen in Figure 2.

Machines 2023, 11, 282 6 of 22

Machines 2023, 11, x FOR PEER REVIEW 6 of 27

approach is to synchronize the robots in possible collision zones and make them wait. In

all cases, robot software should be developed to ensure safe operation.

We studied a robotic production system, including two industrial robots sharing a

workspace. The scenario discussed includes common problems with many robotic pro-

duction systems, and the solution can be generalized to be used in all these systems. This

system can be seen in Figure 2.

Figure 2. Robotic workspace.

The aim is to throw the red soda cans on the conveyor belt into the red crate and the

white water bottles into the white crate. Two robot arms in the system, called UR10 (R1)

and UR5 (R2), implement the task. There is a gripper mechanism at the end of the robot

arms. As shown in Figure 3, there are two distance sensors labeled D1 and D2 in the grip-

per. The water bottle is taller than the soda can. Due to the size of the soda can, it can only

be detected with the D1 sensor. On the other hand, a water bottle can be detected by both

D1 and D2 sensors. In this case, depending on the distances measured by D1 and D2, it can

be determined whether the object entering the gripper is soda or water.

Figure 3. The tips of the robot arms.

The tips of the robot arms move point-to-point through the pre-determined positions.

The pre-determined positions are shown in Figure 4. Each robot waits for the object on

the conveyor band at the position BANDi. When the object is subsequently perceived and

grasped, then the robot moves at the position HOMEi. If the grasped object is a soda can,

the robot moves to REDi and drops the soda can into the red crate. If the grasped object is

Figure 2. Robotic workspace.

The aim is to throw the red soda cans on the conveyor belt into the red crate and the
white water bottles into the white crate. Two robot arms in the system, called UR10 (R1)
and UR5 (R2), implement the task. There is a gripper mechanism at the end of the robot
arms. As shown in Figure 3, there are two distance sensors labeled D1 and D2 in the gripper.
The water bottle is taller than the soda can. Due to the size of the soda can, it can only be
detected with the D1 sensor. On the other hand, a water bottle can be detected by both D1
and D2 sensors. In this case, depending on the distances measured by D1 and D2, it can be
determined whether the object entering the gripper is soda or water.

Machines 2023, 11, x FOR PEER REVIEW 6 of 27

approach is to synchronize the robots in possible collision zones and make them wait. In

all cases, robot software should be developed to ensure safe operation.

We studied a robotic production system, including two industrial robots sharing a

workspace. The scenario discussed includes common problems with many robotic pro-

duction systems, and the solution can be generalized to be used in all these systems. This

system can be seen in Figure 2.

Figure 2. Robotic workspace.

The aim is to throw the red soda cans on the conveyor belt into the red crate and the

white water bottles into the white crate. Two robot arms in the system, called UR10 (R1)

and UR5 (R2), implement the task. There is a gripper mechanism at the end of the robot

arms. As shown in Figure 3, there are two distance sensors labeled D1 and D2 in the grip-

per. The water bottle is taller than the soda can. Due to the size of the soda can, it can only

be detected with the D1 sensor. On the other hand, a water bottle can be detected by both

D1 and D2 sensors. In this case, depending on the distances measured by D1 and D2, it can

be determined whether the object entering the gripper is soda or water.

Figure 3. The tips of the robot arms.

The tips of the robot arms move point-to-point through the pre-determined positions.

The pre-determined positions are shown in Figure 4. Each robot waits for the object on

the conveyor band at the position BANDi. When the object is subsequently perceived and

grasped, then the robot moves at the position HOMEi. If the grasped object is a soda can,

the robot moves to REDi and drops the soda can into the red crate. If the grasped object is

Figure 3. The tips of the robot arms.

The tips of the robot arms move point-to-point through the pre-determined positions.
The pre-determined positions are shown in Figure 4. Each robot waits for the object on
the conveyor band at the position BANDi. When the object is subsequently perceived and
grasped, then the robot moves at the position HOMEi. If the grasped object is a soda can,
the robot moves to REDi and drops the soda can into the red crate. If the grasped object is a
water bottle, the robot moves to WHITEi and drops the water bottle into the white crate.
Then, the robot moves back to the position BANDi over HOMEi.

Machines 2023, 11, 282 7 of 22

Machines 2023, 11, x FOR PEER REVIEW 7 of 27

a water bottle, the robot moves to WHITEi and drops the water bottle into the white crate.

Then, the robot moves back to the position BANDi over HOMEi.

Figure 4. The target and waypoints of robots.

3.1. Description of the Problem

Let robots 𝑅𝑖 , 𝑖 ∈ [1, 𝑛] perform their task in a shared workspace 𝑊. The number of

robots is 𝑛. Each task requires the tip, 𝒳𝑖 ∈ ℝ6, of 𝑅𝑖 to follow a precomputed path 𝑃𝑖

passing through some waypoints on 𝑊𝑃𝑖. At 𝑊𝑃𝑖, 𝑅𝑖 has configurations in joints space

𝒬𝑖 ∈ ℝ𝑚of 𝑅𝑖 and in task space 𝒳𝑖 ∈ ℝ6, of 𝑅𝑖. The degree of freedom (DOF) for the ro-

bot is 𝑚. Assume that 𝑅𝑖 is moving from any 𝑤𝑝𝑚 ∈ 𝑊𝑃𝑖 to 𝑤𝑝𝑛 ∈ 𝑊𝑃𝑖, where 𝑚 ≠ 𝑛

at the same period with 𝑅𝑗, 𝑗 ∈ [1, 𝑛] ∖ 𝑖, and 𝑖 ≠ 𝑗, or is moving from any 𝑤𝑝𝑘 ∈ 𝑊𝑃𝑗 to

𝑤𝑝𝑙 ∈ 𝑊𝑃𝑙, where 𝑘 ≠ 𝑙, then the path between 𝑤𝑝𝑚 and 𝑤𝑝𝑛 for 𝑅𝑖, and the path be-

tween 𝑤𝑝𝑘 and 𝑤𝑝𝑙 for 𝑅𝑗, include the path conflict. If these paths are implemented at

the same period by 𝑅𝑖 and 𝑅𝑗, then it would probably cause a collision when the robots

are not synchronized properly. This is a safety problem that needs to be solved. It is nec-

essary to develop a solution for such problems and to verify that the solution provides

safety.

For the case study, there are two robots where each follows the path 𝑃𝑖 including

𝑊𝑃𝑖 = (𝐵𝐴𝑁𝐷𝑖 , 𝐻𝑂𝑀𝐸𝑖 , 𝑅𝐸𝐷𝑖 , 𝑊𝐻𝐼𝑇𝐸𝑖). The scenario requires each robot (i ϵ [1,2]) to fol-

low the steps below:

• 𝑅𝑖 is initially at 𝐵𝐴𝑁𝐷𝑖;

• When a soda can or water bottle enters the gripper, the type of the product is de-

tected;

• The product is grasped;

• 𝑅𝑖 goes to 𝐻𝑂𝑀𝐸𝑖;

• If the grasped product is a soda can, 𝑅𝑖 goes to 𝑅𝐸𝐷𝑖;

• If the grasped product is a water bottle, 𝑅𝑖 goes to 𝑊𝐻𝐼𝑇𝐸𝑖;

• 𝑅𝑖 drops the water bottle/soda can into the crate;

• 𝑅𝑖 goes to 𝐻𝑂𝑀𝐸𝑖;

• 𝑅𝑖 goes to 𝐵𝐴𝑁𝐷𝑖;

• The process continues.

The safety requirements are defined as

Figure 4. The target and waypoints of robots.

3.1. Description of the Problem

Let robots Ri, i ∈ [1, n] perform their task in a shared workspace W. The number
of robots is n. Each task requires the tip, Xi ∈ R6, of Ri to follow a precomputed path Pi
passing through some waypoints on WPi. At WPi, Ri has configurations in joints space
Qi ∈ Rm of Ri and in task space Xi ∈ R6, of Ri. The degree of freedom (DOF) for the
robot is m. Assume that Ri is moving from any wpm ∈ WPi to wpn ∈ WPi, where m 6= n
at the same period with Rj, j ∈ [1, n]r i, and i 6= j, or is moving from any wpk ∈ WPj
to wpl ∈ WPl , where k 6= l, then the path between wpm and wpn for Ri, and the path
between wpk and wpl for Rj, include the path conflict. If these paths are implemented at
the same period by Ri and Rj, then it would probably cause a collision when the robots are
not synchronized properly. This is a safety problem that needs to be solved. It is necessary
to develop a solution for such problems and to verify that the solution provides safety.

For the case study, there are two robots where each follows the path Pi including
WPi = (BANDi, HOMEi, REDi, WHITEi). The scenario requires each robot (i ε [1,2]) to
follow the steps below:

• Ri is initially at BANDi;

• When a soda can or water bottle enters the gripper, the type of the product is detected;
• The product is grasped;
• Ri goes to HOMEi;

• If the grasped product is a soda can, Ri goes to REDi;

• If the grasped product is a water bottle, Ri goes to WHITEi;

• Ri drops the water bottle/soda can into the crate;

• Ri goes to HOMEi;

• Ri goes to BANDi;

• The process continues.

The safety requirements are defined as

RQ1. R2 should not move to WHITE2 while R1 is at WHITE1 or moving from/to WHITE1.
RQ2. R2 should move to neither WHITE2 nor RED2 while R1 is at RED1 or moving

from/to RED1.
RQ3. R1 should not move to RED1 while R2 is at RED2 or moving from/to RED2.
RQ4. R1 should move to neither WHITE1 nor RED1 while R2 is at WHITE2 or moving

from/to WHITE2.

Machines 2023, 11, 282 8 of 22

RQ5. Ri should not move directly between BANDi and REDi/WHITEi for ∀i ∈ [1, 2].

Any model for task programming of the robots needs to be verified to confirm whether
the safety requirements RQ1–RQ5 are satisfied. In this paper, model checking as a formal
verification approach is used. Model checking is employed at the design stage of the
program, in which a model of the program is constructed. Since the model is typically non-
deterministic, each run of the model can be different from the last. A model checker, which
implements the model-checking approach, exhaustively analyzes all possible executions of
the model in order to establish some properties, usually derived from the requirements [21].

The workflow for verifying the system based on model checking is implemented as
shown in Figure 5. For the model-based development of a system, models are constructed at
the design stage by using the description and requirements of the system. The description
and requirements of the system are used to create the models. It is necessary to verify that
the models meet the requirements. Model checking is employed for verification. Then, the
verified models are implemented and tested.

Machines 2023, 11, x FOR PEER REVIEW 8 of 27

RQ1. 𝑅2 should not move to 𝑊𝐻𝐼𝑇𝐸2 while 𝑅1 is at 𝑊𝐻𝐼𝑇𝐸1 or moving from/to

𝑊𝐻𝐼𝑇𝐸1.

RQ2. 𝑅2 should move to neither 𝑊𝐻𝐼𝑇𝐸2 nor 𝑅𝐸𝐷2 while 𝑅1 is at 𝑅𝐸𝐷1 or moving

from/to 𝑅𝐸𝐷1.

RQ3. 𝑅1 should not move to 𝑅𝐸𝐷1 while 𝑅2 is at 𝑅𝐸𝐷2 or moving from/to 𝑅𝐸𝐷2.

RQ4. 𝑅1 should move to neither 𝑊𝐻𝐼𝑇𝐸1 nor 𝑅𝐸𝐷1 while 𝑅2 is at 𝑊𝐻𝐼𝑇𝐸2 or moving

from/to 𝑊𝐻𝐼𝑇𝐸2.

RQ5. 𝑅𝑖 should not move directly between 𝐵𝐴𝑁𝐷𝑖 and 𝑅𝐸𝐷𝑖/𝑊𝐻𝐼𝑇𝐸𝑖 for ∀𝑖 ∈ [1,2].

Any model for task programming of the robots needs to be verified to confirm

whether the safety requirements RQ1–RQ5 are satisfied. In this paper, model checking as

a formal verification approach is used. Model checking is employed at the design stage of

the program, in which a model of the program is constructed. Since the model is typically

non-deterministic, each run of the model can be different from the last. A model checker,

which implements the model-checking approach, exhaustively analyzes all possible exe-

cutions of the model in order to establish some properties, usually derived from the re-

quirements [21].

The workflow for verifying the system based on model checking is implemented as

shown in Figure 5. For the model-based development of a system, models are constructed

at the design stage by using the description and requirements of the system. The descrip-

tion and requirements of the system are used to create the models. It is necessary to verify

that the models meet the requirements. Model checking is employed for verification.

Then, the verified models are implemented and tested.

VERIFICATION

SYSTEM DESIGN AND

IMPLEMENTATION

SYSTEM DESCRIPTION REQUIREMENTS

MODELING
PROPERTY

SPECIFICATION

MODEL-CHECKING

CODING AND

IMPLEMENTATION

TESTING

VERIFIED

YES
NO

Figure 5. System development and verification stages. Figure 5. System development and verification stages.

3.2. Timed Automata Modeling

Various V&V tools are specialized in different system behaviors, such as the UPPAAL
model checker. It is a commonly used tool for the modeling, simulation, and verification
of real-time systems, and was developed by Uppsala University and Aalborg Univer-
sity [11]. It uses timed automata extended by real-value clocks for system modeling. It
also uses TCTL (timed computation tree logic) to express properties to be verified against
given specifications.

The robotic system is modeled as a network of timed automata. Each automaton
may be constructed parametrically as a template in which the automata may represent the
behavioral model of various subsystems. For example, there are two robot manipulators,
and a single template models both of them. Four different templates–robot controller,

Machines 2023, 11, 282 9 of 22

gripper, product detector, and conveyor band–are modeled to represent the case study
scenario. Each template is modeled using timed automata. In addition, the templates
include a parameter that simultaneously enables the execution of multiple instances on
one template.

Modeling begins with the identification of functional modules in the system. Then, the
behavioral states of each module are determined. For each module, the actions and states
related to other modules are determined. Last, a timed automata model of each module
is created.

3.2.1. Robot Controller

The case study has four waypoints–BAND, HOME, RED, and WHITE–all of which
are also considered to be states of the robot. It takes time for the robots to move between
the waypoints. Therefore, another state needs to be defined, namely MOVING, which
represents the robot moving from/to any primary waypoint, as seen in Figure 6. It is
assumed that all MOVING states take three units of time.

Machines 2023, 11, x FOR PEER REVIEW 10 of 27

Figure 6. UPPAAL timed automata model of the robot controller.

The state transition system 𝒮𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 for the robot controller can be defined as

follows:

ℒ = {𝐼𝑁𝐼𝑇, 𝐵𝐴𝑁𝐷, 𝑀𝑂𝑉𝐼𝑁𝐺_𝐻𝐵, 𝐻𝑂𝑀𝐸, 𝑀𝑂𝑉𝐼𝑁𝐺_𝐻𝑊, 𝑀𝑂𝑉𝐼𝑁𝐺_𝐻𝑅, 𝑊𝐻𝐼𝑇𝐸, 𝑅𝐸𝐷}
ℒ0 = {𝐼𝑁𝐼𝑇}

𝒞 = {𝑤𝑎𝑖𝑡}

𝒜 = {𝑔𝑟𝑎𝑠𝑝, 𝑟𝑒𝑙𝑒𝑎𝑠𝑒, 𝑠𝑡𝑎𝑟𝑡𝑅𝑜𝑏𝑜𝑡}

ℐ = {∅}

Inspired by the principle of mutual exclusion to allow robots to move without colli-

sion, when the robot comes 𝐻𝑂𝑀𝐸, it can only move to a waypoint if that waypoint is

free. Otherwise, the robot must wait for the waypoint to become free. If the waypoint is

already allocated as free, the robot moves to the target waypoint and is allocated as busy.

Until the robot goes back to 𝐻𝑂𝑀𝐸, no other robot can move to the allocated waypoint.

The robot controller template starts at 𝐼𝑁𝐼𝑇 and passes to 𝐵𝐴𝑁𝐷 without re-

striction. At the same time, it triggers the gripper to OPEN and the product detector to

𝑁𝑂𝑁𝐸. When the object is perceived and grasped, it passes HOME. If all safety require-

ments are satisfied, it continues forward to the RED or WHITE location, depending on the

object type. When it reaches 𝑅𝐸𝐷 or 𝑊𝐻𝐼𝑇𝐸, it triggers the gripper to drop the object into

the crate. Then, it moves back to 𝐻𝑂𝑀𝐸 and 𝐵𝐴𝑁𝐷 respectively.

Figure 7 presents the block diagram of the robot controller module, which indicates

the actions and states related to other modules.

Figure 6. UPPAAL timed automata model of the robot controller.

The state transition system SRobotController for the robot controller can be defined
as follows:
L = {INIT, BAND, MOVING_HB, HOME, MOVING_HW, MOVING_HR, WHITE,
RED}
L0 = {INIT}
C = {wait}

Machines 2023, 11, 282 10 of 22

A = {grasp, release, startRobot}
I = {∅}

Inspired by the principle of mutual exclusion to allow robots to move without collision,
when the robot comes HOME, it can only move to a waypoint if that waypoint is free.
Otherwise, the robot must wait for the waypoint to become free. If the waypoint is already
allocated as free, the robot moves to the target waypoint and is allocated as busy. Until the
robot goes back to HOME, no other robot can move to the allocated waypoint.

The robot controller template starts at INIT and passes to BAND without restriction.
At the same time, it triggers the gripper to OPEN and the product detector to NONE. When
the object is perceived and grasped, it passes HOME. If all safety requirements are satisfied,
it continues forward to the RED or WHITE location, depending on the object type. When it
reaches RED or WHITE, it triggers the gripper to drop the object into the crate. Then, it
moves back to HOME and BAND respectively.

Figure 7 presents the block diagram of the robot controller module, which indicates
the actions and states related to other modules.

Machines 2023, 11, x FOR PEER REVIEW 11 of 27

Figure 7. Block diagram of the robot controller module.

3.2.2. Gripper

The gripper template has two primary states: OPEN and CLOSE, as shown in Figure

8. When the robot starts running, it triggers the gripper to pass to 𝑂𝑃𝐸𝑁. Whenever it

takes the action to grasp, the gripper passes to the state 𝐶𝐿𝑂𝑆𝐸. Conversely, whenever it

takes the action to release, it triggers the gripper to turn back to 𝑂𝑃𝐸𝑁. When the gripper

passes between CLOSE and OPEN, it takes time for the motion to be completed. There-

fore, the state MOVING is needed to represent the gripper motion. It is assumed that the

𝑀𝑂𝑉𝐼𝑁𝐺 state takes three units of time.

The state transition system 𝒮𝐺𝑟𝑖𝑝𝑝𝑒𝑟 for the gripper can be defined as follows:

ℒ = {𝐼𝑁𝐼𝑇, 𝐶𝐿𝑂𝑆𝐸, 𝑀𝑂𝑉𝐼𝑁𝐺, 𝑂𝑃𝐸𝑁}

ℒ0 = {𝐼𝑁𝐼𝑇}

𝒞 = {𝑤𝑎𝑖𝑡}

𝒜 = {𝑔𝑟𝑎𝑠𝑝, 𝑟𝑒𝑙𝑒𝑎𝑠𝑒, 𝑠𝑡𝑎𝑟𝑡𝑅𝑜𝑏𝑜𝑡, 𝑐𝑙𝑒𝑎𝑟𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟}

ℐ = {∅}

Figure 8. UPPAAL Timed automata model of gripper.

Figure 9 presents the block diagram of the gripper module, which indicates the ac-

tions and states related to other modules.

Figure 7. Block diagram of the robot controller module.

3.2.2. Gripper

The gripper template has two primary states: OPEN and CLOSE, as shown in Figure 8.
When the robot starts running, it triggers the gripper to pass to OPEN. Whenever it takes
the action to grasp, the gripper passes to the state CLOSE. Conversely, whenever it takes
the action to release, it triggers the gripper to turn back to OPEN. When the gripper passes
between CLOSE and OPEN, it takes time for the motion to be completed. Therefore, the
state MOVING is needed to represent the gripper motion. It is assumed that the MOVING
state takes three units of time.

The state transition system SGripper for the gripper can be defined as follows:
L = {INIT, CLOSE, MOVING, OPEN}
L0 = {INIT}
C = {wait}
A = {grasp, release, startRobot, clearDetector}
I = {∅}

Figure 9 presents the block diagram of the gripper module, which indicates the actions
and states related to other modules.

3.2.3. Product Detector

The gripper has two distance sensors, namely D1 and D2, which read two different
values to detect soda and water. The detection results constitute the state of the product
detector, such as SODA, WATER, and NONE. Figure 10 shows the timed automata of the
product detector.

Machines 2023, 11, 282 11 of 22

Machines 2023, 11, x FOR PEER REVIEW 11 of 27

Figure 7. Block diagram of the robot controller module.

3.2.2. Gripper

The gripper template has two primary states: OPEN and CLOSE, as shown in Figure

8. When the robot starts running, it triggers the gripper to pass to 𝑂𝑃𝐸𝑁. Whenever it

takes the action to grasp, the gripper passes to the state 𝐶𝐿𝑂𝑆𝐸. Conversely, whenever it

takes the action to release, it triggers the gripper to turn back to 𝑂𝑃𝐸𝑁. When the gripper

passes between CLOSE and OPEN, it takes time for the motion to be completed. There-

fore, the state MOVING is needed to represent the gripper motion. It is assumed that the

𝑀𝑂𝑉𝐼𝑁𝐺 state takes three units of time.

The state transition system 𝒮𝐺𝑟𝑖𝑝𝑝𝑒𝑟 for the gripper can be defined as follows:

ℒ = {𝐼𝑁𝐼𝑇, 𝐶𝐿𝑂𝑆𝐸, 𝑀𝑂𝑉𝐼𝑁𝐺, 𝑂𝑃𝐸𝑁}

ℒ0 = {𝐼𝑁𝐼𝑇}

𝒞 = {𝑤𝑎𝑖𝑡}

𝒜 = {𝑔𝑟𝑎𝑠𝑝, 𝑟𝑒𝑙𝑒𝑎𝑠𝑒, 𝑠𝑡𝑎𝑟𝑡𝑅𝑜𝑏𝑜𝑡, 𝑐𝑙𝑒𝑎𝑟𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟}

ℐ = {∅}

Figure 8. UPPAAL Timed automata model of gripper.

Figure 9 presents the block diagram of the gripper module, which indicates the ac-

tions and states related to other modules.

Figure 8. UPPAAL Timed automata model of gripper.

Machines 2023, 11, x FOR PEER REVIEW 12 of 27

Figure 9. Block diagram of the gripper module.

3.2.3. Product Detector

The gripper has two distance sensors, namely D1 and D2, which read two different

values to detect soda and water. The detection results constitute the state of the product

detector, such as SODA, WATER, and NONE. Figure 10 shows the timed automata of the

product detector.

The state transition system 𝒮𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 for the gripper can be defined as follows:

ℒ = {𝐼𝑁𝐼𝑇, 𝑁𝑂𝑁𝐸, 𝑆𝑂𝐷𝐴, 𝑊𝐴𝑇𝐸𝑅}

ℒ0 = {𝐼𝑁𝐼𝑇}

𝒞 = {∅}

𝒜 = {𝑠𝑡𝑎𝑟𝑡𝑅𝑜𝑏𝑜𝑡, 𝑐𝑙𝑒𝑎𝑟𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟}

ℐ = {∅}

Figure 10. UPPAAL timed automata model of product detector.

Figure 11 presents the block diagram of the product detector module, which indicates

the actions and states related to other modules.

Figure 9. Block diagram of the gripper module.

Machines 2023, 11, x FOR PEER REVIEW 12 of 27

Figure 9. Block diagram of the gripper module.

3.2.3. Product Detector

The gripper has two distance sensors, namely D1 and D2, which read two different

values to detect soda and water. The detection results constitute the state of the product

detector, such as SODA, WATER, and NONE. Figure 10 shows the timed automata of the

product detector.

The state transition system 𝒮𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 for the gripper can be defined as follows:

ℒ = {𝐼𝑁𝐼𝑇, 𝑁𝑂𝑁𝐸, 𝑆𝑂𝐷𝐴, 𝑊𝐴𝑇𝐸𝑅}

ℒ0 = {𝐼𝑁𝐼𝑇}

𝒞 = {∅}

𝒜 = {𝑠𝑡𝑎𝑟𝑡𝑅𝑜𝑏𝑜𝑡, 𝑐𝑙𝑒𝑎𝑟𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟}

ℐ = {∅}

Figure 10. UPPAAL timed automata model of product detector.

Figure 11 presents the block diagram of the product detector module, which indicates

the actions and states related to other modules.

Figure 10. UPPAAL timed automata model of product detector.

The state transition system SProductDetector for the gripper can be defined as follows:
L = {INIT, NONE, SODA, WATER}
L0 = {INIT}
C = {∅}
A = {startRobot, clearDetector}
I = {∅}

Figure 11 presents the block diagram of the product detector module, which indicates
the actions and states related to other modules.

Machines 2023, 11, 282 12 of 22Machines 2023, 11, x FOR PEER REVIEW 13 of 27

Figure 11. Block diagram of the product detector module.

3.2.4. Conveyor Band

The conveyor band is simply a driver system that simulates the presence of soda and

water nondeterministically appearing on the band. There are three states, 𝑖𝑛𝑖𝑡, 𝑠𝑜𝑑𝑎, and

𝑤𝑎𝑡𝑒𝑟, as shown in Figure 12. Each state represents the various configuration of the dis-

tance sensor readings (𝐷1, 𝐷2) = {(0,0), (1,0), (1,1)}.

The state transition system 𝒮𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝐵𝑎𝑛𝑑 for the gripper can be defined as follows:

ℒ = {{𝐷1 = 0, 𝐷2 = 0}, {𝐷1 = 1, 𝐷2 = 0}, {𝐷1 = 1, 𝐷2 = 1}}

ℒ0 = {{𝐷1 = 0, 𝐷2 = 0}}

𝒞 = {∅}

𝒜 = {∅}

ℐ = {∅}

Figure 12. UPPAAL timed automata model of the conveyor band.

Figure 13 presents the block diagram of the conveyor band module, which indicates

the actions and states related to other modules. It is a driver module in order to use the

verification of the overall model. It is not a part of the system software.

Figure 11. Block diagram of the product detector module.

3.2.4. Conveyor Band

The conveyor band is simply a driver system that simulates the presence of soda and
water nondeterministically appearing on the band. There are three states, init, soda, and
water, as shown in Figure 12. Each state represents the various configuration of the distance
sensor readings (D1, D2) = {(0, 0), (1, 0), (1, 1)}.

Machines 2023, 11, x FOR PEER REVIEW 13 of 27

Figure 11. Block diagram of the product detector module.

3.2.4. Conveyor Band

The conveyor band is simply a driver system that simulates the presence of soda and

water nondeterministically appearing on the band. There are three states, 𝑖𝑛𝑖𝑡, 𝑠𝑜𝑑𝑎, and

𝑤𝑎𝑡𝑒𝑟, as shown in Figure 12. Each state represents the various configuration of the dis-

tance sensor readings (𝐷1, 𝐷2) = {(0,0), (1,0), (1,1)}.

The state transition system 𝒮𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝐵𝑎𝑛𝑑 for the gripper can be defined as follows:

ℒ = {{𝐷1 = 0, 𝐷2 = 0}, {𝐷1 = 1, 𝐷2 = 0}, {𝐷1 = 1, 𝐷2 = 1}}

ℒ0 = {{𝐷1 = 0, 𝐷2 = 0}}

𝒞 = {∅}

𝒜 = {∅}

ℐ = {∅}

Figure 12. UPPAAL timed automata model of the conveyor band.

Figure 13 presents the block diagram of the conveyor band module, which indicates

the actions and states related to other modules. It is a driver module in order to use the

verification of the overall model. It is not a part of the system software.

Figure 12. UPPAAL timed automata model of the conveyor band.

The state transition system SConveyorBand for the gripper can be defined as follows:
L = {{D1 = 0, D2 = 0}, {D1 = 1, D2 = 0}, {D1 = 1, D2 = 1}}
L0 = {{D1 = 0, D2 = 0}}
C = {∅}
A = {∅}
I = {∅}

Figure 13 presents the block diagram of the conveyor band module, which indicates
the actions and states related to other modules. It is a driver module in order to use the
verification of the overall model. It is not a part of the system software.

The block diagram including all of the modules and their relationships is shown
in Figure 14.

3.3. Continuous Time Markov Chains (CTMC) Modeling

PRISM is one of the model-checking tools used to verify a probabilistic system. It
can build and analyze many types of probabilistic models. There are three modules for
describing the system models: the robot controller, gripper, and product detector. The robot
controller module is modeled for each robot separately because of the differences between
the behavior of the robots, as shown in Algorithms 1 and 2. On the other hand, there are

Machines 2023, 11, 282 13 of 22

one gripper and one product detector module. Due to the similar functionalities of each
robot, multiple instances of these modules can be used.

Machines 2023, 11, x FOR PEER REVIEW 14 of 27

Figure 13. Block diagram of the product detector module.

The block diagram including all of the modules and their relationships is shown in

Figure 14.

Figure 13. Block diagram of the product detector module.

Machines 2023, 11, x FOR PEER REVIEW 15 of 27

Figure 14. Block diagram of all modules.

3.3. Continuous Time Markov Chains (CTMC) Modeling

PRISM is one of the model-checking tools used to verify a probabilistic system. It can

build and analyze many types of probabilistic models. There are three modules for de-

scribing the system models: the robot controller, gripper, and product detector. The robot

controller module is modeled for each robot separately because of the differences between

the behavior of the robots, as shown in Algorithms 1 and 2. On the other hand, there are

Figure 14. Block diagram of all modules.

Machines 2023, 11, 282 14 of 22

Algorithm 1. PRISM CTMC model of robot controller1.
ctmc
globalredRegion: bool init false;
global white region : bool init false;
// R1 denotes robot which is located left side conveyor band, as well as R2 denotes the right one.
module RobotController1

// robot states =>> [0: INIT, 1: BAND, 2: HOME, 3: RED, 4: WHITE, 5: MOVING_BH,
6:MOVİNG_HR, 7:MOVİNG_HW]

robotState1 : [0..7] init 0;
robotTargetState1 : [0..7] init 0;
robotPreState1 : [0..7] init 0;

// BAND <-> HOME
// Init -> Band
[startRobot1] robotState1 = 0 -> (robotState1’ = 1) & (robotPreState1’ =0);
// Band -> Band
[grasp1] robotState1 = 1 & gripperState1 = 1 & productState1 != 1 -> (robotState1’ = 1);
// Band -> Moving_BH
[] robotState1 = 1 & gripperState1 = 3 -> (robotState1’ = 5) & (robotTargetState1’ = 2)

& (robotPreState1’ = 1);
// Moving_BH -> Home

[] robotState1 = 5 & robotTargetState1 = 2 -> (robotState1’ = 2) ;
// Home -> Moving_BH
[] robotState1 = 2 & gripperState1 = 1 -> (robotState1’ = 5) & (robotTargetState1’ = 1)

& (robotPreState1’ = 2);
// Moving_BH -> Band

[] robotState1 = 5 & robotTargetState1 = 1 -> (robotState1’ = 1);
// HOME <-> RED

// Home -> Moving_HR
[] robotState1 = 2 & productState1 = 2 & redRegion = false & whiteRegion = false ->

(robotState1’ = 6) & (robotTargetState1’ = 3) & (redRegion’ = true) & (whiteRegion’ = true)
& (robotPreState1’ = 2);

// Moving_HR -> Red
[] robotState1 = 6 & robotTargetState1 = 3 -> (robotState1’ = 3);
// Red -> Red
[release1] robotState1 = 3 -> (robotState1’ = 3);
// Red -> Moving_HR
[] robotState1 = 3 & gripperState1 = 1 -> (robotState1’ = 6) & (robotTargetState1’ = 2)

& (robotPreState1’ = 3);
// Moving_HR -> Home

[] robotState1 = 6 & robotTargetState1 = 2 -> (robotState1’ = 2) & (redRegion’ = false)
& (whiteRegion’ = false) ;
// HOME <-> WHITE

// Home -> Moving_HW
[] robotState1 = 2 & productState1 = 3 & whiteRegion = false ->
(robotState1’ = 7) & (robotTargetState1’ = 4) & (whiteRegion’ = true) & (

robotPreState1’ = 2);
// Moving_HW -> White
[] robotState1 = 7 & robotTargetState1 = 4 -> (robotState1’ = 4) ;
// White -> White
[release1] robotState1 = 4 -> (robotState1’ = 4);
// White -> Moving_HW
[] robotState1 = 4 & gripperState1 = 1 -> (robotState1’ = 7) & (robotTargetState1’ = 2)

& (robotPreState1’ = 4);
// Moving_HW -> Home
[] robotState1 = 7 & robotTargetState1 = 2 -> (robotState1’ = 2) & (whiteRegion’ =

false);
endmodule

Machines 2023, 11, 282 15 of 22

Algorithm 2. PRISM CTMC model of robot controller2.
module RobotController2

// robot states =>> [0: INIT, 1: BAND, 2: HOME, 3: RED, 4: WHITE, 5: MOVING_BH,
6:MOVİNG_HR, 7:MOVİNG_HW]

robotState2 : [0..7] init 0;
robotTargetState2 : [0..7] init 0;
robotPreState2 : [0..7] init 0;

// BAND <-> HOME
// Init -> Band
[startRobot2] robotState2 = 0 -> (robotState2’ = 1) & (robotPreState2’ = 0);
// Band -> Band
[grasp2] robotState2 = 1 & gripperState2 = 1 & productState2 != 1 -> (robotState2’ = 1);
// Band -> Moving_BH
[] robotState2 = 1 & gripperState2 = 3 -> (robotState2’ = 5) & (robotTargetState2’ = 2) & (

robotPreState2’ = 1);
// Moving_BH -> Home
[] robotState2 = 5 & robotTargetState2 = 2 -> (robotState2’ = 2) ;
// Home -> Moving_BH
[] robotState2 = 2 & gripperState2 = 1 -> (robotState2’ = 5) & (robotTargetState2’ = 1) & (

robotPreState2’ = 2);
// Moving_BH -> Band

[] robotState2 = 5 & robotTargetState2 = 1 -> (robotState2’ = 1);
// HOME <-> RED

// Home -> Moving_HW
[] robotState2 = 2 & productState2 = 3 & whiteRegion = false & redRegion = false ->

(robotState2’ = 7) & (robotTargetState2’ = 4) & (whiteRegion’ = true) & (redRegion’ = true) & (
robotPreState2’ = 2);

// Moving_HR -> White
[] robotState2 = 7 & robotTargetState2 = 4 -> (robotState2’ = 4) ;
// White -> White
[release2] robotState2 = 4 -> (robotState2’ = 4);
// White -> Moving_HR
[] robotState2 = 4 & gripperState2 = 1 -> (robotState2’ = 7) & (robotTargetState2’ = 2) & (

robotPreState2’ = 4);
// Moving_HR -> Home
[] robotState2 = 7 & robotTargetState2 = 2 -> (robotState2’ = 2) & (whiteRegion’ = false)

& (redRegion’ = false) ;
// HOME <-> WHITE

// Home -> Moving_HR
[] robotState2 = 2 & productState2 = 2 & redRegion = false ->

(robotState2’ = 6) & (robotTargetState2’ = 3) & (redRegion’ = true) & (robotPreState2’ = 2);
// Moving_HW -> Red
[] robotState2 = 6 & robotTargetState2 = 3 -> (robotState2’ = 3) ;
// Red -> Red
[release2] robotState2 = 3 -> (robotState2’ = 3);
// Red -> Moving_HW
[] robotState2 = 3 & gripperState2 = 1 -> (robotState2’ = 6) & (robotTargetState2’ = 2) & (

robotPreState2’ = 3);
// Moving_HW -> Home
[] robotState2 = 6 & robotTargetState2 = 2 -> (robotState2’ = 2) & (redRegion’ = false) ;

endmodule

In summary, the robot controller module has three main transitions between the state
couples given as (HOME, BAND), (HOME, RED), and (HOME, WHITE). All possible tran-
sitions between these states and substates (MOVING_BH, MOVING_HR, MOVING_HW)
are defined by actions, guards, and state updates.

The model of the gripper module is given in Algorithm 3. The transitions between the
states OPEN and CLOSE occur as a result of the actions named startRobot, grasp, release,
and clearDetector.

Machines 2023, 11, 282 16 of 22

The model of the product detector module is given in Algorithm 4. There are two
different objects on the conveyor belt, and the probability of their arrival is assumed to be
the same. Therefore, both have a 50% probability of arrival, as shown in Algorithm 4. After
the choice is made randomly, the gripper module is triggered by the robot controller and
the object is grasped.

Algorithm 3. PRISM CTMC model of gripper.
module GripperTool1

// gripper states =>> [0: START, 1: OPEN, 2: MOVING, 3: CLOSE]
gripperState1 : [0..3] init 0;
gripperTargetState1 : [0..3] init 0;
// Start -> Open
[startRobot1] gripperState1 = 0 -> (gripperState1’ = 1);
// Open -> Moving
[grasp1] gripperState1 = 1 -> (gripperState1’ = 2) & (gripperTargetState1’ = 3);
// Moving -> Close
[] gripperState1 = 2 & gripperTargetState1 = 3 -> (gripperState1’ = 3);
// Closed -> Moving
[release1] gripperState1 = 3 -> (gripperState1’ = 2) & (gripperTargetState1’ = 1);

// Moving -> Open
[clearDetector1] gripperState1 = 2 & gripperTargetState1 = 1 -> (gripperState1’ = 1) ;

endmodule

Algorithm 4. PRISM CTMC model of product detector.
module ProductDetector1

// sensor states =>> [0: Init, 1: None, 2: Soda, 3: Water]
productState1 : [0..3] init 0;
// Init -> None
[startRobot1] productState1 = 0 -> (productState1’ = 1);
// None -> Soda (id : 2) | Water (id : 3)
[] productState1 = 1 & gripperState1 = 1 & robotState1 = 1 ->0.5: (productState1’ = 2) +

0.5: (productState1’ = 3) ;
// water | soda -> None

[clearDetector1] productState1 = 2 | productState1 = 3-> (productState1’ = 1);
endmodule

Unlike the robot controller module, the gripper and the product detector modules do
not need to be modelled separately for each robot. Therefore, the only requirement is to
create a new module instance by replacing the local variables with new ones, as shown in
Algorithm 5.

Algorithm 5. PRISM straightforward way to create a new module from an existing one.
module Gripper-
Tool2=GripperTool1[gripperState1=gripperState2,gripperTargetState1=gripperTargetState2,
startRobot1=startRobot2,grasp1=grasp2,release1=release2,clearDetector1=clearDetector2]
endmodule

module
ProductDetector2=ProductDetector1[productState1=productState2,startRobot1=startRobot2,

gripperState1=gripperState2,robotState1=robotState2,clearDetector1=clearDetector2]
endmodule

4. Verification Analysis

Each robotic system is designed and implemented based on some requirements. The
requirements may be categorized as functional and non-functional. For example, placing
soda cans from the moving conveyor band in the red crate and water bottles in the white

Machines 2023, 11, 282 17 of 22

crate by means of the robot arms is a functional requirement. However, the requirements
labeled RQ1–RQ5 that are given in Section 3.1 are non-functional safety requirements.

During the construction of the model, the model of the robotic system needs to be
checked to establish whether it meets the requirements. Model checkers perform this task
by exploring the model state space exhaustively in order to determine whether or not it
satisfies the required property. The requirements are formally specified as properties. There
are many formal specification languages used by various model checkers.

4.1. Property Specification and Model Checking for UPPAAL

The UPPAAL requirement specification language provides semantics for specifications
in CTL. Let ϕ be a given state formula for the specification of requirements. A state formula
is an expression that can be evaluated for a state without looking at the behavior of the
model. It supports five types of properties. These are as follows:

• E <> ϕ is named possibly and evaluates to true for a timed transition system if and
only if there exists a path starting at the initial state, such that ϕ is eventually satisfied
along that path;

• A[] ϕ is named invariantly and evaluates to true if and only if every reachable state
satisfies ϕ;

• E[] ϕ is named potentially always and evaluates to true for a timed transition system
if and only if there is a sequence for which ϕ holds in all states;

• A <> ϕ is named eventually and evaluates to true if and only if all possible transition
sequences eventually reach a state satisfying ϕ;

• ϕ→ ψ whenever ϕ holds eventually ψ will hold as well.

The requirements RQ1–RQ5 can be specified as follows:

RQ1. A[] not (R2.MOVING_HW && (R1.MOVING_HW || R1.WHITE))
RQ2. A[] not ((R2.MOVING_HW || R2.MOVING_HR) && (R1.MOVING_HR || R1.RED))
RQ3. A[] not ((R1.MOVING_HR) && (R2.MOVING_HR || R2.RED))
RQ4. A[] not ((R1.MOVING_HW || R1.MOVING_HR) && (R2.MOVING_HW ||

R2.WHITE))
RQ5. No need to query for this requirement since there is no direct path between the states

BANDi and REDi/WHITEi on the model of the robot controller.

The properties given in RQ1–RQ5 need to be satisfied. Once the properties and model
are given to the UPPAAL tool, it verifies whether or not the properties are satisfied for
the given model. The models shown in Figures 5–8 and properties RQ1–RQ4 are verified
by UPPAAL.

4.2. Property Specification and Model for PRISM

PRISM is capable of understanding properties written in several well-known proba-
bilistic temporal logics. The system requirements are expressed as properties written in
PCTL (probabilistic computational tree logic), which is one of these logics. The PRISM
property specification language allows the P operator to be used to express the probability
of an event occurring. The P operator is used with a bound value and a path property. A
bound value could be any of < p, > p, ≤ p, or ≥ p, where p has a range of 0 to 1.

• P > 0.98 [pathprop] is true in a state S of a model if the probability that pathprop is
satisfied by the paths from state S is greater than 0.98.

Through the quantitative properties approach, the P operator has also a usage as follows:

• P =? [pathprop] · is used when computing the actual probability of the given path
property’s occurrences.

The path property is a formula to be verified for a single path in a model. It has
different types of temporal operators that can be used inside the P operator as follows:

Machines 2023, 11, 282 18 of 22

• X (next): The property X prop is true for a path if prob is true in its second state;
• U (until): The property prop1 U prop2 is true for a path if prop2 is true in some state of

the path and prop1 is true in all preceding states;
• F (eventually or future): The property F prop is true for a path if prop eventually

becomes true at some point along the path;
• G (always or globally): The property G prop is true of a path if prop remains true all

states along the path;
• W (weak until): The property prop1 W prop2 is true for a path if prop1 remains true

until prop2 becomes true, but does not require that prop2 ever does become true;
• R (release): The property prop1 R prop2 is true for a path if prop2 is true until prop1

becomes true, or prop2 is true forever.

The requirements RQ1-RQ5 can be specified as follows:

RQ1. P = ? [F(robotState2 = 7) & ((robotState1 = 4) | (robotState1 = 7))]
RQ2. P = ? [F((robotState2 = 6) | (robotState2 = 7)) & ((robotState1 = 3) | (robotState1 = 6))]
RQ3. P = ? [F(robotState1 = 6) & ((robotState2 = 3) | (robotState2 = 6))]
RQ4. P = ? [F((robotState1 = 6) | (robotState1 = 7)) & ((robotState2 = 4) | (robotState2 = 7))]
RQ5. No need to query for this requirement since there is no direct path between the states

BANDi and REDi/WHITEi on the model of the robot controller.

The model given in Algorithms 1–5 and properties RQ1–RQ4 are verified by PRISM.
The probability of occurrence of the given properties RQ1–RQ4 is zero, as expected.

5. Results and Evaluation

A case study for multiple industrial robot manipulators with path conflicts is discussed.
The software of the robotic system in our case study was developed by a model-based
approach. First, a state-based verification model of the system was created in order to be
verified by two model checker tools, UPPAAL and PRISM.

UPPAAL and PRISM are model-checking tools capable of verifying systems against
given specifications. Both tools are used for modeling and verification. However, each tool
has strengths and weaknesses compared to others. UPPAAL is more suitable for real-time
systems modeled as networks of timed automata, while PRISM is suitable for developing
probabilistic models. Furthermore, UPPAAL allows the modeling of the system via a GUI,
but the modeling process in PRISM is code-based [32]. Therefore, modeling in PRISM
requires more attention than in UPPAAL. Both consist of a simulator that enables the
examination of possible dynamic executions of a system. Moreover, their verifier can detect
syntax errors, but properties must be verified through the verifier. UPPAAL uses a subset of
CTL as its property specification language, but PRISM utilizes logic such as LTL and PCTL.
In addition, there is a difference in model constructions that can be inspected from Figure 5
and Algorithms 1 and 2. The model of the robot controller can be described as a template
in UPPAAL. Furthermore, the template is instantiated by two processes for robots R1 and
R2. However, in PRISM, the robots R1 and R2 are described in two separate modules.

After the model of the system was verified by meeting the desired requirements, then
the control software of the system could be developed to reflect the verified model. The
object-oriented design approach was employed to implement the control software. The
UML class diagram of the system is given in Figure 15. run() methods of each class imple-
ment the related state transition models, which are verified for meeting the requirements.
The classes are coded in C++.

The simulation environment was constructed by using WEBOTS. Then, the robot
program was run in the simulation environment. The products soda and water moved
randomly on the conveyor band. During the execution, it was seen that the requirements
were met. Figure 16 shows some snapshots from the simulations. The complete simula-
tion video can be watched at the link https://youtu.be/V_Tpsp5NUA0 (accessed on 3
January 2023). At t = 0 s , the grippers mounted on the robot arms are over the conveyor
band, and the products are coming through the grippers. Before t= 6 s , both robot arms
hold a water bottle and move towards the white crate at almost the same time. Furthermore,

https://youtu.be/V_Tpsp5NUA0

Machines 2023, 11, 282 19 of 22

at t = 6 s, robot R2 is waiting for R1 while robot R1 is dropping the bottle and returning to
the position HOME. Then, at t = 8.30 s, the robot R2 also moves toward the white crate and
drops the bottle. Similarly, at t = 12.30 s, R1 grabs a soda can while R2 grabs a water bottle.
In this case, R1 waits at HOME until R2 returns HOME after dropping the water bottle into
the white crate.

Machines 2023, 11, x FOR PEER REVIEW 24 of 27

Figure 15. The UML design of the robot software based on the verified model.

The simulation environment was constructed by using WEBOTS. Then, the robot

program was run in the simulation environment. The products soda and water moved

randomly on the conveyor band. During the execution, it was seen that the requirements

were met. Figure 16 shows some snapshots from the simulations. The complete simulation

video can be watched at the link https://youtu.be/V_Tpsp5NUA0 (accessed on 3 January

2023). At 𝑡 = 0 𝑠𝑒𝑐., the grippers mounted on the robot arms are over the conveyor band,

and the products are coming through the grippers. Before 𝑡 = 6 𝑠𝑒𝑐., both robot arms hold

a water bottle and move towards the white crate at almost the same time. Furthermore, at

𝑡 = 6 𝑠𝑒𝑐., robot R2 is waiting for R1 while robot R1 is dropping the bottle and returning

to the position HOME. Then, at 𝑡 = 8.30 𝑠𝑒𝑐., the robot R2 also moves toward the white

crate and drops the bottle. Similarly, at 𝑡 = 12.30 𝑠𝑒𝑐., R1 grabs a soda can while R2 grabs

a water bottle. In this case, R1 waits at HOME until R2 returns HOME after dropping the

water bottle into the white crate.

t = 0 s

t = 6 s

Figure 15. The UML design of the robot software based on the verified model.

Machines 2023, 11, x FOR PEER REVIEW 23 of 26

Figure 15. The UML design of the robot software based on the verified model.

The simulation environment was constructed by using WEBOTS. Then, the robot
program was run in the simulation environment. The products soda and water moved
randomly on the conveyor band. During the execution, it was seen that the requirements
were met. Figure 16 shows some snapshots from the simulations. The complete simulation
video can be watched at the link https://youtu.be/V_Tpsp5NUA0 (accessed on 3 January
2023). At 𝑡 = 0 𝑠𝑒𝑐., the grippers mounted on the robot arms are over the conveyor band,
and the products are coming through the grippers. Before 𝑡 = 6 𝑠𝑒𝑐., both robot arms hold
a water bottle and move towards the white crate at almost the same time. Furthermore, at 𝑡 = 6 𝑠𝑒𝑐., robot R2 is waiting for R1 while robot R1 is dropping the bottle and returning
to the position HOME. Then, at 𝑡 = 8.30 𝑠𝑒𝑐., the robot R2 also moves toward the white
crate and drops the bottle. Similarly, at 𝑡 = 12.30 𝑠𝑒𝑐., R1 grabs a soda can while R2 grabs
a water bottle. In this case, R1 waits at HOME until R2 returns HOME after dropping the
water bottle into the white crate.

t = 0.00 s

t = 6.00 s

Figure 16. Cont.

Machines 2023, 11, 282 20 of 22
Machines 2023, 11, x FOR PEER REVIEW 24 of 26

t = 8.30 s

t = 12.30 s

t = 15.11 s

t = 20.00 s

Figure 16. Snapshots from the simulations.

6. Conclusions
This paper addresses the verification problem of robotic systems, including multiple

industrial robot manipulators with path conflicts. Robotic system developers generally
prefer the use of test processes based on expertise. However, safety issues are likely to
arise with this approach. In this study, we demonstrate the use of formal verification
methods in robotic systems. The formal verification method is implemented by two
model-checker tools: UPPAAL and PRISM. The paper presents a model description and
property specifications for two different model checker tools on the same system,
revealing the modeling similarities and differences between the two leading tools. In
addition, we show how system software designed using an object-oriented approach
utilizes the verified model. Finally, the simulation presents the execution of the software
that enables the robotic system to perform safely without any collisions between robot
manipulators.

Author Contributions: Conceptualization, M.O. and Z.D.; methodology, M.O.; software, Z.D.;
validation, M.O., Z.D. and A.Y.; formal analysis, Z.D. and Ö.A.; investigation, M.O. and Z.D.;
resources, Z.D.; data curation, Z.D.; writing—original draft preparation, M.O., Z.D., and A.Y.;
writing—review and editing, M.O., Z.D., and A.Y.; visualization, M.O. and Z.D.; supervision, M.O.;
project administration, M.O.; funding acquisition, A.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by theVALU3S project that has received funding from the
ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Austria, Czech Republic,
Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey (TUBITAK, under contract no:119N356).
The views expressed in this work are the sole responsibility of the authors and do not necessarily
reflect the views or position of the European Commission. The authors, the VALU3S Consortium,
and the ECSEL JU are not responsible for the use which might be made of the information contained
in here. This work is supported by the Scientific and Technical Research Council

Figure 16. Snapshots from the simulations.

6. Conclusions

This paper addresses the verification problem of robotic systems, including multiple
industrial robot manipulators with path conflicts. Robotic system developers generally
prefer the use of test processes based on expertise. However, safety issues are likely to
arise with this approach. In this study, we demonstrate the use of formal verification
methods in robotic systems. The formal verification method is implemented by two model-
checker tools: UPPAAL and PRISM. The paper presents a model description and property
specifications for two different model checker tools on the same system, revealing the
modeling similarities and differences between the two leading tools. In addition, we show
how system software designed using an object-oriented approach utilizes the verified
model. Finally, the simulation presents the execution of the software that enables the
robotic system to perform safely without any collisions between robot manipulators.

Author Contributions: Conceptualization, M.O. and Z.D.; methodology, M.O.; software, Z.D.; vali-
dation, M.O., Z.D. and A.Y.; formal analysis, Z.D. and Ö.A.; investigation, M.O. and Z.D.; resources,
Z.D.; data curation, Z.D.; writing—original draft preparation, M.O., Z.D., and A.Y.; writing—review
and editing, M.O., Z.D., and A.Y.; visualization, M.O. and Z.D.; supervision, M.O.; project adminis-
tration, M.O.; funding acquisition, A.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by theVALU3S project that has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No 876852. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Austria, Czech Republic, Germany,
Ireland, Italy, Portugal, Spain, Sweden, Turkey (TUBITAK, under contract no:119N356). The views
expressed in this work are the sole responsibility of the authors and do not necessarily reflect the
views or position of the European Commission. The authors, the VALU3S Consortium, and the ECSEL
JU are not responsible for the use which might be made of the information contained in here. This
work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK), Contract
No 120N800, project title: “Verification and Validation of Automated Systems’ Safety and Security”.

Machines 2023, 11, 282 21 of 22

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by theVALU3S project that has received funding from
the ECSEL Joint Undertaking (JU) under grant agreement No 876852. The JU receives support from
the European Union’s Horizon 2020 research and innovation programme and Austria, Czech Republic,
Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey (TUBITAK, under contract no:119N356).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Garcia, S.; Strüber, D.; Brugali, D.; Berger, T.; Pelliccione, P. Robotics Software Engineering: A Perspective from the Service

Robotics Domain. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Virtual, 8–13 November 2020.

2. Casalaro, G.L.; Cattivera, G.; Malavolta, I.C.; Wortmann, A.; Pelliccione, P. Model-driven engineering for mobile robotic systems:
A systematic mapping study. Softw. Syst. Model. 2022, 21, 19–49. [CrossRef]

3. Brugali, D.; and Prassler, E. Software engineering for robotics [From the Guest Editors]. IEEE Robot. Autom. Mag. 2009, 16, 9–15.
[CrossRef]

4. Miyazawa, A.; Ribeiro, P.; Li, W.; Cavalcanti, A.; Timmis, J.; Woodcock, J. RoboChart: Modelling and verification of the functional
behaviour of robotic applications. Softw. Syst. Model. 2019, 18, 3097–3149. [CrossRef]

5. Ye, K.; Cavalcanti, A.; Foster, S.; Miyazawa, A.; Woodcook, J. Probabilistic modelling and verification using RoboChart and
PRISM. Softw. Syst. Model. 2021, 21, 667–716. [CrossRef]

6. Sinha, R.; Patil, S.; Gomes, L.; Vyatkin, V. A Survey of Static Formal Methods for Building Dependable Industrial Automation
Systems. EEE Trans. Ind. Inform. 2019, 15, 3772–3783. [CrossRef]

7. Luckcuck, M.; Farrell, M.; Dennis, L.; Dixon, C.; Fisher, M. Formal Specification and Verification of Autonomous Robotic Systems:
A Survey. ACM Comput. Surv. 2019, 52, 1–41. [CrossRef]

8. Zheng, X.; Julien, C.; Kim, M.; Khurshid, S. Perceptions on the State of the Art in Verification and Validation in Cyber-Physical
Systems. IEEE Syst. J. 2017, 11, 2614–2627. [CrossRef]

9. Ingrand, F. Recent Trends in Formal Validation and Verification of Autonomous Robots Software. In Proceedings of the 2019
Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019.

10. Kanter, G.; Vain, J. Model-based testing of autonomous robots using TestIt. J. Reliab. Intell. Environ. 2020, 6, 15–30. [CrossRef]
11. Larsen, K.G.; Pettersson, P.; Yi, W. UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1997, 1, 134–152. [CrossRef]
12. Wang, R.; Luo, P.; Guan, Y.; Wei, H.; Li, X.; Zhang, J.; Song, X. Timed automata-based motion planning for a self-assembly robot

system. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hongkong, China, 31
May–7 June 2014.

13. Webster, M.; Western, D.; Araiza-Illan, D.; Dixon, C.; Eder, K.; Fisher, M.; Pipe, A.G. Corroborative approach to verification and
validation of human-robot teams. Int. J. Robot. Res. 2019, 39, 73–79. [CrossRef]

14. Kwiatkowska, M.; Norman, G.; and Parker, D. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proceedings of
the 23rd International Conference on Computer Aided Verification (CAV’11), Snowbird, UT, USA, 14–20 July 2011; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6806, pp. 585–591.

15. GAZEBO. 2021. Available online: https://gazebosim.org/ (accessed on 3 January 2023).
16. Villani, E.; Pontes, R.P.; Coracini, G.K.; Ambrósio, A.M. Integrating model checking and model based testing for industrial

software development. Comput. Ind. 2019, 104, 88–102. [CrossRef]
17. Martins, E.; Sabião, S.B..; Ambrosio, A.M. ConData: A tool for automating specification-based test case generation for communi-

cation systems. Softw. Qual. J. 1999, 8, 303–319. [CrossRef]
18. Kejstova, K.; Rockai, P.; Barnat, J. From Model Checking to Runtime Verification and Back. RV2017: Runtime Verification. In

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10548, pp. 225–240.
19. Desai, A.; Dreossi, T.; Seshia, S.A. Combining Model Checking and Runtime Verification for Safe Robotics. Runtime Verification.

RV 2017. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10548, pp. 172–189.
20. Halder, R.; Proença, J.; Macedo, N.; Santos, A. Formal Verification of ROS-Based Robotic Applications Using Timed-Automata. In

Proceedings of the 2017 IEEE/ACM 5th International FME Workshop on Formal Methods in Software Engineering, Buenos Aires,
Argentina, 27 May 2017; pp. 44–50.

21. Webster, M.; Dixon, C.; Fisher, M.; Salem, M.; Saunders, J.; Koay, K.L.; Dautenhahn, K.; Saez-Pons, J. Toward Reliable Autonomous
Robotic Assistants Through Formal Verification: A Case Study. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 186–196. [CrossRef]

22. Konur, S.; Dixon, C.; Fisher, M. Analysing robot swarm behaviour via probabilistic model checking. Robot. Auton. Syst. 2012, 60,
199–213. [CrossRef]

23. Gjondrekaj, E.; Loreti, M.; Pugliese, R.; Tiezzi, F.; Pinciroli, C. Towards a Formal Verification Methodology for Collective Robotic
Systems. In Formal Methods and Software Engineering. ICFEM 2012. Lecture Notes in Computer Science; Aoki, T., Taguchi, K., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7635.

24. Dixon, C.; Winfield, A.F.T.; Fisher, M.; Zeng, C. Towards temporal verification of swarm robotic systems. Robot. Auton. Syst. 2012,
60, 1429–1441. [CrossRef]

http://doi.org/10.1007/s10270-021-00908-8
http://doi.org/10.1109/MRA.2009.932127
http://doi.org/10.1007/s10270-018-00710-z
http://doi.org/10.1007/s10270-021-00916-8
http://doi.org/10.1109/TII.2019.2908665
http://doi.org/10.1145/3342355
http://doi.org/10.1109/JSYST.2015.2496293
http://doi.org/10.1007/s40860-019-00095-w
http://doi.org/10.1007/s100090050010
http://doi.org/10.1177/0278364919883338
https://gazebosim.org/
http://doi.org/10.1016/j.compind.2018.08.003
http://doi.org/10.1023/A:1008930105477
http://doi.org/10.1109/THMS.2015.2425139
http://doi.org/10.1016/j.robot.2011.10.005
http://doi.org/10.1016/j.robot.2012.03.003

Machines 2023, 11, 282 22 of 22

25. Weißmann, M.; Bedenk, S.; Buckl, C.; Knoll, A. Model Checking Industrial Robot Systems. In Proceedings of the International
SPIN Workshop on Model Checking of Software, Snowbird, UT, USA, 14–15 July 2011.

26. Quottrup, M.M.; Bak, T.; Izadi-Zamanabadi, R. Multi-robot planning: A timed automata approach. In Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA ’04, New Orleans, LA, USA, 26 April–1 May 2004.

27. Gu, R.; Enoiu, E.; Secelenau, C. TAMAA: UPPAAL-based mission planning for autonomous agents. In Proceedings of the 35th
Annual ACM Symposium on Applied Computing, Virtual, 30 March–3 April 2020; Association for Computing Machinery: Brno,
Czech Republic, 2020; pp. 1624–1633.

28. Wang, R.; Guan, Y.; Song, H.; Li, X.; Li, X.; Shi, Z.; Song, X. A Formal Model-Based Design Method for Robotic Systems. IEEE Syst.
J. 2019, 13, 1096–1107. [CrossRef]

29. Alur, R. Timed Automata. In Computer Aided Verification. CAV 1999. Lecture Notes in Computer Science; Halbwachs, N., Peled, D.,
Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1633. [CrossRef]

30. Alur, R.; Dill, D.R. A theory of timed automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
31. Baier, C.; Haverkort, B.; Hermanns, H.; Katoen, J. Model Checking Algorithms for Continuous-Time Markov Chains. IEEE Trans.

Softw. Eng. 2003, 29, 6. [CrossRef]
32. Naeem, A.; Azam, F.; Amjad, A.; Anwar, M.W. Comparison of Model Checking Tools Using Timed Automata—PRISM and

UPPAAL. In Proceedings of the 2018 IEEE International Conference on Computer and Communication Engineering Technology,
Beijing, China, 19–20 September 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JSYST.2018.2867285
http://doi.org/10.1007/3-540-48683-6_3
http://doi.org/10.1016/0304-3975(94)90010-8
http://doi.org/10.1109/TSE.2003.1205180

	Introduction
	Model Checking
	System Modeling Based on Timed Automata
	System Modeling Based on Continuous Time Markov Chains (CTMC)
	Relation between Verification Models and Software Design

	Multiple Industrial Robot Systems Operating in a Shared Workspace: A Case Study
	Description of the Problem
	Timed Automata Modeling
	Robot Controller
	Gripper
	Product Detector
	Conveyor Band

	Continuous Time Markov Chains (CTMC) Modeling

	Verification Analysis
	Property Specification and Model Checking for UPPAAL
	Property Specification and Model for PRISM

	Results and Evaluation
	Conclusions
	References

